rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 * jidctflt.c
|
nuclear@0
|
3 *
|
nuclear@0
|
4 * Copyright (C) 1994-1998, Thomas G. Lane.
|
nuclear@0
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@0
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@0
|
7 *
|
nuclear@0
|
8 * This file contains a floating-point implementation of the
|
nuclear@0
|
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
nuclear@0
|
10 * must also perform dequantization of the input coefficients.
|
nuclear@0
|
11 *
|
nuclear@0
|
12 * This implementation should be more accurate than either of the integer
|
nuclear@0
|
13 * IDCT implementations. However, it may not give the same results on all
|
nuclear@0
|
14 * machines because of differences in roundoff behavior. Speed will depend
|
nuclear@0
|
15 * on the hardware's floating point capacity.
|
nuclear@0
|
16 *
|
nuclear@0
|
17 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
nuclear@0
|
18 * on each row (or vice versa, but it's more convenient to emit a row at
|
nuclear@0
|
19 * a time). Direct algorithms are also available, but they are much more
|
nuclear@0
|
20 * complex and seem not to be any faster when reduced to code.
|
nuclear@0
|
21 *
|
nuclear@0
|
22 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
nuclear@0
|
23 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
nuclear@0
|
24 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
nuclear@0
|
25 * JPEG textbook (see REFERENCES section in file README). The following code
|
nuclear@0
|
26 * is based directly on figure 4-8 in P&M.
|
nuclear@0
|
27 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
nuclear@0
|
28 * possible to arrange the computation so that many of the multiplies are
|
nuclear@0
|
29 * simple scalings of the final outputs. These multiplies can then be
|
nuclear@0
|
30 * folded into the multiplications or divisions by the JPEG quantization
|
nuclear@0
|
31 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
nuclear@0
|
32 * to be done in the DCT itself.
|
nuclear@0
|
33 * The primary disadvantage of this method is that with a fixed-point
|
nuclear@0
|
34 * implementation, accuracy is lost due to imprecise representation of the
|
nuclear@0
|
35 * scaled quantization values. However, that problem does not arise if
|
nuclear@0
|
36 * we use floating point arithmetic.
|
nuclear@0
|
37 */
|
nuclear@0
|
38
|
nuclear@0
|
39 #define JPEG_INTERNALS
|
nuclear@0
|
40 #include "jinclude.h"
|
nuclear@0
|
41 #include "jpeglib.h"
|
nuclear@0
|
42 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@0
|
43
|
nuclear@0
|
44 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@0
|
45
|
nuclear@0
|
46
|
nuclear@0
|
47 /*
|
nuclear@0
|
48 * This module is specialized to the case DCTSIZE = 8.
|
nuclear@0
|
49 */
|
nuclear@0
|
50
|
nuclear@0
|
51 #if DCTSIZE != 8
|
nuclear@0
|
52 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
nuclear@0
|
53 #endif
|
nuclear@0
|
54
|
nuclear@0
|
55
|
nuclear@0
|
56 /* Dequantize a coefficient by multiplying it by the multiplier-table
|
nuclear@0
|
57 * entry; produce a float result.
|
nuclear@0
|
58 */
|
nuclear@0
|
59
|
nuclear@0
|
60 #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
nuclear@0
|
61
|
nuclear@0
|
62
|
nuclear@0
|
63 /*
|
nuclear@0
|
64 * Perform dequantization and inverse DCT on one block of coefficients.
|
nuclear@0
|
65 */
|
nuclear@0
|
66
|
nuclear@0
|
67 GLOBAL(void)
|
nuclear@0
|
68 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@0
|
69 JCOEFPTR coef_block,
|
nuclear@0
|
70 JSAMPARRAY output_buf, JDIMENSION output_col)
|
nuclear@0
|
71 {
|
nuclear@0
|
72 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
nuclear@0
|
73 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
nuclear@0
|
74 FAST_FLOAT z5, z10, z11, z12, z13;
|
nuclear@0
|
75 JCOEFPTR inptr;
|
nuclear@0
|
76 FLOAT_MULT_TYPE * quantptr;
|
nuclear@0
|
77 FAST_FLOAT * wsptr;
|
nuclear@0
|
78 JSAMPROW outptr;
|
nuclear@0
|
79 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
nuclear@0
|
80 int ctr;
|
nuclear@0
|
81 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
nuclear@0
|
82 SHIFT_TEMPS
|
nuclear@0
|
83
|
nuclear@0
|
84 /* Pass 1: process columns from input, store into work array. */
|
nuclear@0
|
85
|
nuclear@0
|
86 inptr = coef_block;
|
nuclear@0
|
87 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
nuclear@0
|
88 wsptr = workspace;
|
nuclear@0
|
89 for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
nuclear@0
|
90 /* Due to quantization, we will usually find that many of the input
|
nuclear@0
|
91 * coefficients are zero, especially the AC terms. We can exploit this
|
nuclear@0
|
92 * by short-circuiting the IDCT calculation for any column in which all
|
nuclear@0
|
93 * the AC terms are zero. In that case each output is equal to the
|
nuclear@0
|
94 * DC coefficient (with scale factor as needed).
|
nuclear@0
|
95 * With typical images and quantization tables, half or more of the
|
nuclear@0
|
96 * column DCT calculations can be simplified this way.
|
nuclear@0
|
97 */
|
nuclear@0
|
98
|
nuclear@0
|
99 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
nuclear@0
|
100 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
nuclear@0
|
101 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
nuclear@0
|
102 inptr[DCTSIZE*7] == 0) {
|
nuclear@0
|
103 /* AC terms all zero */
|
nuclear@0
|
104 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
nuclear@0
|
105
|
nuclear@0
|
106 wsptr[DCTSIZE*0] = dcval;
|
nuclear@0
|
107 wsptr[DCTSIZE*1] = dcval;
|
nuclear@0
|
108 wsptr[DCTSIZE*2] = dcval;
|
nuclear@0
|
109 wsptr[DCTSIZE*3] = dcval;
|
nuclear@0
|
110 wsptr[DCTSIZE*4] = dcval;
|
nuclear@0
|
111 wsptr[DCTSIZE*5] = dcval;
|
nuclear@0
|
112 wsptr[DCTSIZE*6] = dcval;
|
nuclear@0
|
113 wsptr[DCTSIZE*7] = dcval;
|
nuclear@0
|
114
|
nuclear@0
|
115 inptr++; /* advance pointers to next column */
|
nuclear@0
|
116 quantptr++;
|
nuclear@0
|
117 wsptr++;
|
nuclear@0
|
118 continue;
|
nuclear@0
|
119 }
|
nuclear@0
|
120
|
nuclear@0
|
121 /* Even part */
|
nuclear@0
|
122
|
nuclear@0
|
123 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
nuclear@0
|
124 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
nuclear@0
|
125 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
nuclear@0
|
126 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
nuclear@0
|
127
|
nuclear@0
|
128 tmp10 = tmp0 + tmp2; /* phase 3 */
|
nuclear@0
|
129 tmp11 = tmp0 - tmp2;
|
nuclear@0
|
130
|
nuclear@0
|
131 tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
nuclear@0
|
132 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
nuclear@0
|
133
|
nuclear@0
|
134 tmp0 = tmp10 + tmp13; /* phase 2 */
|
nuclear@0
|
135 tmp3 = tmp10 - tmp13;
|
nuclear@0
|
136 tmp1 = tmp11 + tmp12;
|
nuclear@0
|
137 tmp2 = tmp11 - tmp12;
|
nuclear@0
|
138
|
nuclear@0
|
139 /* Odd part */
|
nuclear@0
|
140
|
nuclear@0
|
141 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
nuclear@0
|
142 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
nuclear@0
|
143 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
nuclear@0
|
144 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
nuclear@0
|
145
|
nuclear@0
|
146 z13 = tmp6 + tmp5; /* phase 6 */
|
nuclear@0
|
147 z10 = tmp6 - tmp5;
|
nuclear@0
|
148 z11 = tmp4 + tmp7;
|
nuclear@0
|
149 z12 = tmp4 - tmp7;
|
nuclear@0
|
150
|
nuclear@0
|
151 tmp7 = z11 + z13; /* phase 5 */
|
nuclear@0
|
152 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
nuclear@0
|
153
|
nuclear@0
|
154 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
nuclear@0
|
155 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
nuclear@0
|
156 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
nuclear@0
|
157
|
nuclear@0
|
158 tmp6 = tmp12 - tmp7; /* phase 2 */
|
nuclear@0
|
159 tmp5 = tmp11 - tmp6;
|
nuclear@0
|
160 tmp4 = tmp10 + tmp5;
|
nuclear@0
|
161
|
nuclear@0
|
162 wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
nuclear@0
|
163 wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
nuclear@0
|
164 wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
nuclear@0
|
165 wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
nuclear@0
|
166 wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
nuclear@0
|
167 wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
nuclear@0
|
168 wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
nuclear@0
|
169 wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
nuclear@0
|
170
|
nuclear@0
|
171 inptr++; /* advance pointers to next column */
|
nuclear@0
|
172 quantptr++;
|
nuclear@0
|
173 wsptr++;
|
nuclear@0
|
174 }
|
nuclear@0
|
175
|
nuclear@0
|
176 /* Pass 2: process rows from work array, store into output array. */
|
nuclear@0
|
177 /* Note that we must descale the results by a factor of 8 == 2**3. */
|
nuclear@0
|
178
|
nuclear@0
|
179 wsptr = workspace;
|
nuclear@0
|
180 for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
nuclear@0
|
181 outptr = output_buf[ctr] + output_col;
|
nuclear@0
|
182 /* Rows of zeroes can be exploited in the same way as we did with columns.
|
nuclear@0
|
183 * However, the column calculation has created many nonzero AC terms, so
|
nuclear@0
|
184 * the simplification applies less often (typically 5% to 10% of the time).
|
nuclear@0
|
185 * And testing floats for zero is relatively expensive, so we don't bother.
|
nuclear@0
|
186 */
|
nuclear@0
|
187
|
nuclear@0
|
188 /* Even part */
|
nuclear@0
|
189
|
nuclear@0
|
190 tmp10 = wsptr[0] + wsptr[4];
|
nuclear@0
|
191 tmp11 = wsptr[0] - wsptr[4];
|
nuclear@0
|
192
|
nuclear@0
|
193 tmp13 = wsptr[2] + wsptr[6];
|
nuclear@0
|
194 tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
nuclear@0
|
195
|
nuclear@0
|
196 tmp0 = tmp10 + tmp13;
|
nuclear@0
|
197 tmp3 = tmp10 - tmp13;
|
nuclear@0
|
198 tmp1 = tmp11 + tmp12;
|
nuclear@0
|
199 tmp2 = tmp11 - tmp12;
|
nuclear@0
|
200
|
nuclear@0
|
201 /* Odd part */
|
nuclear@0
|
202
|
nuclear@0
|
203 z13 = wsptr[5] + wsptr[3];
|
nuclear@0
|
204 z10 = wsptr[5] - wsptr[3];
|
nuclear@0
|
205 z11 = wsptr[1] + wsptr[7];
|
nuclear@0
|
206 z12 = wsptr[1] - wsptr[7];
|
nuclear@0
|
207
|
nuclear@0
|
208 tmp7 = z11 + z13;
|
nuclear@0
|
209 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
nuclear@0
|
210
|
nuclear@0
|
211 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
nuclear@0
|
212 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
nuclear@0
|
213 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
nuclear@0
|
214
|
nuclear@0
|
215 tmp6 = tmp12 - tmp7;
|
nuclear@0
|
216 tmp5 = tmp11 - tmp6;
|
nuclear@0
|
217 tmp4 = tmp10 + tmp5;
|
nuclear@0
|
218
|
nuclear@0
|
219 /* Final output stage: scale down by a factor of 8 and range-limit */
|
nuclear@0
|
220
|
nuclear@0
|
221 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
nuclear@0
|
222 & RANGE_MASK];
|
nuclear@0
|
223 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
nuclear@0
|
224 & RANGE_MASK];
|
nuclear@0
|
225 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
nuclear@0
|
226 & RANGE_MASK];
|
nuclear@0
|
227 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
nuclear@0
|
228 & RANGE_MASK];
|
nuclear@0
|
229 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
nuclear@0
|
230 & RANGE_MASK];
|
nuclear@0
|
231 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
nuclear@0
|
232 & RANGE_MASK];
|
nuclear@0
|
233 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
nuclear@0
|
234 & RANGE_MASK];
|
nuclear@0
|
235 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
nuclear@0
|
236 & RANGE_MASK];
|
nuclear@0
|
237
|
nuclear@0
|
238 wsptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@0
|
239 }
|
nuclear@0
|
240 }
|
nuclear@0
|
241
|
nuclear@0
|
242 #endif /* DCT_FLOAT_SUPPORTED */
|