rev |
line source |
nuclear@0
|
1 #include "quat.h"
|
nuclear@0
|
2 #include "vmath.h"
|
nuclear@0
|
3
|
nuclear@0
|
4 Quaternion::Quaternion()
|
nuclear@0
|
5 {
|
nuclear@0
|
6 s = 1.0;
|
nuclear@0
|
7 v.x = v.y = v.z = 0.0;
|
nuclear@0
|
8 }
|
nuclear@0
|
9
|
nuclear@0
|
10 Quaternion::Quaternion(scalar_t s, const Vector3 &v)
|
nuclear@0
|
11 {
|
nuclear@0
|
12 this->s = s;
|
nuclear@0
|
13 this->v = v;
|
nuclear@0
|
14 }
|
nuclear@0
|
15
|
nuclear@0
|
16 Quaternion::Quaternion(scalar_t s, scalar_t x, scalar_t y, scalar_t z)
|
nuclear@0
|
17 {
|
nuclear@0
|
18 v.x = x;
|
nuclear@0
|
19 v.y = y;
|
nuclear@0
|
20 v.z = z;
|
nuclear@0
|
21 this->s = s;
|
nuclear@0
|
22 }
|
nuclear@0
|
23
|
nuclear@0
|
24 Quaternion::Quaternion(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
25 {
|
nuclear@0
|
26 set_rotation(axis, angle);
|
nuclear@0
|
27 }
|
nuclear@0
|
28
|
nuclear@0
|
29 Quaternion::Quaternion(const quat_t &quat)
|
nuclear@0
|
30 {
|
nuclear@0
|
31 v.x = quat.x;
|
nuclear@0
|
32 v.y = quat.y;
|
nuclear@0
|
33 v.z = quat.z;
|
nuclear@0
|
34 s = quat.w;
|
nuclear@0
|
35 }
|
nuclear@0
|
36
|
nuclear@0
|
37 Quaternion Quaternion::operator +(const Quaternion &quat) const
|
nuclear@0
|
38 {
|
nuclear@0
|
39 return Quaternion(s + quat.s, v + quat.v);
|
nuclear@0
|
40 }
|
nuclear@0
|
41
|
nuclear@0
|
42 Quaternion Quaternion::operator -(const Quaternion &quat) const
|
nuclear@0
|
43 {
|
nuclear@0
|
44 return Quaternion(s - quat.s, v - quat.v);
|
nuclear@0
|
45 }
|
nuclear@0
|
46
|
nuclear@0
|
47 Quaternion Quaternion::operator -() const
|
nuclear@0
|
48 {
|
nuclear@0
|
49 return Quaternion(-s, -v);
|
nuclear@0
|
50 }
|
nuclear@0
|
51
|
nuclear@0
|
52 /** Quaternion Multiplication:
|
nuclear@0
|
53 * Q1*Q2 = [s1*s2 - v1.v2, s1*v2 + s2*v1 + v1(x)v2]
|
nuclear@0
|
54 */
|
nuclear@0
|
55 Quaternion Quaternion::operator *(const Quaternion &quat) const
|
nuclear@0
|
56 {
|
nuclear@0
|
57 Quaternion newq;
|
nuclear@0
|
58 newq.s = s * quat.s - dot_product(v, quat.v);
|
nuclear@0
|
59 newq.v = quat.v * s + v * quat.s + cross_product(v, quat.v);
|
nuclear@0
|
60 return newq;
|
nuclear@0
|
61 }
|
nuclear@0
|
62
|
nuclear@0
|
63 void Quaternion::operator +=(const Quaternion &quat)
|
nuclear@0
|
64 {
|
nuclear@0
|
65 *this = Quaternion(s + quat.s, v + quat.v);
|
nuclear@0
|
66 }
|
nuclear@0
|
67
|
nuclear@0
|
68 void Quaternion::operator -=(const Quaternion &quat)
|
nuclear@0
|
69 {
|
nuclear@0
|
70 *this = Quaternion(s - quat.s, v - quat.v);
|
nuclear@0
|
71 }
|
nuclear@0
|
72
|
nuclear@0
|
73 void Quaternion::operator *=(const Quaternion &quat)
|
nuclear@0
|
74 {
|
nuclear@0
|
75 *this = *this * quat;
|
nuclear@0
|
76 }
|
nuclear@0
|
77
|
nuclear@0
|
78 void Quaternion::reset_identity()
|
nuclear@0
|
79 {
|
nuclear@0
|
80 s = 1.0;
|
nuclear@0
|
81 v.x = v.y = v.z = 0.0;
|
nuclear@0
|
82 }
|
nuclear@0
|
83
|
nuclear@0
|
84 Quaternion Quaternion::conjugate() const
|
nuclear@0
|
85 {
|
nuclear@0
|
86 return Quaternion(s, -v);
|
nuclear@0
|
87 }
|
nuclear@0
|
88
|
nuclear@0
|
89 scalar_t Quaternion::length() const
|
nuclear@0
|
90 {
|
nuclear@0
|
91 return (scalar_t)sqrt(v.x*v.x + v.y*v.y + v.z*v.z + s*s);
|
nuclear@0
|
92 }
|
nuclear@0
|
93
|
nuclear@0
|
94 /** Q * ~Q = ||Q||^2 */
|
nuclear@0
|
95 scalar_t Quaternion::length_sq() const
|
nuclear@0
|
96 {
|
nuclear@0
|
97 return v.x*v.x + v.y*v.y + v.z*v.z + s*s;
|
nuclear@0
|
98 }
|
nuclear@0
|
99
|
nuclear@0
|
100 void Quaternion::normalize()
|
nuclear@0
|
101 {
|
nuclear@0
|
102 scalar_t len = (scalar_t)sqrt(v.x*v.x + v.y*v.y + v.z*v.z + s*s);
|
nuclear@0
|
103 v.x /= len;
|
nuclear@0
|
104 v.y /= len;
|
nuclear@0
|
105 v.z /= len;
|
nuclear@0
|
106 s /= len;
|
nuclear@0
|
107 }
|
nuclear@0
|
108
|
nuclear@0
|
109 Quaternion Quaternion::normalized() const
|
nuclear@0
|
110 {
|
nuclear@0
|
111 Quaternion nq = *this;
|
nuclear@0
|
112 scalar_t len = (scalar_t)sqrt(v.x*v.x + v.y*v.y + v.z*v.z + s*s);
|
nuclear@0
|
113 nq.v.x /= len;
|
nuclear@0
|
114 nq.v.y /= len;
|
nuclear@0
|
115 nq.v.z /= len;
|
nuclear@0
|
116 nq.s /= len;
|
nuclear@0
|
117 return nq;
|
nuclear@0
|
118 }
|
nuclear@0
|
119
|
nuclear@0
|
120 /** Quaternion Inversion: Q^-1 = ~Q / ||Q||^2 */
|
nuclear@0
|
121 Quaternion Quaternion::inverse() const
|
nuclear@0
|
122 {
|
nuclear@0
|
123 Quaternion inv = conjugate();
|
nuclear@0
|
124 scalar_t lensq = length_sq();
|
nuclear@0
|
125 inv.v /= lensq;
|
nuclear@0
|
126 inv.s /= lensq;
|
nuclear@0
|
127
|
nuclear@0
|
128 return inv;
|
nuclear@0
|
129 }
|
nuclear@0
|
130
|
nuclear@0
|
131
|
nuclear@0
|
132 void Quaternion::set_rotation(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
133 {
|
nuclear@0
|
134 scalar_t half_angle = angle / 2.0;
|
nuclear@0
|
135 s = cos(half_angle);
|
nuclear@0
|
136 v = axis * sin(half_angle);
|
nuclear@0
|
137 }
|
nuclear@0
|
138
|
nuclear@0
|
139 void Quaternion::rotate(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
140 {
|
nuclear@0
|
141 Quaternion q;
|
nuclear@0
|
142 scalar_t half_angle = angle / 2.0;
|
nuclear@0
|
143 q.s = cos(half_angle);
|
nuclear@0
|
144 q.v = axis * sin(half_angle);
|
nuclear@0
|
145
|
nuclear@0
|
146 *this *= q;
|
nuclear@0
|
147 }
|
nuclear@0
|
148
|
nuclear@0
|
149 void Quaternion::rotate(const Quaternion &q)
|
nuclear@0
|
150 {
|
nuclear@0
|
151 *this = q * *this * q.conjugate();
|
nuclear@0
|
152 }
|
nuclear@0
|
153
|
nuclear@0
|
154 Matrix3x3 Quaternion::get_rotation_matrix() const
|
nuclear@0
|
155 {
|
nuclear@0
|
156 return Matrix3x3(
|
nuclear@0
|
157 1.0 - 2.0 * v.y*v.y - 2.0 * v.z*v.z, 2.0 * v.x * v.y - 2.0 * s * v.z, 2.0 * v.z * v.x + 2.0 * s * v.y,
|
nuclear@0
|
158 2.0 * v.x * v.y + 2.0 * s * v.z, 1.0 - 2.0 * v.x*v.x - 2.0 * v.z*v.z, 2.0 * v.y * v.z - 2.0 * s * v.x,
|
nuclear@0
|
159 2.0 * v.z * v.x - 2.0 * s * v.y, 2.0 * v.y * v.z + 2.0 * s * v.x, 1.0 - 2.0 * v.x*v.x - 2.0 * v.y*v.y);
|
nuclear@0
|
160 }
|
nuclear@0
|
161
|
nuclear@0
|
162
|
nuclear@0
|
163 /** Spherical linear interpolation (slerp) */
|
nuclear@0
|
164 Quaternion slerp(const Quaternion &quat1, const Quaternion &q2, scalar_t t)
|
nuclear@0
|
165 {
|
nuclear@0
|
166 Quaternion q1;
|
nuclear@0
|
167 scalar_t dot = q1.s * q2.s + q1.v.x * q2.v.x + q1.v.y * q2.v.y + q1.v.z * q2.v.z;
|
nuclear@0
|
168
|
nuclear@0
|
169 if(dot < 0.0) {
|
nuclear@0
|
170 /* make sure we interpolate across the shortest arc */
|
nuclear@0
|
171 q1 = -quat1;
|
nuclear@0
|
172 dot = -dot;
|
nuclear@0
|
173 } else {
|
nuclear@0
|
174 q1 = quat1;
|
nuclear@0
|
175 }
|
nuclear@0
|
176
|
nuclear@0
|
177 /* clamp dot to [-1, 1] in order to avoid domain errors in acos due to
|
nuclear@0
|
178 * floating point imprecisions
|
nuclear@0
|
179 */
|
nuclear@0
|
180 if(dot < -1.0) dot = -1.0;
|
nuclear@0
|
181 if(dot > 1.0) dot = 1.0;
|
nuclear@0
|
182
|
nuclear@0
|
183 scalar_t angle = acos(dot);
|
nuclear@0
|
184 scalar_t a, b;
|
nuclear@0
|
185
|
nuclear@0
|
186 scalar_t sin_angle = sin(angle);
|
nuclear@0
|
187 if(fabs(sin_angle) < SMALL_NUMBER) {
|
nuclear@0
|
188 /* for very small angles or completely opposite orientations
|
nuclear@0
|
189 * use linear interpolation to avoid div/zero (in the first case it makes sense,
|
nuclear@0
|
190 * the second case is pretty much undefined anyway I guess ...
|
nuclear@0
|
191 */
|
nuclear@0
|
192 a = 1.0f - t;
|
nuclear@0
|
193 b = t;
|
nuclear@0
|
194 } else {
|
nuclear@0
|
195 a = sin((1.0f - t) * angle) / sin_angle;
|
nuclear@0
|
196 b = sin(t * angle) / sin_angle;
|
nuclear@0
|
197 }
|
nuclear@0
|
198
|
nuclear@0
|
199 scalar_t x = q1.v.x * a + q2.v.x * b;
|
nuclear@0
|
200 scalar_t y = q1.v.y * a + q2.v.y * b;
|
nuclear@0
|
201 scalar_t z = q1.v.z * a + q2.v.z * b;
|
nuclear@0
|
202 scalar_t s = q1.s * a + q2.s * b;
|
nuclear@0
|
203
|
nuclear@0
|
204 return Quaternion(s, Vector3(x, y, z));
|
nuclear@0
|
205 }
|
nuclear@0
|
206
|
nuclear@0
|
207
|
nuclear@0
|
208 std::ostream &operator <<(std::ostream &out, const Quaternion &q)
|
nuclear@0
|
209 {
|
nuclear@0
|
210 out << "(" << q.s << ", " << q.v << ")";
|
nuclear@0
|
211 return out;
|
nuclear@0
|
212 }
|