tavli

view src/mesh.cc @ 21:c3fbf9616dbd

slot bounds, and ray testing
author John Tsiombikas <nuclear@member.fsf.org>
date Thu, 02 Jul 2015 00:01:39 +0300
parents b1a195c3ee16
children
line source
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <float.h>
4 #include <assert.h>
5 #include "opengl.h"
6 #include "mesh.h"
7 //#include "xform_node.h"
9 #define USE_OLDGL
11 bool Mesh::use_custom_sdr_attr = true;
12 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
13 /*
14 (int)SDR_ATTR_VERTEX,
15 (int)SDR_ATTR_NORMAL,
16 (int)SDR_ATTR_TANGENT,
17 (int)SDR_ATTR_TEXCOORD,
18 (int)SDR_ATTR_COLOR,
19 -1, -1};
20 */
21 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
22 float Mesh::vertex_sel_dist = 0.01;
23 float Mesh::vis_vecsize = 1.0;
25 Mesh::Mesh()
26 {
27 clear();
29 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
31 for(int i=0; i<NUM_MESH_ATTR; i++) {
32 vattr[i].vbo = buffer_objects[i];
33 }
34 ibo = buffer_objects[NUM_MESH_ATTR];
35 wire_ibo = 0;
36 }
38 Mesh::~Mesh()
39 {
40 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
42 if(wire_ibo) {
43 glDeleteBuffers(1, &wire_ibo);
44 }
45 }
47 Mesh::Mesh(const Mesh &rhs)
48 {
49 clear();
51 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
53 for(int i=0; i<NUM_MESH_ATTR; i++) {
54 vattr[i].vbo = buffer_objects[i];
55 }
56 ibo = buffer_objects[NUM_MESH_ATTR];
57 wire_ibo = 0;
59 clone(rhs);
60 }
62 Mesh &Mesh::operator =(const Mesh &rhs)
63 {
64 if(&rhs != this) {
65 clone(rhs);
66 }
67 return *this;
68 }
70 bool Mesh::clone(const Mesh &m)
71 {
72 clear();
74 for(int i=0; i<NUM_MESH_ATTR; i++) {
75 if(m.has_attrib(i)) {
76 m.get_attrib_data(i); // force validation of the actual data on the source mesh
78 vattr[i].nelem = m.vattr[i].nelem;
79 vattr[i].data = m.vattr[i].data; // copy the actual data
80 vattr[i].data_valid = true;
81 }
82 }
84 if(m.is_indexed()) {
85 m.get_index_data(); // again, force validation
87 // copy the index data
88 idata = m.idata;
89 idata_valid = true;
90 }
92 name = m.name;
93 nverts = m.nverts;
94 nfaces = m.nfaces;
96 //bones = m.bones;
98 memcpy(cur_val, m.cur_val, sizeof cur_val);
100 aabb = m.aabb;
101 aabb_valid = m.aabb_valid;
102 bsph = m.bsph;
103 bsph_valid = m.bsph_valid;
105 hitface = m.hitface;
106 hitvert = m.hitvert;
108 intersect_mode = m.intersect_mode;
109 vertex_sel_dist = m.vertex_sel_dist;
110 vis_vecsize = m.vis_vecsize;
112 return true;
113 }
115 void Mesh::set_name(const char *name)
116 {
117 this->name = name;
118 }
120 const char *Mesh::get_name() const
121 {
122 return name.c_str();
123 }
125 bool Mesh::has_attrib(int attr) const
126 {
127 if(attr < 0 || attr >= NUM_MESH_ATTR) {
128 return false;
129 }
131 // if neither of these is valid, then nobody has set this attribute
132 return vattr[attr].vbo_valid || vattr[attr].data_valid;
133 }
135 bool Mesh::is_indexed() const
136 {
137 return ibo_valid || idata_valid;
138 }
140 void Mesh::clear()
141 {
142 //bones.clear();
144 for(int i=0; i<NUM_MESH_ATTR; i++) {
145 vattr[i].nelem = 0;
146 vattr[i].vbo_valid = false;
147 vattr[i].data_valid = false;
148 //vattr[i].sdr_loc = -1;
149 vattr[i].data.clear();
150 }
151 ibo_valid = idata_valid = false;
152 idata.clear();
154 wire_ibo_valid = false;
156 nverts = nfaces = 0;
158 bsph_valid = false;
159 aabb_valid = false;
160 }
162 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
163 {
164 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
165 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
166 return 0;
167 }
169 if(nverts && num != nverts) {
170 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
171 return 0;
172 }
173 nverts = num;
175 vattr[attrib].data.clear();
176 vattr[attrib].nelem = nelem;
177 vattr[attrib].data.resize(num * nelem);
179 if(data) {
180 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
181 }
183 vattr[attrib].data_valid = true;
184 vattr[attrib].vbo_valid = false;
185 return &vattr[attrib].data[0];
186 }
188 float *Mesh::get_attrib_data(int attrib)
189 {
190 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
191 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
192 return 0;
193 }
195 vattr[attrib].vbo_valid = false;
196 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
197 }
199 const float *Mesh::get_attrib_data(int attrib) const
200 {
201 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
202 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
203 return 0;
204 }
206 if(!vattr[attrib].data_valid) {
207 #if GL_ES_VERSION_2_0
208 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
209 return 0;
210 #else
211 if(!vattr[attrib].vbo_valid) {
212 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
213 return 0;
214 }
216 // local data copy is unavailable, grab the data from the vbo
217 Mesh *m = (Mesh*)this;
218 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
220 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
221 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
222 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
223 glUnmapBuffer(GL_ARRAY_BUFFER);
225 vattr[attrib].data_valid = true;
226 #endif
227 }
229 return &vattr[attrib].data[0];
230 }
232 void Mesh::set_attrib(int attrib, int idx, const Vector4 &v)
233 {
234 float *data = get_attrib_data(attrib);
235 if(data) {
236 data += idx * vattr[attrib].nelem;
237 for(int i=0; i<vattr[attrib].nelem; i++) {
238 data[i] = v[i];
239 }
240 }
241 }
243 Vector4 Mesh::get_attrib(int attrib, int idx) const
244 {
245 Vector4 v(0.0, 0.0, 0.0, 1.0);
246 const float *data = get_attrib_data(attrib);
247 if(data) {
248 data += idx * vattr[attrib].nelem;
249 for(int i=0; i<vattr[attrib].nelem; i++) {
250 v[i] = data[i];
251 }
252 }
253 return v;
254 }
256 int Mesh::get_attrib_count(int attrib) const
257 {
258 return has_attrib(attrib) ? nverts : 0;
259 }
262 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
263 {
264 int nidx = nfaces * 3;
265 if(nidx && num != nidx) {
266 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
267 return 0;
268 }
269 nfaces = num / 3;
271 idata.clear();
272 idata.resize(num);
274 if(indices) {
275 memcpy(&idata[0], indices, num * sizeof *indices);
276 }
278 idata_valid = true;
279 ibo_valid = false;
281 return &idata[0];
282 }
284 unsigned int *Mesh::get_index_data()
285 {
286 ibo_valid = false;
287 return (unsigned int*)((const Mesh*)this)->get_index_data();
288 }
290 const unsigned int *Mesh::get_index_data() const
291 {
292 if(!idata_valid) {
293 #if GL_ES_VERSION_2_0
294 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
295 return 0;
296 #else
297 if(!ibo_valid) {
298 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
299 return 0;
300 }
302 // local data copy is unavailable, gram the data from the ibo
303 Mesh *m = (Mesh*)this;
304 int nidx = nfaces * 3;
305 m->idata.resize(nidx);
307 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
308 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
309 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
310 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
312 idata_valid = true;
313 #endif
314 }
316 return &idata[0];
317 }
319 int Mesh::get_index_count() const
320 {
321 return nfaces * 3;
322 }
324 void Mesh::append(const Mesh &mesh)
325 {
326 unsigned int idxoffs = nverts;
328 if(!nverts) {
329 clone(mesh);
330 return;
331 }
333 nverts += mesh.nverts;
334 nfaces += mesh.nfaces;
336 for(int i=0; i<NUM_MESH_ATTR; i++) {
337 if(has_attrib(i) && mesh.has_attrib(i)) {
338 // force validating the data arrays
339 get_attrib_data(i);
340 mesh.get_attrib_data(i);
342 // append the mesh data
343 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
344 }
345 }
347 if(ibo_valid || idata_valid) {
348 // make index arrays valid
349 get_index_data();
350 mesh.get_index_data();
352 size_t orig_sz = idata.size();
354 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
356 // fixup all the new indices
357 for(size_t i=orig_sz; i<idata.size(); i++) {
358 idata[i] += idxoffs;
359 }
360 }
362 // fuck everything
363 wire_ibo_valid = false;
364 aabb_valid = false;
365 bsph_valid = false;
366 }
368 // assemble a complete vertex by adding all the useful attributes
369 void Mesh::vertex(float x, float y, float z)
370 {
371 cur_val[MESH_ATTR_VERTEX] = Vector4(x, y, z, 1.0f);
372 vattr[MESH_ATTR_VERTEX].data_valid = true;
373 vattr[MESH_ATTR_VERTEX].nelem = 3;
375 for(int i=0; i<NUM_MESH_ATTR; i++) {
376 if(vattr[i].data_valid) {
377 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
378 vattr[i].data.push_back(cur_val[i][j]);
379 }
380 }
381 vattr[i].vbo_valid = false;
382 }
384 if(idata_valid) {
385 idata.clear();
386 }
387 ibo_valid = idata_valid = false;
388 }
390 void Mesh::normal(float nx, float ny, float nz)
391 {
392 cur_val[MESH_ATTR_NORMAL] = Vector4(nx, ny, nz, 1.0f);
393 vattr[MESH_ATTR_NORMAL].data_valid = true;
394 vattr[MESH_ATTR_NORMAL].nelem = 3;
395 }
397 void Mesh::tangent(float tx, float ty, float tz)
398 {
399 cur_val[MESH_ATTR_TANGENT] = Vector4(tx, ty, tz, 1.0f);
400 vattr[MESH_ATTR_TANGENT].data_valid = true;
401 vattr[MESH_ATTR_TANGENT].nelem = 3;
402 }
404 void Mesh::texcoord(float u, float v, float w)
405 {
406 cur_val[MESH_ATTR_TEXCOORD] = Vector4(u, v, w, 1.0f);
407 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
408 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
409 }
411 void Mesh::boneweights(float w1, float w2, float w3, float w4)
412 {
413 cur_val[MESH_ATTR_BONEWEIGHTS] = Vector4(w1, w2, w3, w4);
414 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
415 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
416 }
418 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
419 {
420 cur_val[MESH_ATTR_BONEIDX] = Vector4(idx1, idx2, idx3, idx4);
421 vattr[MESH_ATTR_BONEIDX].data_valid = true;
422 vattr[MESH_ATTR_BONEIDX].nelem = 4;
423 }
425 int Mesh::get_poly_count() const
426 {
427 if(nfaces) {
428 return nfaces;
429 }
430 if(nverts) {
431 return nverts / 3;
432 }
433 return 0;
434 }
436 /// static function
437 void Mesh::set_attrib_location(int attr, int loc)
438 {
439 if(attr < 0 || attr >= NUM_MESH_ATTR) {
440 return;
441 }
442 Mesh::global_sdr_loc[attr] = loc;
443 }
445 /// static function
446 int Mesh::get_attrib_location(int attr)
447 {
448 if(attr < 0 || attr >= NUM_MESH_ATTR) {
449 return -1;
450 }
451 return Mesh::global_sdr_loc[attr];
452 }
454 /// static function
455 void Mesh::clear_attrib_locations()
456 {
457 for(int i=0; i<NUM_MESH_ATTR; i++) {
458 Mesh::global_sdr_loc[i] = -1;
459 }
460 }
462 /// static function
463 void Mesh::set_vis_vecsize(float sz)
464 {
465 Mesh::vis_vecsize = sz;
466 }
468 float Mesh::get_vis_vecsize()
469 {
470 return Mesh::vis_vecsize;
471 }
473 void Mesh::apply_xform(const Matrix4x4 &xform)
474 {
475 Matrix4x4 dir_xform = xform;
476 dir_xform[0][3] = dir_xform[1][3] = dir_xform[2][3] = 0.0f;
477 dir_xform[3][0] = dir_xform[3][1] = dir_xform[3][2] = 0.0f;
478 dir_xform[3][3] = 1.0f;
480 apply_xform(xform, dir_xform);
481 }
483 void Mesh::apply_xform(const Matrix4x4 &xform, const Matrix4x4 &dir_xform)
484 {
485 for(unsigned int i=0; i<nverts; i++) {
486 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
487 set_attrib(MESH_ATTR_VERTEX, i, v.transformed(xform));
489 if(has_attrib(MESH_ATTR_NORMAL)) {
490 Vector3 n = get_attrib(MESH_ATTR_NORMAL, i);
491 set_attrib(MESH_ATTR_NORMAL, i, n.transformed(dir_xform));
492 }
493 if(has_attrib(MESH_ATTR_TANGENT)) {
494 Vector3 t = get_attrib(MESH_ATTR_TANGENT, i);
495 set_attrib(MESH_ATTR_TANGENT, i, t.transformed(dir_xform));
496 }
497 }
498 }
500 void Mesh::flip()
501 {
502 flip_faces();
503 flip_normals();
504 }
506 void Mesh::flip_faces()
507 {
508 if(is_indexed()) {
509 unsigned int *indices = get_index_data();
510 if(!indices) return;
512 int idxnum = get_index_count();
513 for(int i=0; i<idxnum; i+=3) {
514 unsigned int tmp = indices[i + 2];
515 indices[i + 2] = indices[i + 1];
516 indices[i + 1] = tmp;
517 }
519 } else {
520 Vector3 *verts = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
521 if(!verts) return;
523 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
524 for(int i=0; i<vnum; i+=3) {
525 Vector3 tmp = verts[i + 2];
526 verts[i + 2] = verts[i + 1];
527 verts[i + 1] = tmp;
528 }
529 }
530 }
532 void Mesh::flip_normals()
533 {
534 Vector3 *normals = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
535 if(!normals) return;
537 int num = get_attrib_count(MESH_ATTR_NORMAL);
538 for(int i=0; i<num; i++) {
539 normals[i] = -normals[i];
540 }
541 }
543 /*
544 int Mesh::add_bone(XFormNode *bone)
545 {
546 int idx = bones.size();
547 bones.push_back(bone);
548 return idx;
549 }
551 const XFormNode *Mesh::get_bone(int idx) const
552 {
553 if(idx < 0 || idx >= (int)bones.size()) {
554 return 0;
555 }
556 return bones[idx];
557 }
559 int Mesh::get_bones_count() const
560 {
561 return (int)bones.size();
562 }
563 */
565 void Mesh::draw() const
566 {
567 int cur_sdr = 0;
568 if(glcaps.shaders) {
569 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
570 }
572 ((Mesh*)this)->update_buffers();
574 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
575 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
576 return;
577 }
579 if(cur_sdr && use_custom_sdr_attr) {
580 // rendering with shaders
581 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
582 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
583 return;
584 }
586 for(int i=0; i<NUM_MESH_ATTR; i++) {
587 int loc = global_sdr_loc[i];
588 if(loc >= 0 && vattr[i].vbo_valid) {
589 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
590 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
591 glEnableVertexAttribArray(loc);
592 }
593 }
594 } else {
595 #ifndef GL_ES_VERSION_2_0
596 // rendering with fixed-function (not available in GLES2)
597 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
598 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
599 glEnableClientState(GL_VERTEX_ARRAY);
601 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
602 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
603 glNormalPointer(GL_FLOAT, 0, 0);
604 glEnableClientState(GL_NORMAL_ARRAY);
605 }
606 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
607 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
608 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
609 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
610 }
611 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
612 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
613 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
614 glEnableClientState(GL_COLOR_ARRAY);
615 }
616 #endif
617 }
618 glBindBuffer(GL_ARRAY_BUFFER, 0);
620 if(ibo_valid) {
621 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
622 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
623 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
624 } else {
625 glDrawArrays(GL_TRIANGLES, 0, nverts);
626 }
628 if(cur_sdr && use_custom_sdr_attr) {
629 // rendered with shaders
630 for(int i=0; i<NUM_MESH_ATTR; i++) {
631 int loc = global_sdr_loc[i];
632 if(loc >= 0 && vattr[i].vbo_valid) {
633 glDisableVertexAttribArray(loc);
634 }
635 }
636 } else {
637 #ifndef GL_ES_VERSION_2_0
638 // rendered with fixed-function
639 glDisableClientState(GL_VERTEX_ARRAY);
640 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
641 glDisableClientState(GL_NORMAL_ARRAY);
642 }
643 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
644 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
645 }
646 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
647 glDisableClientState(GL_COLOR_ARRAY);
648 }
649 #endif
650 }
651 }
653 void Mesh::draw_wire() const
654 {
655 ((Mesh*)this)->update_wire_ibo();
657 if(!vattr[MESH_ATTR_VERTEX].vbo_valid || !wire_ibo_valid) {
658 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
659 return;
660 }
661 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
662 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
663 return;
664 }
666 for(int i=0; i<NUM_MESH_ATTR; i++) {
667 int loc = global_sdr_loc[i];
668 if(loc >= 0 && vattr[i].vbo_valid) {
669 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
670 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
671 glEnableVertexAttribArray(loc);
672 }
673 }
674 glBindBuffer(GL_ARRAY_BUFFER, 0);
676 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
677 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
678 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
680 for(int i=0; i<NUM_MESH_ATTR; i++) {
681 int loc = global_sdr_loc[i];
682 if(loc >= 0 && vattr[i].vbo_valid) {
683 glDisableVertexAttribArray(loc);
684 }
685 }
686 }
688 void Mesh::draw_vertices() const
689 {
690 ((Mesh*)this)->update_buffers();
692 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
693 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
694 return;
695 }
696 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
697 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
698 return;
699 }
701 for(int i=0; i<NUM_MESH_ATTR; i++) {
702 int loc = global_sdr_loc[i];
703 if(loc >= 0 && vattr[i].vbo_valid) {
704 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
705 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
706 glEnableVertexAttribArray(loc);
707 }
708 }
709 glBindBuffer(GL_ARRAY_BUFFER, 0);
711 glDrawArrays(GL_POINTS, 0, nverts);
713 for(int i=0; i<NUM_MESH_ATTR; i++) {
714 int loc = global_sdr_loc[i];
715 if(loc >= 0 && vattr[i].vbo_valid) {
716 glDisableVertexAttribArray(loc);
717 }
718 }
719 }
721 void Mesh::draw_normals() const
722 {
723 #ifdef USE_OLDGL
724 int cur_sdr = 0;
725 if(glcaps.shaders) {
726 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
727 }
729 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
730 Vector3 *norm = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
731 if(!varr || !norm) {
732 return;
733 }
735 glBegin(GL_LINES);
736 if(cur_sdr && use_custom_sdr_attr) {
737 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
738 if(vert_loc < 0) {
739 glEnd();
740 return;
741 }
743 for(size_t i=0; i<nverts; i++) {
744 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
745 Vector3 end = varr[i] + norm[i] * vis_vecsize;
746 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
747 }
748 } else {
749 for(size_t i=0; i<nverts; i++) {
750 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
751 Vector3 end = varr[i] + norm[i] * vis_vecsize;
752 glVertex3f(end.x, end.y, end.z);
753 }
754 }
755 glEnd();
756 #endif // USE_OLDGL
757 }
759 void Mesh::draw_tangents() const
760 {
761 #ifdef USE_OLDGL
762 int cur_sdr = 0;
763 if(glcaps.shaders) {
764 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
765 }
767 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
768 Vector3 *tang = (Vector3*)get_attrib_data(MESH_ATTR_TANGENT);
769 if(!varr || !tang) {
770 return;
771 }
773 glBegin(GL_LINES);
774 if(cur_sdr && use_custom_sdr_attr) {
775 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
776 if(vert_loc < 0) {
777 glEnd();
778 return;
779 }
781 for(size_t i=0; i<nverts; i++) {
782 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
783 Vector3 end = varr[i] + tang[i] * vis_vecsize;
784 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
785 }
786 } else {
787 for(size_t i=0; i<nverts; i++) {
788 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
789 Vector3 end = varr[i] + tang[i] * vis_vecsize;
790 glVertex3f(end.x, end.y, end.z);
791 }
792 }
793 glEnd();
794 #endif // USE_OLDGL
795 }
797 void Mesh::get_aabbox(Vector3 *vmin, Vector3 *vmax) const
798 {
799 if(!aabb_valid) {
800 ((Mesh*)this)->calc_aabb();
801 }
802 *vmin = aabb.min;
803 *vmax = aabb.max;
804 }
806 const AABox &Mesh::get_aabbox() const
807 {
808 if(!aabb_valid) {
809 ((Mesh*)this)->calc_aabb();
810 }
811 return aabb;
812 }
814 float Mesh::get_bsphere(Vector3 *center, float *rad) const
815 {
816 if(!bsph_valid) {
817 ((Mesh*)this)->calc_bsph();
818 }
819 *center = bsph.center;
820 *rad = bsph.radius;
821 return bsph.radius;
822 }
824 const Sphere &Mesh::get_bsphere() const
825 {
826 if(!bsph_valid) {
827 ((Mesh*)this)->calc_bsph();
828 }
829 return bsph;
830 }
832 /// static function
833 void Mesh::set_intersect_mode(unsigned int mode)
834 {
835 Mesh::intersect_mode = mode;
836 }
838 /// static function
839 unsigned int Mesh::get_intersect_mode()
840 {
841 return Mesh::intersect_mode;
842 }
844 /// static function
845 void Mesh::set_vertex_select_distance(float dist)
846 {
847 Mesh::vertex_sel_dist = dist;
848 }
850 /// static function
851 float Mesh::get_vertex_select_distance()
852 {
853 return Mesh::vertex_sel_dist;
854 }
856 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
857 {
858 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
860 const Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
861 const Vector3 *narr = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
862 if(!varr) {
863 return false;
864 }
865 const unsigned int *idxarr = get_index_data();
867 // first test with the bounding box
868 AABox box;
869 get_aabbox(&box.min, &box.max);
870 if(!box.intersect(ray)) {
871 return false;
872 }
874 HitPoint nearest_hit;
875 nearest_hit.dist = FLT_MAX;
876 nearest_hit.obj = 0;
878 if(Mesh::intersect_mode & ISECT_VERTICES) {
879 // we asked for "intersections" with the vertices of the mesh
880 long nearest_vidx = -1;
881 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
883 for(unsigned int i=0; i<nverts; i++) {
885 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(narr[i], ray.dir) > 0) {
886 continue;
887 }
889 // project the vertex onto the ray line
890 float t = dot_product(varr[i] - ray.origin, ray.dir);
891 Vector3 vproj = ray.origin + ray.dir * t;
893 float dist_sq = (vproj - varr[i]).length_sq();
894 if(dist_sq < thres_sq) {
895 if(!hit) {
896 return true;
897 }
898 if(t < nearest_hit.dist) {
899 nearest_hit.dist = t;
900 nearest_vidx = i;
901 }
902 }
903 }
905 if(nearest_vidx != -1) {
906 hitvert = varr[nearest_vidx];
907 nearest_hit.obj = &hitvert;
908 }
910 } else {
911 // regular intersection test with polygons
913 for(unsigned int i=0; i<nfaces; i++) {
914 Triangle face(i, varr, idxarr);
916 // ignore back-facing polygons if the mode flags include ISECT_FRONT
917 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(face.get_normal(), ray.dir) > 0) {
918 continue;
919 }
921 HitPoint fhit;
922 if(face.intersect(ray, hit ? &fhit : 0)) {
923 if(!hit) {
924 return true;
925 }
926 if(fhit.dist < nearest_hit.dist) {
927 nearest_hit = fhit;
928 hitface = face;
929 }
930 }
931 }
932 }
934 if(nearest_hit.obj) {
935 if(hit) {
936 *hit = nearest_hit;
938 // if we are interested in the mesh and not the faces set obj to this
939 if(Mesh::intersect_mode & ISECT_FACE) {
940 hit->obj = &hitface;
941 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
942 hit->obj = &hitvert;
943 } else {
944 hit->obj = this;
945 }
946 }
947 return true;
948 }
949 return false;
950 }
953 // texture coordinate manipulation
954 void Mesh::texcoord_apply_xform(const Matrix4x4 &xform)
955 {
956 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
957 return;
958 }
960 for(unsigned int i=0; i<nverts; i++) {
961 Vector4 tc = get_attrib(MESH_ATTR_TEXCOORD, i);
962 set_attrib(MESH_ATTR_TEXCOORD, i, tc.transformed(xform));
963 }
964 }
966 void Mesh::texcoord_gen_plane(const Vector3 &norm, const Vector3 &tang)
967 {
968 if(!nverts) return;
970 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
971 // allocate texture coordinate attribute array
972 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
973 }
975 Vector3 n = norm.normalized();
976 Vector3 b = cross_product(n, tang).normalized();
977 Vector3 t = cross_product(b, n);
979 for(unsigned int i=0; i<nverts; i++) {
980 Vector3 pos = get_attrib(MESH_ATTR_VERTEX, i);
982 // distance along the tangent direction
983 float u = dot_product(pos, t);
984 // distance along the bitangent direction
985 float v = dot_product(pos, b);
987 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(u, v, 0, 1));
988 }
989 }
991 void Mesh::texcoord_gen_box()
992 {
993 if(!nverts || !has_attrib(MESH_ATTR_NORMAL)) return;
995 if(!has_attrib(MESH_ATTR_TEXCOORD)) {
996 // allocate texture coordinate attribute array
997 set_attrib_data(MESH_ATTR_TEXCOORD, 2, nverts);
998 }
1000 for(unsigned int i=0; i<nverts; i++) {
1001 Vector3 pos = Vector3(get_attrib(MESH_ATTR_VERTEX, i)) * 0.5 + Vector3(0.5, 0.5, 0.5);
1002 Vector3 norm = get_attrib(MESH_ATTR_NORMAL, i);
1004 float abs_nx = fabs(norm.x);
1005 float abs_ny = fabs(norm.y);
1006 float abs_nz = fabs(norm.z);
1007 int dom = abs_nx > abs_ny && abs_nx > abs_nz ? 0 : (abs_ny > abs_nz ? 1 : 2);
1009 float uv[2], *uvptr = uv;
1010 for(int j=0; j<3; j++) {
1011 if(j == dom) continue; // skip dominant axis
1013 *uvptr++ = pos[j];
1015 set_attrib(MESH_ATTR_TEXCOORD, i, Vector4(uv[0], uv[1], 0, 1));
1019 // ------ private member functions ------
1021 void Mesh::calc_aabb()
1023 // the cast is to force calling the const version which doesn't invalidate
1024 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
1025 return;
1028 aabb.min = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
1029 aabb.max = -aabb.min;
1031 for(unsigned int i=0; i<nverts; i++) {
1032 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
1033 for(int j=0; j<3; j++) {
1034 if(v[j] < aabb.min[j]) {
1035 aabb.min[j] = v[j];
1037 if(v[j] > aabb.max[j]) {
1038 aabb.max[j] = v[j];
1042 aabb_valid = true;
1045 void Mesh::calc_bsph()
1047 // the cast is to force calling the const version which doesn't invalidate
1048 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
1049 return;
1052 Vector3 v;
1053 bsph.center = Vector3(0, 0, 0);
1055 // first find the center
1056 for(unsigned int i=0; i<nverts; i++) {
1057 v = get_attrib(MESH_ATTR_VERTEX, i);
1058 bsph.center += v;
1060 bsph.center /= (float)nverts;
1062 bsph.radius = 0.0f;
1063 for(unsigned int i=0; i<nverts; i++) {
1064 v = get_attrib(MESH_ATTR_VERTEX, i);
1065 float dist_sq = (v - bsph.center).length_sq();
1066 if(dist_sq > bsph.radius) {
1067 bsph.radius = dist_sq;
1070 bsph.radius = sqrt(bsph.radius);
1072 bsph_valid = true;
1075 void Mesh::update_buffers()
1077 for(int i=0; i<NUM_MESH_ATTR; i++) {
1078 if(has_attrib(i) && !vattr[i].vbo_valid) {
1079 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
1080 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
1081 vattr[i].vbo_valid = true;
1084 glBindBuffer(GL_ARRAY_BUFFER, 0);
1086 if(idata_valid && !ibo_valid) {
1087 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
1088 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
1089 ibo_valid = true;
1091 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
1094 void Mesh::update_wire_ibo()
1096 update_buffers();
1098 if(wire_ibo_valid) {
1099 return;
1102 if(!wire_ibo) {
1103 glGenBuffers(1, &wire_ibo);
1106 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
1107 unsigned int *dest = wire_idxarr;
1109 if(ibo_valid) {
1110 // we're dealing with an indexed mesh
1111 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
1113 for(unsigned int i=0; i<nfaces; i++) {
1114 *dest++ = idxarr[0];
1115 *dest++ = idxarr[1];
1116 *dest++ = idxarr[1];
1117 *dest++ = idxarr[2];
1118 *dest++ = idxarr[2];
1119 *dest++ = idxarr[0];
1120 idxarr += 3;
1122 } else {
1123 // not an indexed mesh ...
1124 for(unsigned int i=0; i<nfaces; i++) {
1125 int vidx = i * 3;
1126 *dest++ = vidx;
1127 *dest++ = vidx + 1;
1128 *dest++ = vidx + 1;
1129 *dest++ = vidx + 2;
1130 *dest++ = vidx + 2;
1131 *dest++ = vidx;
1135 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
1136 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
1137 delete [] wire_idxarr;
1138 wire_ibo_valid = true;
1139 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
1143 // ------ class Triangle ------
1144 Triangle::Triangle()
1146 normal_valid = false;
1147 id = -1;
1150 Triangle::Triangle(const Vector3 &v0, const Vector3 &v1, const Vector3 &v2)
1152 v[0] = v0;
1153 v[1] = v1;
1154 v[2] = v2;
1155 normal_valid = false;
1156 id = -1;
1159 Triangle::Triangle(int n, const Vector3 *varr, const unsigned int *idxarr)
1161 if(idxarr) {
1162 v[0] = varr[idxarr[n * 3]];
1163 v[1] = varr[idxarr[n * 3 + 1]];
1164 v[2] = varr[idxarr[n * 3 + 2]];
1165 } else {
1166 v[0] = varr[n * 3];
1167 v[1] = varr[n * 3 + 1];
1168 v[2] = varr[n * 3 + 2];
1170 normal_valid = false;
1171 id = n;
1174 void Triangle::calc_normal()
1176 normal = cross_product(v[1] - v[0], v[2] - v[0]).normalized();
1177 normal_valid = true;
1180 const Vector3 &Triangle::get_normal() const
1182 if(!normal_valid) {
1183 ((Triangle*)this)->calc_normal();
1185 return normal;
1188 void Triangle::transform(const Matrix4x4 &xform)
1190 v[0].transform(xform);
1191 v[1].transform(xform);
1192 v[2].transform(xform);
1193 normal_valid = false;
1196 void Triangle::draw() const
1198 Vector3 n[3];
1199 n[0] = get_normal();
1200 n[1] = get_normal();
1201 n[2] = get_normal();
1203 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
1204 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
1206 glEnableVertexAttribArray(vloc);
1207 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
1208 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
1210 glDrawArrays(GL_TRIANGLES, 0, 3);
1212 glDisableVertexAttribArray(vloc);
1213 glDisableVertexAttribArray(nloc);
1216 void Triangle::draw_wire() const
1218 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
1219 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
1221 glEnableVertexAttribArray(vloc);
1222 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
1224 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
1226 glDisableVertexAttribArray(vloc);
1229 Vector3 Triangle::calc_barycentric(const Vector3 &pos) const
1231 Vector3 norm = get_normal();
1233 float area_sq = fabs(dot_product(cross_product(v[1] - v[0], v[2] - v[0]), norm));
1234 if(area_sq < 1e-5) {
1235 return Vector3(0, 0, 0);
1238 float asq0 = fabs(dot_product(cross_product(v[1] - pos, v[2] - pos), norm));
1239 float asq1 = fabs(dot_product(cross_product(v[2] - pos, v[0] - pos), norm));
1240 float asq2 = fabs(dot_product(cross_product(v[0] - pos, v[1] - pos), norm));
1242 return Vector3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
1245 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
1247 Vector3 normal = get_normal();
1249 float ndotdir = dot_product(ray.dir, normal);
1250 if(fabs(ndotdir) < 1e-4) {
1251 return false;
1254 Vector3 vertdir = v[0] - ray.origin;
1255 float t = dot_product(normal, vertdir) / ndotdir;
1257 Vector3 pos = ray.origin + ray.dir * t;
1258 Vector3 bary = calc_barycentric(pos);
1260 if(bary.x + bary.y + bary.z > 1.00001) {
1261 return false;
1264 if(hit) {
1265 hit->dist = t;
1266 hit->pos = ray.origin + ray.dir * t;
1267 hit->normal = normal;
1268 hit->obj = this;
1270 return true;