vrshoot

annotate libs/anim/anim.c @ 3:c179c72369be

rename candy->vr
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 03 Feb 2014 08:52:13 +0200
parents
children
rev   line source
nuclear@0 1 #include <stdlib.h>
nuclear@0 2 #include <limits.h>
nuclear@0 3 #include <assert.h>
nuclear@0 4 #include "anim.h"
nuclear@0 5 #include "dynarr.h"
nuclear@0 6
nuclear@0 7 #define ROT_USE_SLERP
nuclear@0 8
nuclear@0 9 static void invalidate_cache(struct anm_node *node);
nuclear@0 10
nuclear@0 11 int anm_init_node(struct anm_node *node)
nuclear@0 12 {
nuclear@0 13 int i, j;
nuclear@0 14 static const float defaults[] = {
nuclear@0 15 0.0f, 0.0f, 0.0f, /* default position */
nuclear@0 16 0.0f, 0.0f, 0.0f, 1.0f, /* default rotation quat */
nuclear@0 17 1.0f, 1.0f, 1.0f /* default scale factor */
nuclear@0 18 };
nuclear@0 19
nuclear@0 20 memset(node, 0, sizeof *node);
nuclear@0 21
nuclear@0 22 /* initialize thread-local matrix cache */
nuclear@0 23 pthread_key_create(&node->cache_key, 0);
nuclear@0 24 pthread_mutex_init(&node->cache_list_lock, 0);
nuclear@0 25
nuclear@0 26 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 27 if(anm_init_track(node->tracks + i) == -1) {
nuclear@0 28 for(j=0; j<i; j++) {
nuclear@0 29 anm_destroy_track(node->tracks + i);
nuclear@0 30 }
nuclear@0 31 }
nuclear@0 32 anm_set_track_default(node->tracks + i, defaults[i]);
nuclear@0 33 }
nuclear@0 34 return 0;
nuclear@0 35 }
nuclear@0 36
nuclear@0 37 void anm_destroy_node(struct anm_node *node)
nuclear@0 38 {
nuclear@0 39 int i;
nuclear@0 40 free(node->name);
nuclear@0 41
nuclear@0 42 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 43 anm_destroy_track(node->tracks + i);
nuclear@0 44 }
nuclear@0 45
nuclear@0 46 /* destroy thread-specific cache */
nuclear@0 47 pthread_key_delete(node->cache_key);
nuclear@0 48
nuclear@0 49 while(node->cache_list) {
nuclear@0 50 struct mat_cache *tmp = node->cache_list;
nuclear@0 51 node->cache_list = tmp->next;
nuclear@0 52 free(tmp);
nuclear@0 53 }
nuclear@0 54 }
nuclear@0 55
nuclear@0 56 void anm_destroy_node_tree(struct anm_node *tree)
nuclear@0 57 {
nuclear@0 58 struct anm_node *c, *tmp;
nuclear@0 59
nuclear@0 60 if(!tree) return;
nuclear@0 61
nuclear@0 62 c = tree->child;
nuclear@0 63 while(c) {
nuclear@0 64 tmp = c;
nuclear@0 65 c = c->next;
nuclear@0 66
nuclear@0 67 anm_destroy_node_tree(tmp);
nuclear@0 68 }
nuclear@0 69 anm_destroy_node(tree);
nuclear@0 70 }
nuclear@0 71
nuclear@0 72 struct anm_node *anm_create_node(void)
nuclear@0 73 {
nuclear@0 74 struct anm_node *n;
nuclear@0 75
nuclear@0 76 if((n = malloc(sizeof *n))) {
nuclear@0 77 if(anm_init_node(n) == -1) {
nuclear@0 78 free(n);
nuclear@0 79 return 0;
nuclear@0 80 }
nuclear@0 81 }
nuclear@0 82 return n;
nuclear@0 83 }
nuclear@0 84
nuclear@0 85 void anm_free_node(struct anm_node *node)
nuclear@0 86 {
nuclear@0 87 anm_destroy_node(node);
nuclear@0 88 free(node);
nuclear@0 89 }
nuclear@0 90
nuclear@0 91 void anm_free_node_tree(struct anm_node *tree)
nuclear@0 92 {
nuclear@0 93 struct anm_node *c, *tmp;
nuclear@0 94
nuclear@0 95 if(!tree) return;
nuclear@0 96
nuclear@0 97 c = tree->child;
nuclear@0 98 while(c) {
nuclear@0 99 tmp = c;
nuclear@0 100 c = c->next;
nuclear@0 101
nuclear@0 102 anm_free_node_tree(tmp);
nuclear@0 103 }
nuclear@0 104
nuclear@0 105 anm_free_node(tree);
nuclear@0 106 }
nuclear@0 107
nuclear@0 108 int anm_set_node_name(struct anm_node *node, const char *name)
nuclear@0 109 {
nuclear@0 110 char *str;
nuclear@0 111
nuclear@0 112 if(!(str = malloc(strlen(name) + 1))) {
nuclear@0 113 return -1;
nuclear@0 114 }
nuclear@0 115 strcpy(str, name);
nuclear@0 116 free(node->name);
nuclear@0 117 node->name = str;
nuclear@0 118 return 0;
nuclear@0 119 }
nuclear@0 120
nuclear@0 121 const char *anm_get_node_name(struct anm_node *node)
nuclear@0 122 {
nuclear@0 123 return node->name ? node->name : "";
nuclear@0 124 }
nuclear@0 125
nuclear@0 126 void anm_set_interpolator(struct anm_node *node, enum anm_interpolator in)
nuclear@0 127 {
nuclear@0 128 int i;
nuclear@0 129
nuclear@0 130 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 131 anm_set_track_interpolator(node->tracks + i, in);
nuclear@0 132 }
nuclear@0 133 invalidate_cache(node);
nuclear@0 134 }
nuclear@0 135
nuclear@0 136 void anm_set_extrapolator(struct anm_node *node, enum anm_extrapolator ex)
nuclear@0 137 {
nuclear@0 138 int i;
nuclear@0 139
nuclear@0 140 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 141 anm_set_track_extrapolator(node->tracks + i, ex);
nuclear@0 142 }
nuclear@0 143 invalidate_cache(node);
nuclear@0 144 }
nuclear@0 145
nuclear@0 146 void anm_link_node(struct anm_node *p, struct anm_node *c)
nuclear@0 147 {
nuclear@0 148 c->next = p->child;
nuclear@0 149 p->child = c;
nuclear@0 150
nuclear@0 151 c->parent = p;
nuclear@0 152 invalidate_cache(c);
nuclear@0 153 }
nuclear@0 154
nuclear@0 155 int anm_unlink_node(struct anm_node *p, struct anm_node *c)
nuclear@0 156 {
nuclear@0 157 struct anm_node *iter;
nuclear@0 158
nuclear@0 159 if(p->child == c) {
nuclear@0 160 p->child = c->next;
nuclear@0 161 c->next = 0;
nuclear@0 162 invalidate_cache(c);
nuclear@0 163 return 0;
nuclear@0 164 }
nuclear@0 165
nuclear@0 166 iter = p->child;
nuclear@0 167 while(iter->next) {
nuclear@0 168 if(iter->next == c) {
nuclear@0 169 iter->next = c->next;
nuclear@0 170 c->next = 0;
nuclear@0 171 invalidate_cache(c);
nuclear@0 172 return 0;
nuclear@0 173 }
nuclear@0 174 }
nuclear@0 175 return -1;
nuclear@0 176 }
nuclear@0 177
nuclear@0 178 void anm_clear(struct anm_node *node)
nuclear@0 179 {
nuclear@0 180 int i;
nuclear@0 181
nuclear@0 182 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 183 anm_clear_track(&node->tracks[i]);
nuclear@0 184 }
nuclear@0 185 invalidate_cache(node);
nuclear@0 186 }
nuclear@0 187
nuclear@0 188 void anm_set_position(struct anm_node *node, vec3_t pos, anm_time_t tm)
nuclear@0 189 {
nuclear@0 190 anm_set_value(node->tracks + ANM_TRACK_POS_X, tm, pos.x);
nuclear@0 191 anm_set_value(node->tracks + ANM_TRACK_POS_Y, tm, pos.y);
nuclear@0 192 anm_set_value(node->tracks + ANM_TRACK_POS_Z, tm, pos.z);
nuclear@0 193 invalidate_cache(node);
nuclear@0 194 }
nuclear@0 195
nuclear@0 196 vec3_t anm_get_node_position(struct anm_node *node, anm_time_t tm)
nuclear@0 197 {
nuclear@0 198 vec3_t v;
nuclear@0 199 v.x = anm_get_value(node->tracks + ANM_TRACK_POS_X, tm);
nuclear@0 200 v.y = anm_get_value(node->tracks + ANM_TRACK_POS_Y, tm);
nuclear@0 201 v.z = anm_get_value(node->tracks + ANM_TRACK_POS_Z, tm);
nuclear@0 202 return v;
nuclear@0 203 }
nuclear@0 204
nuclear@0 205 void anm_set_rotation(struct anm_node *node, quat_t rot, anm_time_t tm)
nuclear@0 206 {
nuclear@0 207 anm_set_value(node->tracks + ANM_TRACK_ROT_X, tm, rot.x);
nuclear@0 208 anm_set_value(node->tracks + ANM_TRACK_ROT_Y, tm, rot.y);
nuclear@0 209 anm_set_value(node->tracks + ANM_TRACK_ROT_Z, tm, rot.z);
nuclear@0 210 anm_set_value(node->tracks + ANM_TRACK_ROT_W, tm, rot.w);
nuclear@0 211 invalidate_cache(node);
nuclear@0 212 }
nuclear@0 213
nuclear@0 214 quat_t anm_get_node_rotation(struct anm_node *node, anm_time_t tm)
nuclear@0 215 {
nuclear@0 216 #ifndef ROT_USE_SLERP
nuclear@0 217 quat_t q;
nuclear@0 218 q.x = anm_get_value(node->tracks + ANM_TRACK_ROT_X, tm);
nuclear@0 219 q.y = anm_get_value(node->tracks + ANM_TRACK_ROT_Y, tm);
nuclear@0 220 q.z = anm_get_value(node->tracks + ANM_TRACK_ROT_Z, tm);
nuclear@0 221 q.w = anm_get_value(node->tracks + ANM_TRACK_ROT_W, tm);
nuclear@0 222 return q;
nuclear@0 223 #else
nuclear@0 224 int idx0, idx1, last_idx;
nuclear@0 225 anm_time_t tstart, tend;
nuclear@0 226 float t, dt;
nuclear@0 227 struct anm_track *track_x, *track_y, *track_z, *track_w;
nuclear@0 228 quat_t q, q1, q2;
nuclear@0 229
nuclear@0 230 track_x = node->tracks + ANM_TRACK_ROT_X;
nuclear@0 231 track_y = node->tracks + ANM_TRACK_ROT_Y;
nuclear@0 232 track_z = node->tracks + ANM_TRACK_ROT_Z;
nuclear@0 233 track_w = node->tracks + ANM_TRACK_ROT_W;
nuclear@0 234
nuclear@0 235 if(!track_x->count) {
nuclear@0 236 q.x = track_x->def_val;
nuclear@0 237 q.y = track_y->def_val;
nuclear@0 238 q.z = track_z->def_val;
nuclear@0 239 q.w = track_w->def_val;
nuclear@0 240 return q;
nuclear@0 241 }
nuclear@0 242
nuclear@0 243 last_idx = track_x->count - 1;
nuclear@0 244
nuclear@0 245 tstart = track_x->keys[0].time;
nuclear@0 246 tend = track_x->keys[last_idx].time;
nuclear@0 247
nuclear@0 248 if(tstart == tend) {
nuclear@0 249 q.x = track_x->keys[0].val;
nuclear@0 250 q.y = track_y->keys[0].val;
nuclear@0 251 q.z = track_z->keys[0].val;
nuclear@0 252 q.w = track_w->keys[0].val;
nuclear@0 253 return q;
nuclear@0 254 }
nuclear@0 255
nuclear@0 256 tm = anm_remap_time(track_x, tm, tstart, tend);
nuclear@0 257
nuclear@0 258 idx0 = anm_get_key_interval(track_x, tm);
nuclear@0 259 assert(idx0 >= 0 && idx0 < track_x->count);
nuclear@0 260 idx1 = idx0 + 1;
nuclear@0 261
nuclear@0 262 if(idx0 == last_idx) {
nuclear@0 263 q.x = track_x->keys[idx0].val;
nuclear@0 264 q.y = track_y->keys[idx0].val;
nuclear@0 265 q.z = track_z->keys[idx0].val;
nuclear@0 266 q.w = track_w->keys[idx0].val;
nuclear@0 267 return q;
nuclear@0 268 }
nuclear@0 269
nuclear@0 270 dt = (float)(track_x->keys[idx1].time - track_x->keys[idx0].time);
nuclear@0 271 t = (float)(tm - track_x->keys[idx0].time) / dt;
nuclear@0 272
nuclear@0 273 q1.x = track_x->keys[idx0].val;
nuclear@0 274 q1.y = track_y->keys[idx0].val;
nuclear@0 275 q1.z = track_z->keys[idx0].val;
nuclear@0 276 q1.w = track_w->keys[idx0].val;
nuclear@0 277
nuclear@0 278 q2.x = track_x->keys[idx1].val;
nuclear@0 279 q2.y = track_y->keys[idx1].val;
nuclear@0 280 q2.z = track_z->keys[idx1].val;
nuclear@0 281 q2.w = track_w->keys[idx1].val;
nuclear@0 282
nuclear@0 283 /*q1 = quat_normalize(q1);
nuclear@0 284 q2 = quat_normalize(q2);*/
nuclear@0 285
nuclear@0 286 return quat_slerp(q1, q2, t);
nuclear@0 287 #endif
nuclear@0 288 }
nuclear@0 289
nuclear@0 290 void anm_set_scaling(struct anm_node *node, vec3_t scl, anm_time_t tm)
nuclear@0 291 {
nuclear@0 292 anm_set_value(node->tracks + ANM_TRACK_SCL_X, tm, scl.x);
nuclear@0 293 anm_set_value(node->tracks + ANM_TRACK_SCL_Y, tm, scl.y);
nuclear@0 294 anm_set_value(node->tracks + ANM_TRACK_SCL_Z, tm, scl.z);
nuclear@0 295 invalidate_cache(node);
nuclear@0 296 }
nuclear@0 297
nuclear@0 298 vec3_t anm_get_node_scaling(struct anm_node *node, anm_time_t tm)
nuclear@0 299 {
nuclear@0 300 vec3_t v;
nuclear@0 301 v.x = anm_get_value(node->tracks + ANM_TRACK_SCL_X, tm);
nuclear@0 302 v.y = anm_get_value(node->tracks + ANM_TRACK_SCL_Y, tm);
nuclear@0 303 v.z = anm_get_value(node->tracks + ANM_TRACK_SCL_Z, tm);
nuclear@0 304 return v;
nuclear@0 305 }
nuclear@0 306
nuclear@0 307
nuclear@0 308 vec3_t anm_get_position(struct anm_node *node, anm_time_t tm)
nuclear@0 309 {
nuclear@0 310 mat4_t xform;
nuclear@0 311 vec3_t pos = {0.0, 0.0, 0.0};
nuclear@0 312
nuclear@0 313 if(!node->parent) {
nuclear@0 314 return anm_get_node_position(node, tm);
nuclear@0 315 }
nuclear@0 316
nuclear@0 317 anm_get_matrix(node, xform, tm);
nuclear@0 318 return v3_transform(pos, xform);
nuclear@0 319 }
nuclear@0 320
nuclear@0 321 quat_t anm_get_rotation(struct anm_node *node, anm_time_t tm)
nuclear@0 322 {
nuclear@0 323 quat_t rot, prot;
nuclear@0 324 rot = anm_get_node_rotation(node, tm);
nuclear@0 325
nuclear@0 326 if(!node->parent) {
nuclear@0 327 return rot;
nuclear@0 328 }
nuclear@0 329
nuclear@0 330 prot = anm_get_rotation(node->parent, tm);
nuclear@0 331 return quat_mul(prot, rot);
nuclear@0 332 }
nuclear@0 333
nuclear@0 334 vec3_t anm_get_scaling(struct anm_node *node, anm_time_t tm)
nuclear@0 335 {
nuclear@0 336 vec3_t s, ps;
nuclear@0 337 s = anm_get_node_scaling(node, tm);
nuclear@0 338
nuclear@0 339 if(!node->parent) {
nuclear@0 340 return s;
nuclear@0 341 }
nuclear@0 342
nuclear@0 343 ps = anm_get_scaling(node->parent, tm);
nuclear@0 344 return v3_mul(s, ps);
nuclear@0 345 }
nuclear@0 346
nuclear@0 347 void anm_set_pivot(struct anm_node *node, vec3_t piv)
nuclear@0 348 {
nuclear@0 349 node->pivot = piv;
nuclear@0 350 }
nuclear@0 351
nuclear@0 352 vec3_t anm_get_pivot(struct anm_node *node)
nuclear@0 353 {
nuclear@0 354 return node->pivot;
nuclear@0 355 }
nuclear@0 356
nuclear@0 357 void anm_get_node_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
nuclear@0 358 {
nuclear@0 359 int i;
nuclear@0 360 mat4_t rmat;
nuclear@0 361 vec3_t pos, scale;
nuclear@0 362 quat_t rot;
nuclear@0 363
nuclear@0 364 pos = anm_get_node_position(node, tm);
nuclear@0 365 rot = anm_get_node_rotation(node, tm);
nuclear@0 366 scale = anm_get_node_scaling(node, tm);
nuclear@0 367
nuclear@0 368 m4_set_translation(mat, node->pivot.x, node->pivot.y, node->pivot.z);
nuclear@0 369
nuclear@0 370 quat_to_mat4(rmat, rot);
nuclear@0 371 for(i=0; i<3; i++) {
nuclear@0 372 mat[i][0] = rmat[i][0];
nuclear@0 373 mat[i][1] = rmat[i][1];
nuclear@0 374 mat[i][2] = rmat[i][2];
nuclear@0 375 }
nuclear@0 376 /* this loop is equivalent to: m4_mult(mat, mat, rmat); */
nuclear@0 377
nuclear@0 378 mat[0][0] *= scale.x; mat[0][1] *= scale.y; mat[0][2] *= scale.z; mat[0][3] += pos.x;
nuclear@0 379 mat[1][0] *= scale.x; mat[1][1] *= scale.y; mat[1][2] *= scale.z; mat[1][3] += pos.y;
nuclear@0 380 mat[2][0] *= scale.x; mat[2][1] *= scale.y; mat[2][2] *= scale.z; mat[2][3] += pos.z;
nuclear@0 381
nuclear@0 382 m4_translate(mat, -node->pivot.x, -node->pivot.y, -node->pivot.z);
nuclear@0 383
nuclear@0 384 /* that's basically: pivot * rotation * translation * scaling * -pivot */
nuclear@0 385 }
nuclear@0 386
nuclear@0 387 void anm_get_node_inv_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
nuclear@0 388 {
nuclear@0 389 mat4_t tmp;
nuclear@0 390 anm_get_node_matrix(node, tmp, tm);
nuclear@0 391 m4_inverse(mat, tmp);
nuclear@0 392 }
nuclear@0 393
nuclear@0 394 void anm_eval_node(struct anm_node *node, anm_time_t tm)
nuclear@0 395 {
nuclear@0 396 anm_get_node_matrix(node, node->matrix, tm);
nuclear@0 397 }
nuclear@0 398
nuclear@0 399 void anm_eval(struct anm_node *node, anm_time_t tm)
nuclear@0 400 {
nuclear@0 401 struct anm_node *c;
nuclear@0 402
nuclear@0 403 anm_eval_node(node, tm);
nuclear@0 404
nuclear@0 405 if(node->parent) {
nuclear@0 406 /* due to post-order traversal, the parent matrix is already evaluated */
nuclear@0 407 m4_mult(node->matrix, node->parent->matrix, node->matrix);
nuclear@0 408 }
nuclear@0 409
nuclear@0 410 /* recersively evaluate all children */
nuclear@0 411 c = node->child;
nuclear@0 412 while(c) {
nuclear@0 413 anm_eval(c, tm);
nuclear@0 414 c = c->next;
nuclear@0 415 }
nuclear@0 416 }
nuclear@0 417
nuclear@0 418 void anm_get_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
nuclear@0 419 {
nuclear@0 420 struct mat_cache *cache = pthread_getspecific(node->cache_key);
nuclear@0 421 if(!cache) {
nuclear@0 422 cache = malloc(sizeof *cache);
nuclear@0 423 assert(cache);
nuclear@0 424
nuclear@0 425 pthread_mutex_lock(&node->cache_list_lock);
nuclear@0 426 cache->next = node->cache_list;
nuclear@0 427 node->cache_list = cache;
nuclear@0 428 pthread_mutex_unlock(&node->cache_list_lock);
nuclear@0 429
nuclear@0 430 cache->time = ANM_TIME_INVAL;
nuclear@0 431 cache->inv_time = ANM_TIME_INVAL;
nuclear@0 432 pthread_setspecific(node->cache_key, cache);
nuclear@0 433 }
nuclear@0 434
nuclear@0 435 if(cache->time != tm) {
nuclear@0 436 anm_get_node_matrix(node, cache->matrix, tm);
nuclear@0 437
nuclear@0 438 if(node->parent) {
nuclear@0 439 mat4_t parent_mat;
nuclear@0 440
nuclear@0 441 anm_get_matrix(node->parent, parent_mat, tm);
nuclear@0 442 m4_mult(cache->matrix, parent_mat, cache->matrix);
nuclear@0 443 }
nuclear@0 444 cache->time = tm;
nuclear@0 445 }
nuclear@0 446 m4_copy(mat, cache->matrix);
nuclear@0 447 }
nuclear@0 448
nuclear@0 449 void anm_get_inv_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
nuclear@0 450 {
nuclear@0 451 struct mat_cache *cache = pthread_getspecific(node->cache_key);
nuclear@0 452 if(!cache) {
nuclear@0 453 cache = malloc(sizeof *cache);
nuclear@0 454 assert(cache);
nuclear@0 455
nuclear@0 456 pthread_mutex_lock(&node->cache_list_lock);
nuclear@0 457 cache->next = node->cache_list;
nuclear@0 458 node->cache_list = cache;
nuclear@0 459 pthread_mutex_unlock(&node->cache_list_lock);
nuclear@0 460
nuclear@0 461 cache->inv_time = ANM_TIME_INVAL;
nuclear@0 462 cache->inv_time = ANM_TIME_INVAL;
nuclear@0 463 pthread_setspecific(node->cache_key, cache);
nuclear@0 464 }
nuclear@0 465
nuclear@0 466 if(cache->inv_time != tm) {
nuclear@0 467 anm_get_matrix(node, mat, tm);
nuclear@0 468 m4_inverse(cache->inv_matrix, mat);
nuclear@0 469 cache->inv_time = tm;
nuclear@0 470 }
nuclear@0 471 m4_copy(mat, cache->inv_matrix);
nuclear@0 472 }
nuclear@0 473
nuclear@0 474 anm_time_t anm_get_start_time(struct anm_node *node)
nuclear@0 475 {
nuclear@0 476 int i;
nuclear@0 477 struct anm_node *c;
nuclear@0 478 anm_time_t res = LONG_MAX;
nuclear@0 479
nuclear@0 480 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 481 if(node->tracks[i].count) {
nuclear@0 482 anm_time_t tm = node->tracks[i].keys[0].time;
nuclear@0 483 if(tm < res) {
nuclear@0 484 res = tm;
nuclear@0 485 }
nuclear@0 486 }
nuclear@0 487 }
nuclear@0 488
nuclear@0 489 c = node->child;
nuclear@0 490 while(c) {
nuclear@0 491 anm_time_t tm = anm_get_start_time(c);
nuclear@0 492 if(tm < res) {
nuclear@0 493 res = tm;
nuclear@0 494 }
nuclear@0 495 c = c->next;
nuclear@0 496 }
nuclear@0 497 return res;
nuclear@0 498 }
nuclear@0 499
nuclear@0 500 anm_time_t anm_get_end_time(struct anm_node *node)
nuclear@0 501 {
nuclear@0 502 int i;
nuclear@0 503 struct anm_node *c;
nuclear@0 504 anm_time_t res = LONG_MIN;
nuclear@0 505
nuclear@0 506 for(i=0; i<ANM_NUM_TRACKS; i++) {
nuclear@0 507 if(node->tracks[i].count) {
nuclear@0 508 anm_time_t tm = node->tracks[i].keys[node->tracks[i].count - 1].time;
nuclear@0 509 if(tm > res) {
nuclear@0 510 res = tm;
nuclear@0 511 }
nuclear@0 512 }
nuclear@0 513 }
nuclear@0 514
nuclear@0 515 c = node->child;
nuclear@0 516 while(c) {
nuclear@0 517 anm_time_t tm = anm_get_end_time(c);
nuclear@0 518 if(tm > res) {
nuclear@0 519 res = tm;
nuclear@0 520 }
nuclear@0 521 c = c->next;
nuclear@0 522 }
nuclear@0 523 return res;
nuclear@0 524 }
nuclear@0 525
nuclear@0 526 static void invalidate_cache(struct anm_node *node)
nuclear@0 527 {
nuclear@0 528 struct mat_cache *cache = pthread_getspecific(node->cache_key);
nuclear@0 529 if(cache) {
nuclear@0 530 cache->time = cache->inv_time = ANM_TIME_INVAL;
nuclear@0 531 }
nuclear@0 532 }