rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 Open Asset Import Library (assimp)
|
nuclear@0
|
3 ----------------------------------------------------------------------
|
nuclear@0
|
4
|
nuclear@0
|
5 Copyright (c) 2006-2012, assimp team
|
nuclear@0
|
6 All rights reserved.
|
nuclear@0
|
7
|
nuclear@0
|
8 Redistribution and use of this software in source and binary forms,
|
nuclear@0
|
9 with or without modification, are permitted provided that the
|
nuclear@0
|
10 following conditions are met:
|
nuclear@0
|
11
|
nuclear@0
|
12 * Redistributions of source code must retain the above
|
nuclear@0
|
13 copyright notice, this list of conditions and the
|
nuclear@0
|
14 following disclaimer.
|
nuclear@0
|
15
|
nuclear@0
|
16 * Redistributions in binary form must reproduce the above
|
nuclear@0
|
17 copyright notice, this list of conditions and the
|
nuclear@0
|
18 following disclaimer in the documentation and/or other
|
nuclear@0
|
19 materials provided with the distribution.
|
nuclear@0
|
20
|
nuclear@0
|
21 * Neither the name of the assimp team, nor the names of its
|
nuclear@0
|
22 contributors may be used to endorse or promote products
|
nuclear@0
|
23 derived from this software without specific prior
|
nuclear@0
|
24 written permission of the assimp team.
|
nuclear@0
|
25
|
nuclear@0
|
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
nuclear@0
|
27 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
nuclear@0
|
28 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
nuclear@0
|
29 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
nuclear@0
|
30 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
nuclear@0
|
31 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
nuclear@0
|
32 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
nuclear@0
|
33 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
nuclear@0
|
34 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
nuclear@0
|
35 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
nuclear@0
|
36 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
nuclear@0
|
37
|
nuclear@0
|
38 ----------------------------------------------------------------------
|
nuclear@0
|
39 */
|
nuclear@0
|
40
|
nuclear@0
|
41 /** @file IFCProfile.cpp
|
nuclear@0
|
42 * @brief Read profile and curves entities from IFC files
|
nuclear@0
|
43 */
|
nuclear@0
|
44
|
nuclear@0
|
45 #include "AssimpPCH.h"
|
nuclear@0
|
46
|
nuclear@0
|
47 #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
nuclear@0
|
48 #include "IFCUtil.h"
|
nuclear@0
|
49
|
nuclear@0
|
50 namespace Assimp {
|
nuclear@0
|
51 namespace IFC {
|
nuclear@0
|
52 namespace {
|
nuclear@0
|
53
|
nuclear@0
|
54
|
nuclear@0
|
55 // --------------------------------------------------------------------------------
|
nuclear@0
|
56 // Conic is the base class for Circle and Ellipse
|
nuclear@0
|
57 // --------------------------------------------------------------------------------
|
nuclear@0
|
58 class Conic : public Curve
|
nuclear@0
|
59 {
|
nuclear@0
|
60
|
nuclear@0
|
61 public:
|
nuclear@0
|
62
|
nuclear@0
|
63 // --------------------------------------------------
|
nuclear@0
|
64 Conic(const IfcConic& entity, ConversionData& conv)
|
nuclear@0
|
65 : Curve(entity,conv)
|
nuclear@0
|
66 {
|
nuclear@0
|
67 IfcMatrix4 trafo;
|
nuclear@0
|
68 ConvertAxisPlacement(trafo,*entity.Position,conv);
|
nuclear@0
|
69
|
nuclear@0
|
70 // for convenience, extract the matrix rows
|
nuclear@0
|
71 location = IfcVector3(trafo.a4,trafo.b4,trafo.c4);
|
nuclear@0
|
72 p[0] = IfcVector3(trafo.a1,trafo.b1,trafo.c1);
|
nuclear@0
|
73 p[1] = IfcVector3(trafo.a2,trafo.b2,trafo.c2);
|
nuclear@0
|
74 p[2] = IfcVector3(trafo.a3,trafo.b3,trafo.c3);
|
nuclear@0
|
75 }
|
nuclear@0
|
76
|
nuclear@0
|
77 public:
|
nuclear@0
|
78
|
nuclear@0
|
79 // --------------------------------------------------
|
nuclear@0
|
80 bool IsClosed() const {
|
nuclear@0
|
81 return true;
|
nuclear@0
|
82 }
|
nuclear@0
|
83
|
nuclear@0
|
84 // --------------------------------------------------
|
nuclear@0
|
85 size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
|
nuclear@0
|
86 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
87
|
nuclear@0
|
88 a *= conv.angle_scale;
|
nuclear@0
|
89 b *= conv.angle_scale;
|
nuclear@0
|
90
|
nuclear@0
|
91 a = fmod(a,static_cast<IfcFloat>( AI_MATH_TWO_PI ));
|
nuclear@0
|
92 b = fmod(b,static_cast<IfcFloat>( AI_MATH_TWO_PI ));
|
nuclear@0
|
93 const IfcFloat setting = static_cast<IfcFloat>( AI_MATH_PI * conv.settings.conicSamplingAngle / 180.0 );
|
nuclear@0
|
94 return static_cast<size_t>( ceil(abs( b-a)) / setting);
|
nuclear@0
|
95 }
|
nuclear@0
|
96
|
nuclear@0
|
97 // --------------------------------------------------
|
nuclear@0
|
98 ParamRange GetParametricRange() const {
|
nuclear@0
|
99 return std::make_pair(static_cast<IfcFloat>( 0. ), static_cast<IfcFloat>( AI_MATH_TWO_PI / conv.angle_scale ));
|
nuclear@0
|
100 }
|
nuclear@0
|
101
|
nuclear@0
|
102 protected:
|
nuclear@0
|
103 IfcVector3 location, p[3];
|
nuclear@0
|
104 };
|
nuclear@0
|
105
|
nuclear@0
|
106
|
nuclear@0
|
107 // --------------------------------------------------------------------------------
|
nuclear@0
|
108 // Circle
|
nuclear@0
|
109 // --------------------------------------------------------------------------------
|
nuclear@0
|
110 class Circle : public Conic
|
nuclear@0
|
111 {
|
nuclear@0
|
112
|
nuclear@0
|
113 public:
|
nuclear@0
|
114
|
nuclear@0
|
115 // --------------------------------------------------
|
nuclear@0
|
116 Circle(const IfcCircle& entity, ConversionData& conv)
|
nuclear@0
|
117 : Conic(entity,conv)
|
nuclear@0
|
118 , entity(entity)
|
nuclear@0
|
119 {
|
nuclear@0
|
120 }
|
nuclear@0
|
121
|
nuclear@0
|
122 public:
|
nuclear@0
|
123
|
nuclear@0
|
124 // --------------------------------------------------
|
nuclear@0
|
125 IfcVector3 Eval(IfcFloat u) const {
|
nuclear@0
|
126 u = -conv.angle_scale * u;
|
nuclear@0
|
127 return location + static_cast<IfcFloat>(entity.Radius)*(static_cast<IfcFloat>(::cos(u))*p[0] +
|
nuclear@0
|
128 static_cast<IfcFloat>(::sin(u))*p[1]);
|
nuclear@0
|
129 }
|
nuclear@0
|
130
|
nuclear@0
|
131 private:
|
nuclear@0
|
132 const IfcCircle& entity;
|
nuclear@0
|
133 };
|
nuclear@0
|
134
|
nuclear@0
|
135
|
nuclear@0
|
136 // --------------------------------------------------------------------------------
|
nuclear@0
|
137 // Ellipse
|
nuclear@0
|
138 // --------------------------------------------------------------------------------
|
nuclear@0
|
139 class Ellipse : public Conic
|
nuclear@0
|
140 {
|
nuclear@0
|
141
|
nuclear@0
|
142 public:
|
nuclear@0
|
143
|
nuclear@0
|
144 // --------------------------------------------------
|
nuclear@0
|
145 Ellipse(const IfcEllipse& entity, ConversionData& conv)
|
nuclear@0
|
146 : Conic(entity,conv)
|
nuclear@0
|
147 , entity(entity)
|
nuclear@0
|
148 {
|
nuclear@0
|
149 }
|
nuclear@0
|
150
|
nuclear@0
|
151 public:
|
nuclear@0
|
152
|
nuclear@0
|
153 // --------------------------------------------------
|
nuclear@0
|
154 IfcVector3 Eval(IfcFloat u) const {
|
nuclear@0
|
155 u = -conv.angle_scale * u;
|
nuclear@0
|
156 return location + static_cast<IfcFloat>(entity.SemiAxis1)*static_cast<IfcFloat>(::cos(u))*p[0] +
|
nuclear@0
|
157 static_cast<IfcFloat>(entity.SemiAxis2)*static_cast<IfcFloat>(::sin(u))*p[1];
|
nuclear@0
|
158 }
|
nuclear@0
|
159
|
nuclear@0
|
160 private:
|
nuclear@0
|
161 const IfcEllipse& entity;
|
nuclear@0
|
162 };
|
nuclear@0
|
163
|
nuclear@0
|
164
|
nuclear@0
|
165 // --------------------------------------------------------------------------------
|
nuclear@0
|
166 // Line
|
nuclear@0
|
167 // --------------------------------------------------------------------------------
|
nuclear@0
|
168 class Line : public Curve
|
nuclear@0
|
169 {
|
nuclear@0
|
170
|
nuclear@0
|
171 public:
|
nuclear@0
|
172
|
nuclear@0
|
173 // --------------------------------------------------
|
nuclear@0
|
174 Line(const IfcLine& entity, ConversionData& conv)
|
nuclear@0
|
175 : Curve(entity,conv)
|
nuclear@0
|
176 , entity(entity)
|
nuclear@0
|
177 {
|
nuclear@0
|
178 ConvertCartesianPoint(p,entity.Pnt);
|
nuclear@0
|
179 ConvertVector(v,entity.Dir);
|
nuclear@0
|
180 }
|
nuclear@0
|
181
|
nuclear@0
|
182 public:
|
nuclear@0
|
183
|
nuclear@0
|
184 // --------------------------------------------------
|
nuclear@0
|
185 bool IsClosed() const {
|
nuclear@0
|
186 return false;
|
nuclear@0
|
187 }
|
nuclear@0
|
188
|
nuclear@0
|
189 // --------------------------------------------------
|
nuclear@0
|
190 IfcVector3 Eval(IfcFloat u) const {
|
nuclear@0
|
191 return p + u*v;
|
nuclear@0
|
192 }
|
nuclear@0
|
193
|
nuclear@0
|
194 // --------------------------------------------------
|
nuclear@0
|
195 size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
|
nuclear@0
|
196 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
197 // two points are always sufficient for a line segment
|
nuclear@0
|
198 return a==b ? 1 : 2;
|
nuclear@0
|
199 }
|
nuclear@0
|
200
|
nuclear@0
|
201
|
nuclear@0
|
202 // --------------------------------------------------
|
nuclear@0
|
203 void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const
|
nuclear@0
|
204 {
|
nuclear@0
|
205 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
206
|
nuclear@0
|
207 if (a == b) {
|
nuclear@0
|
208 out.verts.push_back(Eval(a));
|
nuclear@0
|
209 return;
|
nuclear@0
|
210 }
|
nuclear@0
|
211 out.verts.reserve(out.verts.size()+2);
|
nuclear@0
|
212 out.verts.push_back(Eval(a));
|
nuclear@0
|
213 out.verts.push_back(Eval(b));
|
nuclear@0
|
214 }
|
nuclear@0
|
215
|
nuclear@0
|
216 // --------------------------------------------------
|
nuclear@0
|
217 ParamRange GetParametricRange() const {
|
nuclear@0
|
218 const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
|
nuclear@0
|
219
|
nuclear@0
|
220 return std::make_pair(-inf,+inf);
|
nuclear@0
|
221 }
|
nuclear@0
|
222
|
nuclear@0
|
223 private:
|
nuclear@0
|
224 const IfcLine& entity;
|
nuclear@0
|
225 IfcVector3 p,v;
|
nuclear@0
|
226 };
|
nuclear@0
|
227
|
nuclear@0
|
228 // --------------------------------------------------------------------------------
|
nuclear@0
|
229 // CompositeCurve joins multiple smaller, bounded curves
|
nuclear@0
|
230 // --------------------------------------------------------------------------------
|
nuclear@0
|
231 class CompositeCurve : public BoundedCurve
|
nuclear@0
|
232 {
|
nuclear@0
|
233
|
nuclear@0
|
234 typedef std::pair< boost::shared_ptr< BoundedCurve >, bool > CurveEntry;
|
nuclear@0
|
235
|
nuclear@0
|
236 public:
|
nuclear@0
|
237
|
nuclear@0
|
238 // --------------------------------------------------
|
nuclear@0
|
239 CompositeCurve(const IfcCompositeCurve& entity, ConversionData& conv)
|
nuclear@0
|
240 : BoundedCurve(entity,conv)
|
nuclear@0
|
241 , entity(entity)
|
nuclear@0
|
242 , total()
|
nuclear@0
|
243 {
|
nuclear@0
|
244 curves.reserve(entity.Segments.size());
|
nuclear@0
|
245 BOOST_FOREACH(const IfcCompositeCurveSegment& curveSegment,entity.Segments) {
|
nuclear@0
|
246 // according to the specification, this must be a bounded curve
|
nuclear@0
|
247 boost::shared_ptr< Curve > cv(Curve::Convert(curveSegment.ParentCurve,conv));
|
nuclear@0
|
248 boost::shared_ptr< BoundedCurve > bc = boost::dynamic_pointer_cast<BoundedCurve>(cv);
|
nuclear@0
|
249
|
nuclear@0
|
250 if (!bc) {
|
nuclear@0
|
251 IFCImporter::LogError("expected segment of composite curve to be a bounded curve");
|
nuclear@0
|
252 continue;
|
nuclear@0
|
253 }
|
nuclear@0
|
254
|
nuclear@0
|
255 if ( (std::string)curveSegment.Transition != "CONTINUOUS" ) {
|
nuclear@0
|
256 IFCImporter::LogDebug("ignoring transition code on composite curve segment, only continuous transitions are supported");
|
nuclear@0
|
257 }
|
nuclear@0
|
258
|
nuclear@0
|
259 curves.push_back( CurveEntry(bc,IsTrue(curveSegment.SameSense)) );
|
nuclear@0
|
260 total += bc->GetParametricRangeDelta();
|
nuclear@0
|
261 }
|
nuclear@0
|
262
|
nuclear@0
|
263 if (curves.empty()) {
|
nuclear@0
|
264 throw CurveError("empty composite curve");
|
nuclear@0
|
265 }
|
nuclear@0
|
266 }
|
nuclear@0
|
267
|
nuclear@0
|
268 public:
|
nuclear@0
|
269
|
nuclear@0
|
270 // --------------------------------------------------
|
nuclear@0
|
271 IfcVector3 Eval(IfcFloat u) const {
|
nuclear@0
|
272 if (curves.empty()) {
|
nuclear@0
|
273 return IfcVector3();
|
nuclear@0
|
274 }
|
nuclear@0
|
275
|
nuclear@0
|
276 IfcFloat acc = 0;
|
nuclear@0
|
277 BOOST_FOREACH(const CurveEntry& entry, curves) {
|
nuclear@0
|
278 const ParamRange& range = entry.first->GetParametricRange();
|
nuclear@0
|
279 const IfcFloat delta = abs(range.second-range.first);
|
nuclear@0
|
280 if (u < acc+delta) {
|
nuclear@0
|
281 return entry.first->Eval( entry.second ? (u-acc) + range.first : range.second-(u-acc));
|
nuclear@0
|
282 }
|
nuclear@0
|
283
|
nuclear@0
|
284 acc += delta;
|
nuclear@0
|
285 }
|
nuclear@0
|
286 // clamp to end
|
nuclear@0
|
287 return curves.back().first->Eval(curves.back().first->GetParametricRange().second);
|
nuclear@0
|
288 }
|
nuclear@0
|
289
|
nuclear@0
|
290 // --------------------------------------------------
|
nuclear@0
|
291 size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
|
nuclear@0
|
292 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
293 size_t cnt = 0;
|
nuclear@0
|
294
|
nuclear@0
|
295 IfcFloat acc = 0;
|
nuclear@0
|
296 BOOST_FOREACH(const CurveEntry& entry, curves) {
|
nuclear@0
|
297 const ParamRange& range = entry.first->GetParametricRange();
|
nuclear@0
|
298 const IfcFloat delta = abs(range.second-range.first);
|
nuclear@0
|
299 if (a <= acc+delta && b >= acc) {
|
nuclear@0
|
300 const IfcFloat at = std::max(static_cast<IfcFloat>( 0. ),a-acc), bt = std::min(delta,b-acc);
|
nuclear@0
|
301 cnt += entry.first->EstimateSampleCount( entry.second ? at + range.first : range.second - bt, entry.second ? bt + range.first : range.second - at );
|
nuclear@0
|
302 }
|
nuclear@0
|
303
|
nuclear@0
|
304 acc += delta;
|
nuclear@0
|
305 }
|
nuclear@0
|
306
|
nuclear@0
|
307 return cnt;
|
nuclear@0
|
308 }
|
nuclear@0
|
309
|
nuclear@0
|
310 // --------------------------------------------------
|
nuclear@0
|
311 void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const
|
nuclear@0
|
312 {
|
nuclear@0
|
313 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
314
|
nuclear@0
|
315 const size_t cnt = EstimateSampleCount(a,b);
|
nuclear@0
|
316 out.verts.reserve(out.verts.size() + cnt);
|
nuclear@0
|
317
|
nuclear@0
|
318 BOOST_FOREACH(const CurveEntry& entry, curves) {
|
nuclear@0
|
319 const size_t cnt = out.verts.size();
|
nuclear@0
|
320 entry.first->SampleDiscrete(out);
|
nuclear@0
|
321
|
nuclear@0
|
322 if (!entry.second && cnt != out.verts.size()) {
|
nuclear@0
|
323 std::reverse(out.verts.begin()+cnt,out.verts.end());
|
nuclear@0
|
324 }
|
nuclear@0
|
325 }
|
nuclear@0
|
326 }
|
nuclear@0
|
327
|
nuclear@0
|
328 // --------------------------------------------------
|
nuclear@0
|
329 ParamRange GetParametricRange() const {
|
nuclear@0
|
330 return std::make_pair(static_cast<IfcFloat>( 0. ),total);
|
nuclear@0
|
331 }
|
nuclear@0
|
332
|
nuclear@0
|
333 private:
|
nuclear@0
|
334 const IfcCompositeCurve& entity;
|
nuclear@0
|
335 std::vector< CurveEntry > curves;
|
nuclear@0
|
336
|
nuclear@0
|
337 IfcFloat total;
|
nuclear@0
|
338 };
|
nuclear@0
|
339
|
nuclear@0
|
340
|
nuclear@0
|
341 // --------------------------------------------------------------------------------
|
nuclear@0
|
342 // TrimmedCurve can be used to trim an unbounded curve to a bounded range
|
nuclear@0
|
343 // --------------------------------------------------------------------------------
|
nuclear@0
|
344 class TrimmedCurve : public BoundedCurve
|
nuclear@0
|
345 {
|
nuclear@0
|
346
|
nuclear@0
|
347 public:
|
nuclear@0
|
348
|
nuclear@0
|
349 // --------------------------------------------------
|
nuclear@0
|
350 TrimmedCurve(const IfcTrimmedCurve& entity, ConversionData& conv)
|
nuclear@0
|
351 : BoundedCurve(entity,conv)
|
nuclear@0
|
352 , entity(entity)
|
nuclear@0
|
353 , ok()
|
nuclear@0
|
354 {
|
nuclear@0
|
355 base = boost::shared_ptr<const Curve>(Curve::Convert(entity.BasisCurve,conv));
|
nuclear@0
|
356
|
nuclear@0
|
357 typedef boost::shared_ptr<const STEP::EXPRESS::DataType> Entry;
|
nuclear@0
|
358
|
nuclear@0
|
359 // for some reason, trimmed curves can either specify a parametric value
|
nuclear@0
|
360 // or a point on the curve, or both. And they can even specify which of the
|
nuclear@0
|
361 // two representations they prefer, even though an information invariant
|
nuclear@0
|
362 // claims that they must be identical if both are present.
|
nuclear@0
|
363 // oh well.
|
nuclear@0
|
364 bool have_param = false, have_point = false;
|
nuclear@0
|
365 IfcVector3 point;
|
nuclear@0
|
366 BOOST_FOREACH(const Entry sel,entity.Trim1) {
|
nuclear@0
|
367 if (const EXPRESS::REAL* const r = sel->ToPtr<EXPRESS::REAL>()) {
|
nuclear@0
|
368 range.first = *r;
|
nuclear@0
|
369 have_param = true;
|
nuclear@0
|
370 break;
|
nuclear@0
|
371 }
|
nuclear@0
|
372 else if (const IfcCartesianPoint* const r = sel->ResolveSelectPtr<IfcCartesianPoint>(conv.db)) {
|
nuclear@0
|
373 ConvertCartesianPoint(point,*r);
|
nuclear@0
|
374 have_point = true;
|
nuclear@0
|
375 }
|
nuclear@0
|
376 }
|
nuclear@0
|
377 if (!have_param) {
|
nuclear@0
|
378 if (!have_point || !base->ReverseEval(point,range.first)) {
|
nuclear@0
|
379 throw CurveError("IfcTrimmedCurve: failed to read first trim parameter, ignoring curve");
|
nuclear@0
|
380 }
|
nuclear@0
|
381 }
|
nuclear@0
|
382 have_param = false, have_point = false;
|
nuclear@0
|
383 BOOST_FOREACH(const Entry sel,entity.Trim2) {
|
nuclear@0
|
384 if (const EXPRESS::REAL* const r = sel->ToPtr<EXPRESS::REAL>()) {
|
nuclear@0
|
385 range.second = *r;
|
nuclear@0
|
386 have_param = true;
|
nuclear@0
|
387 break;
|
nuclear@0
|
388 }
|
nuclear@0
|
389 else if (const IfcCartesianPoint* const r = sel->ResolveSelectPtr<IfcCartesianPoint>(conv.db)) {
|
nuclear@0
|
390 ConvertCartesianPoint(point,*r);
|
nuclear@0
|
391 have_point = true;
|
nuclear@0
|
392 }
|
nuclear@0
|
393 }
|
nuclear@0
|
394 if (!have_param) {
|
nuclear@0
|
395 if (!have_point || !base->ReverseEval(point,range.second)) {
|
nuclear@0
|
396 throw CurveError("IfcTrimmedCurve: failed to read second trim parameter, ignoring curve");
|
nuclear@0
|
397 }
|
nuclear@0
|
398 }
|
nuclear@0
|
399
|
nuclear@0
|
400 agree_sense = IsTrue(entity.SenseAgreement);
|
nuclear@0
|
401 if( !agree_sense ) {
|
nuclear@0
|
402 std::swap(range.first,range.second);
|
nuclear@0
|
403 }
|
nuclear@0
|
404
|
nuclear@0
|
405 // "NOTE In case of a closed curve, it may be necessary to increment t1 or t2
|
nuclear@0
|
406 // by the parametric length for consistency with the sense flag."
|
nuclear@0
|
407 if (base->IsClosed()) {
|
nuclear@0
|
408 if( range.first > range.second ) {
|
nuclear@0
|
409 range.second += base->GetParametricRangeDelta();
|
nuclear@0
|
410 }
|
nuclear@0
|
411 }
|
nuclear@0
|
412
|
nuclear@0
|
413 maxval = range.second-range.first;
|
nuclear@0
|
414 ai_assert(maxval >= 0);
|
nuclear@0
|
415 }
|
nuclear@0
|
416
|
nuclear@0
|
417 public:
|
nuclear@0
|
418
|
nuclear@0
|
419 // --------------------------------------------------
|
nuclear@0
|
420 IfcVector3 Eval(IfcFloat p) const {
|
nuclear@0
|
421 ai_assert(InRange(p));
|
nuclear@0
|
422 return base->Eval( TrimParam(p) );
|
nuclear@0
|
423 }
|
nuclear@0
|
424
|
nuclear@0
|
425 // --------------------------------------------------
|
nuclear@0
|
426 size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
|
nuclear@0
|
427 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
428 return base->EstimateSampleCount(TrimParam(a),TrimParam(b));
|
nuclear@0
|
429 }
|
nuclear@0
|
430
|
nuclear@0
|
431 // --------------------------------------------------
|
nuclear@0
|
432 void SampleDiscrete(TempMesh& out,IfcFloat a,IfcFloat b) const {
|
nuclear@0
|
433 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
434 return base->SampleDiscrete(out,TrimParam(a),TrimParam(b));
|
nuclear@0
|
435 }
|
nuclear@0
|
436
|
nuclear@0
|
437 // --------------------------------------------------
|
nuclear@0
|
438 ParamRange GetParametricRange() const {
|
nuclear@0
|
439 return std::make_pair(static_cast<IfcFloat>( 0. ),maxval);
|
nuclear@0
|
440 }
|
nuclear@0
|
441
|
nuclear@0
|
442 private:
|
nuclear@0
|
443
|
nuclear@0
|
444 // --------------------------------------------------
|
nuclear@0
|
445 IfcFloat TrimParam(IfcFloat f) const {
|
nuclear@0
|
446 return agree_sense ? f + range.first : range.second - f;
|
nuclear@0
|
447 }
|
nuclear@0
|
448
|
nuclear@0
|
449
|
nuclear@0
|
450 private:
|
nuclear@0
|
451 const IfcTrimmedCurve& entity;
|
nuclear@0
|
452 ParamRange range;
|
nuclear@0
|
453 IfcFloat maxval;
|
nuclear@0
|
454 bool agree_sense;
|
nuclear@0
|
455 bool ok;
|
nuclear@0
|
456
|
nuclear@0
|
457 boost::shared_ptr<const Curve> base;
|
nuclear@0
|
458 };
|
nuclear@0
|
459
|
nuclear@0
|
460
|
nuclear@0
|
461 // --------------------------------------------------------------------------------
|
nuclear@0
|
462 // PolyLine is a 'curve' defined by linear interpolation over a set of discrete points
|
nuclear@0
|
463 // --------------------------------------------------------------------------------
|
nuclear@0
|
464 class PolyLine : public BoundedCurve
|
nuclear@0
|
465 {
|
nuclear@0
|
466
|
nuclear@0
|
467 public:
|
nuclear@0
|
468
|
nuclear@0
|
469 // --------------------------------------------------
|
nuclear@0
|
470 PolyLine(const IfcPolyline& entity, ConversionData& conv)
|
nuclear@0
|
471 : BoundedCurve(entity,conv)
|
nuclear@0
|
472 , entity(entity)
|
nuclear@0
|
473 {
|
nuclear@0
|
474 points.reserve(entity.Points.size());
|
nuclear@0
|
475
|
nuclear@0
|
476 IfcVector3 t;
|
nuclear@0
|
477 BOOST_FOREACH(const IfcCartesianPoint& cp, entity.Points) {
|
nuclear@0
|
478 ConvertCartesianPoint(t,cp);
|
nuclear@0
|
479 points.push_back(t);
|
nuclear@0
|
480 }
|
nuclear@0
|
481 }
|
nuclear@0
|
482
|
nuclear@0
|
483 public:
|
nuclear@0
|
484
|
nuclear@0
|
485 // --------------------------------------------------
|
nuclear@0
|
486 IfcVector3 Eval(IfcFloat p) const {
|
nuclear@0
|
487 ai_assert(InRange(p));
|
nuclear@0
|
488
|
nuclear@0
|
489 const size_t b = static_cast<size_t>(floor(p));
|
nuclear@0
|
490 if (b == points.size()-1) {
|
nuclear@0
|
491 return points.back();
|
nuclear@0
|
492 }
|
nuclear@0
|
493
|
nuclear@0
|
494 const IfcFloat d = p-static_cast<IfcFloat>(b);
|
nuclear@0
|
495 return points[b+1] * d + points[b] * (static_cast<IfcFloat>( 1. )-d);
|
nuclear@0
|
496 }
|
nuclear@0
|
497
|
nuclear@0
|
498 // --------------------------------------------------
|
nuclear@0
|
499 size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
|
nuclear@0
|
500 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
501 return static_cast<size_t>( ceil(b) - floor(a) );
|
nuclear@0
|
502 }
|
nuclear@0
|
503
|
nuclear@0
|
504 // --------------------------------------------------
|
nuclear@0
|
505 ParamRange GetParametricRange() const {
|
nuclear@0
|
506 return std::make_pair(static_cast<IfcFloat>( 0. ),static_cast<IfcFloat>(points.size()-1));
|
nuclear@0
|
507 }
|
nuclear@0
|
508
|
nuclear@0
|
509 private:
|
nuclear@0
|
510 const IfcPolyline& entity;
|
nuclear@0
|
511 std::vector<IfcVector3> points;
|
nuclear@0
|
512 };
|
nuclear@0
|
513
|
nuclear@0
|
514
|
nuclear@0
|
515 } // anon
|
nuclear@0
|
516
|
nuclear@0
|
517
|
nuclear@0
|
518 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
519 Curve* Curve :: Convert(const IFC::IfcCurve& curve,ConversionData& conv)
|
nuclear@0
|
520 {
|
nuclear@0
|
521 if(curve.ToPtr<IfcBoundedCurve>()) {
|
nuclear@0
|
522 if(const IfcPolyline* c = curve.ToPtr<IfcPolyline>()) {
|
nuclear@0
|
523 return new PolyLine(*c,conv);
|
nuclear@0
|
524 }
|
nuclear@0
|
525 if(const IfcTrimmedCurve* c = curve.ToPtr<IfcTrimmedCurve>()) {
|
nuclear@0
|
526 return new TrimmedCurve(*c,conv);
|
nuclear@0
|
527 }
|
nuclear@0
|
528 if(const IfcCompositeCurve* c = curve.ToPtr<IfcCompositeCurve>()) {
|
nuclear@0
|
529 return new CompositeCurve(*c,conv);
|
nuclear@0
|
530 }
|
nuclear@0
|
531 //if(const IfcBSplineCurve* c = curve.ToPtr<IfcBSplineCurve>()) {
|
nuclear@0
|
532 // return new BSplineCurve(*c,conv);
|
nuclear@0
|
533 //}
|
nuclear@0
|
534 }
|
nuclear@0
|
535
|
nuclear@0
|
536 if(curve.ToPtr<IfcConic>()) {
|
nuclear@0
|
537 if(const IfcCircle* c = curve.ToPtr<IfcCircle>()) {
|
nuclear@0
|
538 return new Circle(*c,conv);
|
nuclear@0
|
539 }
|
nuclear@0
|
540 if(const IfcEllipse* c = curve.ToPtr<IfcEllipse>()) {
|
nuclear@0
|
541 return new Ellipse(*c,conv);
|
nuclear@0
|
542 }
|
nuclear@0
|
543 }
|
nuclear@0
|
544
|
nuclear@0
|
545 if(const IfcLine* c = curve.ToPtr<IfcLine>()) {
|
nuclear@0
|
546 return new Line(*c,conv);
|
nuclear@0
|
547 }
|
nuclear@0
|
548
|
nuclear@0
|
549 // XXX OffsetCurve2D, OffsetCurve3D not currently supported
|
nuclear@0
|
550 return NULL;
|
nuclear@0
|
551 }
|
nuclear@0
|
552
|
nuclear@0
|
553 #ifdef _DEBUG
|
nuclear@0
|
554 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
555 bool Curve :: InRange(IfcFloat u) const
|
nuclear@0
|
556 {
|
nuclear@0
|
557 const ParamRange range = GetParametricRange();
|
nuclear@0
|
558 if (IsClosed()) {
|
nuclear@0
|
559 return true;
|
nuclear@0
|
560 //ai_assert(range.first != std::numeric_limits<IfcFloat>::infinity() && range.second != std::numeric_limits<IfcFloat>::infinity());
|
nuclear@0
|
561 //u = range.first + fmod(u-range.first,range.second-range.first);
|
nuclear@0
|
562 }
|
nuclear@0
|
563 const IfcFloat epsilon = 1e-5;
|
nuclear@0
|
564 return u - range.first > -epsilon && range.second - u > -epsilon;
|
nuclear@0
|
565 }
|
nuclear@0
|
566 #endif
|
nuclear@0
|
567
|
nuclear@0
|
568 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
569 IfcFloat Curve :: GetParametricRangeDelta() const
|
nuclear@0
|
570 {
|
nuclear@0
|
571 const ParamRange& range = GetParametricRange();
|
nuclear@0
|
572 return abs(range.second - range.first);
|
nuclear@0
|
573 }
|
nuclear@0
|
574
|
nuclear@0
|
575 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
576 size_t Curve :: EstimateSampleCount(IfcFloat a, IfcFloat b) const
|
nuclear@0
|
577 {
|
nuclear@0
|
578 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
579
|
nuclear@0
|
580 // arbitrary default value, deriving classes should supply better suited values
|
nuclear@0
|
581 return 16;
|
nuclear@0
|
582 }
|
nuclear@0
|
583
|
nuclear@0
|
584 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
585 IfcFloat RecursiveSearch(const Curve* cv, const IfcVector3& val, IfcFloat a, IfcFloat b, unsigned int samples, IfcFloat threshold, unsigned int recurse = 0, unsigned int max_recurse = 15)
|
nuclear@0
|
586 {
|
nuclear@0
|
587 ai_assert(samples>1);
|
nuclear@0
|
588
|
nuclear@0
|
589 const IfcFloat delta = (b-a)/samples, inf = std::numeric_limits<IfcFloat>::infinity();
|
nuclear@0
|
590 IfcFloat min_point[2] = {a,b}, min_diff[2] = {inf,inf};
|
nuclear@0
|
591 IfcFloat runner = a;
|
nuclear@0
|
592
|
nuclear@0
|
593 for (unsigned int i = 0; i < samples; ++i, runner += delta) {
|
nuclear@0
|
594 const IfcFloat diff = (cv->Eval(runner)-val).SquareLength();
|
nuclear@0
|
595 if (diff < min_diff[0]) {
|
nuclear@0
|
596 min_diff[1] = min_diff[0];
|
nuclear@0
|
597 min_point[1] = min_point[0];
|
nuclear@0
|
598
|
nuclear@0
|
599 min_diff[0] = diff;
|
nuclear@0
|
600 min_point[0] = runner;
|
nuclear@0
|
601 }
|
nuclear@0
|
602 else if (diff < min_diff[1]) {
|
nuclear@0
|
603 min_diff[1] = diff;
|
nuclear@0
|
604 min_point[1] = runner;
|
nuclear@0
|
605 }
|
nuclear@0
|
606 }
|
nuclear@0
|
607
|
nuclear@0
|
608 ai_assert(min_diff[0] != inf && min_diff[1] != inf);
|
nuclear@0
|
609 if ( fabs(a-min_point[0]) < threshold || recurse >= max_recurse) {
|
nuclear@0
|
610 return min_point[0];
|
nuclear@0
|
611 }
|
nuclear@0
|
612
|
nuclear@0
|
613 // fix for closed curves to take their wrap-over into account
|
nuclear@0
|
614 if (cv->IsClosed() && fabs(min_point[0]-min_point[1]) > cv->GetParametricRangeDelta()*0.5 ) {
|
nuclear@0
|
615 const Curve::ParamRange& range = cv->GetParametricRange();
|
nuclear@0
|
616 const IfcFloat wrapdiff = (cv->Eval(range.first)-val).SquareLength();
|
nuclear@0
|
617
|
nuclear@0
|
618 if (wrapdiff < min_diff[0]) {
|
nuclear@0
|
619 const IfcFloat t = min_point[0];
|
nuclear@0
|
620 min_point[0] = min_point[1] > min_point[0] ? range.first : range.second;
|
nuclear@0
|
621 min_point[1] = t;
|
nuclear@0
|
622 }
|
nuclear@0
|
623 }
|
nuclear@0
|
624
|
nuclear@0
|
625 return RecursiveSearch(cv,val,min_point[0],min_point[1],samples,threshold,recurse+1,max_recurse);
|
nuclear@0
|
626 }
|
nuclear@0
|
627
|
nuclear@0
|
628 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
629 bool Curve :: ReverseEval(const IfcVector3& val, IfcFloat& paramOut) const
|
nuclear@0
|
630 {
|
nuclear@0
|
631 // note: the following algorithm is not guaranteed to find the 'right' parameter value
|
nuclear@0
|
632 // in all possible cases, but it will always return at least some value so this function
|
nuclear@0
|
633 // will never fail in the default implementation.
|
nuclear@0
|
634
|
nuclear@0
|
635 // XXX derive threshold from curve topology
|
nuclear@0
|
636 const IfcFloat threshold = 1e-4f;
|
nuclear@0
|
637 const unsigned int samples = 16;
|
nuclear@0
|
638
|
nuclear@0
|
639 const ParamRange& range = GetParametricRange();
|
nuclear@0
|
640 paramOut = RecursiveSearch(this,val,range.first,range.second,samples,threshold);
|
nuclear@0
|
641
|
nuclear@0
|
642 return true;
|
nuclear@0
|
643 }
|
nuclear@0
|
644
|
nuclear@0
|
645 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
646 void Curve :: SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const
|
nuclear@0
|
647 {
|
nuclear@0
|
648 ai_assert(InRange(a) && InRange(b));
|
nuclear@0
|
649
|
nuclear@0
|
650 const size_t cnt = std::max(static_cast<size_t>(0),EstimateSampleCount(a,b));
|
nuclear@0
|
651 out.verts.reserve( out.verts.size() + cnt );
|
nuclear@0
|
652
|
nuclear@0
|
653 IfcFloat p = a, delta = (b-a)/cnt;
|
nuclear@0
|
654 for(size_t i = 0; i < cnt; ++i, p += delta) {
|
nuclear@0
|
655 out.verts.push_back(Eval(p));
|
nuclear@0
|
656 }
|
nuclear@0
|
657 }
|
nuclear@0
|
658
|
nuclear@0
|
659 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
660 bool BoundedCurve :: IsClosed() const
|
nuclear@0
|
661 {
|
nuclear@0
|
662 return false;
|
nuclear@0
|
663 }
|
nuclear@0
|
664
|
nuclear@0
|
665 // ------------------------------------------------------------------------------------------------
|
nuclear@0
|
666 void BoundedCurve :: SampleDiscrete(TempMesh& out) const
|
nuclear@0
|
667 {
|
nuclear@0
|
668 const ParamRange& range = GetParametricRange();
|
nuclear@0
|
669 ai_assert(range.first != std::numeric_limits<IfcFloat>::infinity() && range.second != std::numeric_limits<IfcFloat>::infinity());
|
nuclear@0
|
670
|
nuclear@0
|
671 return SampleDiscrete(out,range.first,range.second);
|
nuclear@0
|
672 }
|
nuclear@0
|
673
|
nuclear@0
|
674 } // IFC
|
nuclear@0
|
675 } // Assimp
|
nuclear@0
|
676
|
nuclear@0
|
677 #endif // ASSIMP_BUILD_NO_IFC_IMPORTER
|