rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 Open Asset Import Library (assimp)
|
nuclear@0
|
3 ----------------------------------------------------------------------
|
nuclear@0
|
4
|
nuclear@0
|
5 Copyright (c) 2006-2012, assimp team
|
nuclear@0
|
6 All rights reserved.
|
nuclear@0
|
7
|
nuclear@0
|
8 Redistribution and use of this software in source and binary forms,
|
nuclear@0
|
9 with or without modification, are permitted provided that the
|
nuclear@0
|
10 following conditions are met:
|
nuclear@0
|
11
|
nuclear@0
|
12 * Redistributions of source code must retain the above
|
nuclear@0
|
13 copyright notice, this list of conditions and the
|
nuclear@0
|
14 following disclaimer.
|
nuclear@0
|
15
|
nuclear@0
|
16 * Redistributions in binary form must reproduce the above
|
nuclear@0
|
17 copyright notice, this list of conditions and the
|
nuclear@0
|
18 following disclaimer in the documentation and/or other
|
nuclear@0
|
19 materials provided with the distribution.
|
nuclear@0
|
20
|
nuclear@0
|
21 * Neither the name of the assimp team, nor the names of its
|
nuclear@0
|
22 contributors may be used to endorse or promote products
|
nuclear@0
|
23 derived from this software without specific prior
|
nuclear@0
|
24 written permission of the assimp team.
|
nuclear@0
|
25
|
nuclear@0
|
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
nuclear@0
|
27 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
nuclear@0
|
28 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
nuclear@0
|
29 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
nuclear@0
|
30 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
nuclear@0
|
31 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
nuclear@0
|
32 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
nuclear@0
|
33 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
nuclear@0
|
34 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
nuclear@0
|
35 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
nuclear@0
|
36 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
nuclear@0
|
37
|
nuclear@0
|
38 ----------------------------------------------------------------------
|
nuclear@0
|
39 */
|
nuclear@0
|
40
|
nuclear@0
|
41 /** @file IFCUtil.cpp
|
nuclear@0
|
42 * @brief Implementation of conversion routines for some common Ifc helper entities.
|
nuclear@0
|
43 */
|
nuclear@0
|
44
|
nuclear@0
|
45 #include "AssimpPCH.h"
|
nuclear@0
|
46
|
nuclear@0
|
47 #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
nuclear@0
|
48
|
nuclear@0
|
49 #include "IFCUtil.h"
|
nuclear@0
|
50 #include "PolyTools.h"
|
nuclear@0
|
51 #include "ProcessHelper.h"
|
nuclear@0
|
52
|
nuclear@0
|
53 namespace Assimp {
|
nuclear@0
|
54 namespace IFC {
|
nuclear@0
|
55
|
nuclear@0
|
56 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
57 void TempOpening::Transform(const IfcMatrix4& mat)
|
nuclear@0
|
58 {
|
nuclear@0
|
59 if(profileMesh) {
|
nuclear@0
|
60 profileMesh->Transform(mat);
|
nuclear@0
|
61 }
|
nuclear@0
|
62 if(profileMesh2D) {
|
nuclear@0
|
63 profileMesh2D->Transform(mat);
|
nuclear@0
|
64 }
|
nuclear@0
|
65 extrusionDir *= IfcMatrix3(mat);
|
nuclear@0
|
66 }
|
nuclear@0
|
67
|
nuclear@0
|
68 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
69 aiMesh* TempMesh::ToMesh()
|
nuclear@0
|
70 {
|
nuclear@0
|
71 ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),size_t(0)));
|
nuclear@0
|
72
|
nuclear@0
|
73 if (verts.empty()) {
|
nuclear@0
|
74 return NULL;
|
nuclear@0
|
75 }
|
nuclear@0
|
76
|
nuclear@0
|
77 std::auto_ptr<aiMesh> mesh(new aiMesh());
|
nuclear@0
|
78
|
nuclear@0
|
79 // copy vertices
|
nuclear@0
|
80 mesh->mNumVertices = static_cast<unsigned int>(verts.size());
|
nuclear@0
|
81 mesh->mVertices = new aiVector3D[mesh->mNumVertices];
|
nuclear@0
|
82 std::copy(verts.begin(),verts.end(),mesh->mVertices);
|
nuclear@0
|
83
|
nuclear@0
|
84 // and build up faces
|
nuclear@0
|
85 mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
|
nuclear@0
|
86 mesh->mFaces = new aiFace[mesh->mNumFaces];
|
nuclear@0
|
87
|
nuclear@0
|
88 for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
|
nuclear@0
|
89 aiFace& f = mesh->mFaces[i];
|
nuclear@0
|
90 if (!vertcnt[n]) {
|
nuclear@0
|
91 --mesh->mNumFaces;
|
nuclear@0
|
92 continue;
|
nuclear@0
|
93 }
|
nuclear@0
|
94
|
nuclear@0
|
95 f.mNumIndices = vertcnt[n];
|
nuclear@0
|
96 f.mIndices = new unsigned int[f.mNumIndices];
|
nuclear@0
|
97 for(unsigned int a = 0; a < f.mNumIndices; ++a) {
|
nuclear@0
|
98 f.mIndices[a] = acc++;
|
nuclear@0
|
99 }
|
nuclear@0
|
100
|
nuclear@0
|
101 ++i;
|
nuclear@0
|
102 }
|
nuclear@0
|
103
|
nuclear@0
|
104 return mesh.release();
|
nuclear@0
|
105 }
|
nuclear@0
|
106
|
nuclear@0
|
107 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
108 void TempMesh::Clear()
|
nuclear@0
|
109 {
|
nuclear@0
|
110 verts.clear();
|
nuclear@0
|
111 vertcnt.clear();
|
nuclear@0
|
112 }
|
nuclear@0
|
113
|
nuclear@0
|
114 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
115 void TempMesh::Transform(const IfcMatrix4& mat)
|
nuclear@0
|
116 {
|
nuclear@0
|
117 BOOST_FOREACH(IfcVector3& v, verts) {
|
nuclear@0
|
118 v *= mat;
|
nuclear@0
|
119 }
|
nuclear@0
|
120 }
|
nuclear@0
|
121
|
nuclear@0
|
122 // ------------------------------------------------------------------------------
|
nuclear@0
|
123 IfcVector3 TempMesh::Center() const
|
nuclear@0
|
124 {
|
nuclear@0
|
125 return std::accumulate(verts.begin(),verts.end(),IfcVector3()) / static_cast<IfcFloat>(verts.size());
|
nuclear@0
|
126 }
|
nuclear@0
|
127
|
nuclear@0
|
128 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
129 void TempMesh::Append(const TempMesh& other)
|
nuclear@0
|
130 {
|
nuclear@0
|
131 verts.insert(verts.end(),other.verts.begin(),other.verts.end());
|
nuclear@0
|
132 vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
|
nuclear@0
|
133 }
|
nuclear@0
|
134
|
nuclear@0
|
135 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
136 void TempMesh::RemoveDegenerates()
|
nuclear@0
|
137 {
|
nuclear@0
|
138 // The strategy is simple: walk the mesh and compute normals using
|
nuclear@0
|
139 // Newell's algorithm. The length of the normals gives the area
|
nuclear@0
|
140 // of the polygons, which is close to zero for lines.
|
nuclear@0
|
141
|
nuclear@0
|
142 std::vector<IfcVector3> normals;
|
nuclear@0
|
143 ComputePolygonNormals(normals, false);
|
nuclear@0
|
144
|
nuclear@0
|
145 bool drop = false;
|
nuclear@0
|
146 size_t inor = 0;
|
nuclear@0
|
147
|
nuclear@0
|
148 std::vector<IfcVector3>::iterator vit = verts.begin();
|
nuclear@0
|
149 for (std::vector<unsigned int>::iterator it = vertcnt.begin(); it != vertcnt.end(); ++inor) {
|
nuclear@0
|
150 const unsigned int pcount = *it;
|
nuclear@0
|
151
|
nuclear@0
|
152 if (normals[inor].SquareLength() < 1e-5f) {
|
nuclear@0
|
153 it = vertcnt.erase(it);
|
nuclear@0
|
154 vit = verts.erase(vit, vit + pcount);
|
nuclear@0
|
155
|
nuclear@0
|
156 drop = true;
|
nuclear@0
|
157 continue;
|
nuclear@0
|
158 }
|
nuclear@0
|
159
|
nuclear@0
|
160 vit += pcount;
|
nuclear@0
|
161 ++it;
|
nuclear@0
|
162 }
|
nuclear@0
|
163
|
nuclear@0
|
164 if(drop) {
|
nuclear@0
|
165 IFCImporter::LogDebug("removing degenerate faces");
|
nuclear@0
|
166 }
|
nuclear@0
|
167 }
|
nuclear@0
|
168
|
nuclear@0
|
169 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
170 void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
|
nuclear@0
|
171 bool normalize,
|
nuclear@0
|
172 size_t ofs) const
|
nuclear@0
|
173 {
|
nuclear@0
|
174 size_t max_vcount = 0;
|
nuclear@0
|
175 std::vector<unsigned int>::const_iterator begin = vertcnt.begin()+ofs, end = vertcnt.end(), iit;
|
nuclear@0
|
176 for(iit = begin; iit != end; ++iit) {
|
nuclear@0
|
177 max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
|
nuclear@0
|
178 }
|
nuclear@0
|
179
|
nuclear@0
|
180 std::vector<IfcFloat> temp((max_vcount+2)*4);
|
nuclear@0
|
181 normals.reserve( normals.size() + vertcnt.size()-ofs );
|
nuclear@0
|
182
|
nuclear@0
|
183 // `NewellNormal()` currently has a relatively strange interface and need to
|
nuclear@0
|
184 // re-structure things a bit to meet them.
|
nuclear@0
|
185 size_t vidx = std::accumulate(vertcnt.begin(),begin,0);
|
nuclear@0
|
186 for(iit = begin; iit != end; vidx += *iit++) {
|
nuclear@0
|
187 if (!*iit) {
|
nuclear@0
|
188 normals.push_back(IfcVector3());
|
nuclear@0
|
189 continue;
|
nuclear@0
|
190 }
|
nuclear@0
|
191 for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
|
nuclear@0
|
192 const IfcVector3& v = verts[vidx+vofs];
|
nuclear@0
|
193 temp[cnt++] = v.x;
|
nuclear@0
|
194 temp[cnt++] = v.y;
|
nuclear@0
|
195 temp[cnt++] = v.z;
|
nuclear@0
|
196 #ifdef _DEBUG
|
nuclear@0
|
197 temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
|
nuclear@0
|
198 #endif
|
nuclear@0
|
199 ++cnt;
|
nuclear@0
|
200 }
|
nuclear@0
|
201
|
nuclear@0
|
202 normals.push_back(IfcVector3());
|
nuclear@0
|
203 NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
|
nuclear@0
|
204 }
|
nuclear@0
|
205
|
nuclear@0
|
206 if(normalize) {
|
nuclear@0
|
207 BOOST_FOREACH(IfcVector3& n, normals) {
|
nuclear@0
|
208 n.Normalize();
|
nuclear@0
|
209 }
|
nuclear@0
|
210 }
|
nuclear@0
|
211 }
|
nuclear@0
|
212
|
nuclear@0
|
213 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
214 // Compute the normal of the last polygon in the given mesh
|
nuclear@0
|
215 IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const
|
nuclear@0
|
216 {
|
nuclear@0
|
217 size_t total = vertcnt.back(), vidx = verts.size() - total;
|
nuclear@0
|
218 std::vector<IfcFloat> temp((total+2)*3);
|
nuclear@0
|
219 for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
|
nuclear@0
|
220 const IfcVector3& v = verts[vidx+vofs];
|
nuclear@0
|
221 temp[cnt++] = v.x;
|
nuclear@0
|
222 temp[cnt++] = v.y;
|
nuclear@0
|
223 temp[cnt++] = v.z;
|
nuclear@0
|
224 }
|
nuclear@0
|
225 IfcVector3 nor;
|
nuclear@0
|
226 NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
|
nuclear@0
|
227 return normalize ? nor.Normalize() : nor;
|
nuclear@0
|
228 }
|
nuclear@0
|
229
|
nuclear@0
|
230 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
231 void TempMesh::FixupFaceOrientation()
|
nuclear@0
|
232 {
|
nuclear@0
|
233 const IfcVector3 vavg = Center();
|
nuclear@0
|
234
|
nuclear@0
|
235 std::vector<IfcVector3> normals;
|
nuclear@0
|
236 ComputePolygonNormals(normals);
|
nuclear@0
|
237
|
nuclear@0
|
238 size_t c = 0, ofs = 0;
|
nuclear@0
|
239 BOOST_FOREACH(unsigned int cnt, vertcnt) {
|
nuclear@0
|
240 if (cnt>2){
|
nuclear@0
|
241 const IfcVector3& thisvert = verts[c];
|
nuclear@0
|
242 if (normals[ofs]*(thisvert-vavg) < 0) {
|
nuclear@0
|
243 std::reverse(verts.begin()+c,verts.begin()+cnt+c);
|
nuclear@0
|
244 }
|
nuclear@0
|
245 }
|
nuclear@0
|
246 c += cnt;
|
nuclear@0
|
247 ++ofs;
|
nuclear@0
|
248 }
|
nuclear@0
|
249 }
|
nuclear@0
|
250
|
nuclear@0
|
251 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
252 void TempMesh::RemoveAdjacentDuplicates()
|
nuclear@0
|
253 {
|
nuclear@0
|
254
|
nuclear@0
|
255 bool drop = false;
|
nuclear@0
|
256 std::vector<IfcVector3>::iterator base = verts.begin();
|
nuclear@0
|
257 BOOST_FOREACH(unsigned int& cnt, vertcnt) {
|
nuclear@0
|
258 if (cnt < 2){
|
nuclear@0
|
259 base += cnt;
|
nuclear@0
|
260 continue;
|
nuclear@0
|
261 }
|
nuclear@0
|
262
|
nuclear@0
|
263 IfcVector3 vmin,vmax;
|
nuclear@0
|
264 ArrayBounds(&*base, cnt ,vmin,vmax);
|
nuclear@0
|
265
|
nuclear@0
|
266
|
nuclear@0
|
267 const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
|
nuclear@0
|
268 //const IfcFloat dotepsilon = 1e-9;
|
nuclear@0
|
269
|
nuclear@0
|
270 //// look for vertices that lie directly on the line between their predecessor and their
|
nuclear@0
|
271 //// successor and replace them with either of them.
|
nuclear@0
|
272
|
nuclear@0
|
273 //for(size_t i = 0; i < cnt; ++i) {
|
nuclear@0
|
274 // IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
|
nuclear@0
|
275 // const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
|
nuclear@0
|
276 // const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
|
nuclear@0
|
277 // if (!l0 || !l1) {
|
nuclear@0
|
278 // continue;
|
nuclear@0
|
279 // }
|
nuclear@0
|
280
|
nuclear@0
|
281 // const IfcFloat d = (d0/sqrt(l0))*(d1/sqrt(l1));
|
nuclear@0
|
282
|
nuclear@0
|
283 // if ( d >= 1.f-dotepsilon ) {
|
nuclear@0
|
284 // v1 = v0;
|
nuclear@0
|
285 // }
|
nuclear@0
|
286 // else if ( d < -1.f+dotepsilon ) {
|
nuclear@0
|
287 // v2 = v1;
|
nuclear@0
|
288 // continue;
|
nuclear@0
|
289 // }
|
nuclear@0
|
290 //}
|
nuclear@0
|
291
|
nuclear@0
|
292 // drop any identical, adjacent vertices. this pass will collect the dropouts
|
nuclear@0
|
293 // of the previous pass as a side-effect.
|
nuclear@0
|
294 FuzzyVectorCompare fz(epsilon);
|
nuclear@0
|
295 std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
|
nuclear@0
|
296 if (e != end) {
|
nuclear@0
|
297 cnt -= static_cast<unsigned int>(std::distance(e, end));
|
nuclear@0
|
298 verts.erase(e,end);
|
nuclear@0
|
299 drop = true;
|
nuclear@0
|
300 }
|
nuclear@0
|
301
|
nuclear@0
|
302 // check front and back vertices for this polygon
|
nuclear@0
|
303 if (cnt > 1 && fz(*base,*(base+cnt-1))) {
|
nuclear@0
|
304 verts.erase(base+ --cnt);
|
nuclear@0
|
305 drop = true;
|
nuclear@0
|
306 }
|
nuclear@0
|
307
|
nuclear@0
|
308 // removing adjacent duplicates shouldn't erase everything :-)
|
nuclear@0
|
309 ai_assert(cnt>0);
|
nuclear@0
|
310 base += cnt;
|
nuclear@0
|
311 }
|
nuclear@0
|
312 if(drop) {
|
nuclear@0
|
313 IFCImporter::LogDebug("removing duplicate vertices");
|
nuclear@0
|
314 }
|
nuclear@0
|
315 }
|
nuclear@0
|
316
|
nuclear@0
|
317 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
318 void TempMesh::Swap(TempMesh& other)
|
nuclear@0
|
319 {
|
nuclear@0
|
320 vertcnt.swap(other.vertcnt);
|
nuclear@0
|
321 verts.swap(other.verts);
|
nuclear@0
|
322 }
|
nuclear@0
|
323
|
nuclear@0
|
324 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
325 bool IsTrue(const EXPRESS::BOOLEAN& in)
|
nuclear@0
|
326 {
|
nuclear@0
|
327 return (std::string)in == "TRUE" || (std::string)in == "T";
|
nuclear@0
|
328 }
|
nuclear@0
|
329
|
nuclear@0
|
330 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
331 IfcFloat ConvertSIPrefix(const std::string& prefix)
|
nuclear@0
|
332 {
|
nuclear@0
|
333 if (prefix == "EXA") {
|
nuclear@0
|
334 return 1e18f;
|
nuclear@0
|
335 }
|
nuclear@0
|
336 else if (prefix == "PETA") {
|
nuclear@0
|
337 return 1e15f;
|
nuclear@0
|
338 }
|
nuclear@0
|
339 else if (prefix == "TERA") {
|
nuclear@0
|
340 return 1e12f;
|
nuclear@0
|
341 }
|
nuclear@0
|
342 else if (prefix == "GIGA") {
|
nuclear@0
|
343 return 1e9f;
|
nuclear@0
|
344 }
|
nuclear@0
|
345 else if (prefix == "MEGA") {
|
nuclear@0
|
346 return 1e6f;
|
nuclear@0
|
347 }
|
nuclear@0
|
348 else if (prefix == "KILO") {
|
nuclear@0
|
349 return 1e3f;
|
nuclear@0
|
350 }
|
nuclear@0
|
351 else if (prefix == "HECTO") {
|
nuclear@0
|
352 return 1e2f;
|
nuclear@0
|
353 }
|
nuclear@0
|
354 else if (prefix == "DECA") {
|
nuclear@0
|
355 return 1e-0f;
|
nuclear@0
|
356 }
|
nuclear@0
|
357 else if (prefix == "DECI") {
|
nuclear@0
|
358 return 1e-1f;
|
nuclear@0
|
359 }
|
nuclear@0
|
360 else if (prefix == "CENTI") {
|
nuclear@0
|
361 return 1e-2f;
|
nuclear@0
|
362 }
|
nuclear@0
|
363 else if (prefix == "MILLI") {
|
nuclear@0
|
364 return 1e-3f;
|
nuclear@0
|
365 }
|
nuclear@0
|
366 else if (prefix == "MICRO") {
|
nuclear@0
|
367 return 1e-6f;
|
nuclear@0
|
368 }
|
nuclear@0
|
369 else if (prefix == "NANO") {
|
nuclear@0
|
370 return 1e-9f;
|
nuclear@0
|
371 }
|
nuclear@0
|
372 else if (prefix == "PICO") {
|
nuclear@0
|
373 return 1e-12f;
|
nuclear@0
|
374 }
|
nuclear@0
|
375 else if (prefix == "FEMTO") {
|
nuclear@0
|
376 return 1e-15f;
|
nuclear@0
|
377 }
|
nuclear@0
|
378 else if (prefix == "ATTO") {
|
nuclear@0
|
379 return 1e-18f;
|
nuclear@0
|
380 }
|
nuclear@0
|
381 else {
|
nuclear@0
|
382 IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
|
nuclear@0
|
383 return 1;
|
nuclear@0
|
384 }
|
nuclear@0
|
385 }
|
nuclear@0
|
386
|
nuclear@0
|
387 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
388 void ConvertColor(aiColor4D& out, const IfcColourRgb& in)
|
nuclear@0
|
389 {
|
nuclear@0
|
390 out.r = static_cast<float>( in.Red );
|
nuclear@0
|
391 out.g = static_cast<float>( in.Green );
|
nuclear@0
|
392 out.b = static_cast<float>( in.Blue );
|
nuclear@0
|
393 out.a = static_cast<float>( 1.f );
|
nuclear@0
|
394 }
|
nuclear@0
|
395
|
nuclear@0
|
396 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
397 void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
|
nuclear@0
|
398 {
|
nuclear@0
|
399 if (const EXPRESS::REAL* const r = in.ToPtr<EXPRESS::REAL>()) {
|
nuclear@0
|
400 out.r = out.g = out.b = static_cast<float>(*r);
|
nuclear@0
|
401 if(base) {
|
nuclear@0
|
402 out.r *= static_cast<float>( base->r );
|
nuclear@0
|
403 out.g *= static_cast<float>( base->g );
|
nuclear@0
|
404 out.b *= static_cast<float>( base->b );
|
nuclear@0
|
405 out.a = static_cast<float>( base->a );
|
nuclear@0
|
406 }
|
nuclear@0
|
407 else out.a = 1.0;
|
nuclear@0
|
408 }
|
nuclear@0
|
409 else if (const IfcColourRgb* const rgb = in.ResolveSelectPtr<IfcColourRgb>(conv.db)) {
|
nuclear@0
|
410 ConvertColor(out,*rgb);
|
nuclear@0
|
411 }
|
nuclear@0
|
412 else {
|
nuclear@0
|
413 IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
|
nuclear@0
|
414 }
|
nuclear@0
|
415 }
|
nuclear@0
|
416
|
nuclear@0
|
417 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
418 void ConvertCartesianPoint(IfcVector3& out, const IfcCartesianPoint& in)
|
nuclear@0
|
419 {
|
nuclear@0
|
420 out = IfcVector3();
|
nuclear@0
|
421 for(size_t i = 0; i < in.Coordinates.size(); ++i) {
|
nuclear@0
|
422 out[i] = in.Coordinates[i];
|
nuclear@0
|
423 }
|
nuclear@0
|
424 }
|
nuclear@0
|
425
|
nuclear@0
|
426 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
427 void ConvertVector(IfcVector3& out, const IfcVector& in)
|
nuclear@0
|
428 {
|
nuclear@0
|
429 ConvertDirection(out,in.Orientation);
|
nuclear@0
|
430 out *= in.Magnitude;
|
nuclear@0
|
431 }
|
nuclear@0
|
432
|
nuclear@0
|
433 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
434 void ConvertDirection(IfcVector3& out, const IfcDirection& in)
|
nuclear@0
|
435 {
|
nuclear@0
|
436 out = IfcVector3();
|
nuclear@0
|
437 for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
|
nuclear@0
|
438 out[i] = in.DirectionRatios[i];
|
nuclear@0
|
439 }
|
nuclear@0
|
440 const IfcFloat len = out.Length();
|
nuclear@0
|
441 if (len<1e-6) {
|
nuclear@0
|
442 IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
|
nuclear@0
|
443 return;
|
nuclear@0
|
444 }
|
nuclear@0
|
445 out /= len;
|
nuclear@0
|
446 }
|
nuclear@0
|
447
|
nuclear@0
|
448 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
449 void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
|
nuclear@0
|
450 {
|
nuclear@0
|
451 out.a1 = x.x;
|
nuclear@0
|
452 out.b1 = x.y;
|
nuclear@0
|
453 out.c1 = x.z;
|
nuclear@0
|
454
|
nuclear@0
|
455 out.a2 = y.x;
|
nuclear@0
|
456 out.b2 = y.y;
|
nuclear@0
|
457 out.c2 = y.z;
|
nuclear@0
|
458
|
nuclear@0
|
459 out.a3 = z.x;
|
nuclear@0
|
460 out.b3 = z.y;
|
nuclear@0
|
461 out.c3 = z.z;
|
nuclear@0
|
462 }
|
nuclear@0
|
463
|
nuclear@0
|
464 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
465 void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement3D& in)
|
nuclear@0
|
466 {
|
nuclear@0
|
467 IfcVector3 loc;
|
nuclear@0
|
468 ConvertCartesianPoint(loc,in.Location);
|
nuclear@0
|
469
|
nuclear@0
|
470 IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
|
nuclear@0
|
471
|
nuclear@0
|
472 if (in.Axis) {
|
nuclear@0
|
473 ConvertDirection(z,*in.Axis.Get());
|
nuclear@0
|
474 }
|
nuclear@0
|
475 if (in.RefDirection) {
|
nuclear@0
|
476 ConvertDirection(r,*in.RefDirection.Get());
|
nuclear@0
|
477 }
|
nuclear@0
|
478
|
nuclear@0
|
479 IfcVector3 v = r.Normalize();
|
nuclear@0
|
480 IfcVector3 tmpx = z * (v*z);
|
nuclear@0
|
481
|
nuclear@0
|
482 x = (v-tmpx).Normalize();
|
nuclear@0
|
483 IfcVector3 y = (z^x);
|
nuclear@0
|
484
|
nuclear@0
|
485 IfcMatrix4::Translation(loc,out);
|
nuclear@0
|
486 AssignMatrixAxes(out,x,y,z);
|
nuclear@0
|
487 }
|
nuclear@0
|
488
|
nuclear@0
|
489 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
490 void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement2D& in)
|
nuclear@0
|
491 {
|
nuclear@0
|
492 IfcVector3 loc;
|
nuclear@0
|
493 ConvertCartesianPoint(loc,in.Location);
|
nuclear@0
|
494
|
nuclear@0
|
495 IfcVector3 x(1.f,0.f,0.f);
|
nuclear@0
|
496 if (in.RefDirection) {
|
nuclear@0
|
497 ConvertDirection(x,*in.RefDirection.Get());
|
nuclear@0
|
498 }
|
nuclear@0
|
499
|
nuclear@0
|
500 const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
|
nuclear@0
|
501
|
nuclear@0
|
502 IfcMatrix4::Translation(loc,out);
|
nuclear@0
|
503 AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
|
nuclear@0
|
504 }
|
nuclear@0
|
505
|
nuclear@0
|
506 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
507 void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const IfcAxis1Placement& in)
|
nuclear@0
|
508 {
|
nuclear@0
|
509 ConvertCartesianPoint(pos,in.Location);
|
nuclear@0
|
510 if (in.Axis) {
|
nuclear@0
|
511 ConvertDirection(axis,in.Axis.Get());
|
nuclear@0
|
512 }
|
nuclear@0
|
513 else {
|
nuclear@0
|
514 axis = IfcVector3(0.f,0.f,1.f);
|
nuclear@0
|
515 }
|
nuclear@0
|
516 }
|
nuclear@0
|
517
|
nuclear@0
|
518 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
519 void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement& in, ConversionData& conv)
|
nuclear@0
|
520 {
|
nuclear@0
|
521 if(const IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IfcAxis2Placement3D>(conv.db)) {
|
nuclear@0
|
522 ConvertAxisPlacement(out,*pl3);
|
nuclear@0
|
523 }
|
nuclear@0
|
524 else if(const IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IfcAxis2Placement2D>(conv.db)) {
|
nuclear@0
|
525 ConvertAxisPlacement(out,*pl2);
|
nuclear@0
|
526 }
|
nuclear@0
|
527 else {
|
nuclear@0
|
528 IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
|
nuclear@0
|
529 }
|
nuclear@0
|
530 }
|
nuclear@0
|
531
|
nuclear@0
|
532 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
533 void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationOperator& op)
|
nuclear@0
|
534 {
|
nuclear@0
|
535 IfcVector3 loc;
|
nuclear@0
|
536 ConvertCartesianPoint(loc,op.LocalOrigin);
|
nuclear@0
|
537
|
nuclear@0
|
538 IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
|
nuclear@0
|
539 if (op.Axis1) {
|
nuclear@0
|
540 ConvertDirection(x,*op.Axis1.Get());
|
nuclear@0
|
541 }
|
nuclear@0
|
542 if (op.Axis2) {
|
nuclear@0
|
543 ConvertDirection(y,*op.Axis2.Get());
|
nuclear@0
|
544 }
|
nuclear@0
|
545 if (const IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IfcCartesianTransformationOperator3D>()) {
|
nuclear@0
|
546 if(op2->Axis3) {
|
nuclear@0
|
547 ConvertDirection(z,*op2->Axis3.Get());
|
nuclear@0
|
548 }
|
nuclear@0
|
549 }
|
nuclear@0
|
550
|
nuclear@0
|
551 IfcMatrix4 locm;
|
nuclear@0
|
552 IfcMatrix4::Translation(loc,locm);
|
nuclear@0
|
553 AssignMatrixAxes(out,x,y,z);
|
nuclear@0
|
554
|
nuclear@0
|
555
|
nuclear@0
|
556 IfcVector3 vscale;
|
nuclear@0
|
557 if (const IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IfcCartesianTransformationOperator3DnonUniform>()) {
|
nuclear@0
|
558 vscale.x = nuni->Scale?op.Scale.Get():1.f;
|
nuclear@0
|
559 vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
|
nuclear@0
|
560 vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
|
nuclear@0
|
561 }
|
nuclear@0
|
562 else {
|
nuclear@0
|
563 const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
|
nuclear@0
|
564 vscale = IfcVector3(sc,sc,sc);
|
nuclear@0
|
565 }
|
nuclear@0
|
566
|
nuclear@0
|
567 IfcMatrix4 s;
|
nuclear@0
|
568 IfcMatrix4::Scaling(vscale,s);
|
nuclear@0
|
569
|
nuclear@0
|
570 out = locm * out * s;
|
nuclear@0
|
571 }
|
nuclear@0
|
572
|
nuclear@0
|
573
|
nuclear@0
|
574 } // ! IFC
|
nuclear@0
|
575 } // ! Assimp
|
nuclear@0
|
576
|
nuclear@0
|
577 #endif
|