rev |
line source |
nuclear@0
|
1 #include <stdio.h>
|
nuclear@0
|
2 #include <stdlib.h>
|
nuclear@0
|
3 #include <float.h>
|
nuclear@0
|
4 #include <assert.h>
|
nuclear@0
|
5 #include "opengl.h"
|
nuclear@0
|
6 #include "mesh.h"
|
nuclear@0
|
7 //#include "xform_node.h"
|
nuclear@0
|
8
|
nuclear@1
|
9 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5, 6 };
|
nuclear@1
|
10 /*
|
nuclear@0
|
11 (int)SDR_ATTR_VERTEX,
|
nuclear@0
|
12 (int)SDR_ATTR_NORMAL,
|
nuclear@0
|
13 (int)SDR_ATTR_TANGENT,
|
nuclear@0
|
14 (int)SDR_ATTR_TEXCOORD,
|
nuclear@0
|
15 (int)SDR_ATTR_COLOR,
|
nuclear@0
|
16 -1, -1};
|
nuclear@1
|
17 */
|
nuclear@0
|
18 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
|
nuclear@0
|
19 float Mesh::vertex_sel_dist = 0.01;
|
nuclear@0
|
20 float Mesh::vis_vecsize = 1.0;
|
nuclear@0
|
21
|
nuclear@0
|
22 Mesh::Mesh()
|
nuclear@0
|
23 {
|
nuclear@0
|
24 clear();
|
nuclear@0
|
25
|
nuclear@0
|
26 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
|
nuclear@0
|
27
|
nuclear@0
|
28 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
29 vattr[i].vbo = buffer_objects[i];
|
nuclear@0
|
30 }
|
nuclear@0
|
31 ibo = buffer_objects[NUM_MESH_ATTR];
|
nuclear@0
|
32 wire_ibo = 0;
|
nuclear@0
|
33 }
|
nuclear@0
|
34
|
nuclear@0
|
35 Mesh::~Mesh()
|
nuclear@0
|
36 {
|
nuclear@0
|
37 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
|
nuclear@0
|
38
|
nuclear@0
|
39 if(wire_ibo) {
|
nuclear@0
|
40 glDeleteBuffers(1, &wire_ibo);
|
nuclear@0
|
41 }
|
nuclear@0
|
42 }
|
nuclear@0
|
43
|
nuclear@0
|
44 Mesh::Mesh(const Mesh &rhs)
|
nuclear@0
|
45 {
|
nuclear@0
|
46 clear();
|
nuclear@0
|
47
|
nuclear@0
|
48 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
|
nuclear@0
|
49
|
nuclear@0
|
50 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
51 vattr[i].vbo = buffer_objects[i];
|
nuclear@0
|
52 }
|
nuclear@0
|
53 ibo = buffer_objects[NUM_MESH_ATTR];
|
nuclear@0
|
54 wire_ibo = 0;
|
nuclear@0
|
55
|
nuclear@0
|
56 clone(rhs);
|
nuclear@0
|
57 }
|
nuclear@0
|
58
|
nuclear@0
|
59 Mesh &Mesh::operator =(const Mesh &rhs)
|
nuclear@0
|
60 {
|
nuclear@0
|
61 if(&rhs != this) {
|
nuclear@0
|
62 clone(rhs);
|
nuclear@0
|
63 }
|
nuclear@0
|
64 return *this;
|
nuclear@0
|
65 }
|
nuclear@0
|
66
|
nuclear@0
|
67 bool Mesh::clone(const Mesh &m)
|
nuclear@0
|
68 {
|
nuclear@0
|
69 clear();
|
nuclear@0
|
70
|
nuclear@0
|
71 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
72 if(m.has_attrib(i)) {
|
nuclear@0
|
73 m.get_attrib_data(i); // force validation of the actual data on the source mesh
|
nuclear@0
|
74
|
nuclear@0
|
75 vattr[i].nelem = m.vattr[i].nelem;
|
nuclear@0
|
76 vattr[i].data = m.vattr[i].data; // copy the actual data
|
nuclear@0
|
77 vattr[i].data_valid = true;
|
nuclear@0
|
78 }
|
nuclear@0
|
79 }
|
nuclear@0
|
80
|
nuclear@0
|
81 if(m.is_indexed()) {
|
nuclear@0
|
82 m.get_index_data(); // again, force validation
|
nuclear@0
|
83
|
nuclear@0
|
84 // copy the index data
|
nuclear@0
|
85 idata = m.idata;
|
nuclear@0
|
86 idata_valid = true;
|
nuclear@0
|
87 }
|
nuclear@0
|
88
|
nuclear@0
|
89 name = m.name;
|
nuclear@0
|
90 nverts = m.nverts;
|
nuclear@0
|
91 nfaces = m.nfaces;
|
nuclear@0
|
92
|
nuclear@0
|
93 //bones = m.bones;
|
nuclear@0
|
94
|
nuclear@0
|
95 memcpy(cur_val, m.cur_val, sizeof cur_val);
|
nuclear@0
|
96
|
nuclear@0
|
97 aabb = m.aabb;
|
nuclear@0
|
98 aabb_valid = m.aabb_valid;
|
nuclear@0
|
99 bsph = m.bsph;
|
nuclear@0
|
100 bsph_valid = m.bsph_valid;
|
nuclear@0
|
101
|
nuclear@0
|
102 hitface = m.hitface;
|
nuclear@0
|
103 hitvert = m.hitvert;
|
nuclear@0
|
104
|
nuclear@0
|
105 intersect_mode = m.intersect_mode;
|
nuclear@0
|
106 vertex_sel_dist = m.vertex_sel_dist;
|
nuclear@0
|
107 vis_vecsize = m.vis_vecsize;
|
nuclear@0
|
108
|
nuclear@0
|
109 return true;
|
nuclear@0
|
110 }
|
nuclear@0
|
111
|
nuclear@0
|
112 void Mesh::set_name(const char *name)
|
nuclear@0
|
113 {
|
nuclear@0
|
114 this->name = name;
|
nuclear@0
|
115 }
|
nuclear@0
|
116
|
nuclear@0
|
117 const char *Mesh::get_name() const
|
nuclear@0
|
118 {
|
nuclear@0
|
119 return name.c_str();
|
nuclear@0
|
120 }
|
nuclear@0
|
121
|
nuclear@0
|
122 bool Mesh::has_attrib(int attr) const
|
nuclear@0
|
123 {
|
nuclear@0
|
124 if(attr < 0 || attr >= NUM_MESH_ATTR) {
|
nuclear@0
|
125 return false;
|
nuclear@0
|
126 }
|
nuclear@0
|
127
|
nuclear@0
|
128 // if neither of these is valid, then nobody has set this attribute
|
nuclear@0
|
129 return vattr[attr].vbo_valid || vattr[attr].data_valid;
|
nuclear@0
|
130 }
|
nuclear@0
|
131
|
nuclear@0
|
132 bool Mesh::is_indexed() const
|
nuclear@0
|
133 {
|
nuclear@0
|
134 return ibo_valid || idata_valid;
|
nuclear@0
|
135 }
|
nuclear@0
|
136
|
nuclear@0
|
137 void Mesh::clear()
|
nuclear@0
|
138 {
|
nuclear@0
|
139 //bones.clear();
|
nuclear@0
|
140
|
nuclear@0
|
141 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
142 vattr[i].nelem = 0;
|
nuclear@0
|
143 vattr[i].vbo_valid = false;
|
nuclear@0
|
144 vattr[i].data_valid = false;
|
nuclear@0
|
145 //vattr[i].sdr_loc = -1;
|
nuclear@0
|
146 vattr[i].data.clear();
|
nuclear@0
|
147 }
|
nuclear@0
|
148 ibo_valid = idata_valid = false;
|
nuclear@0
|
149 idata.clear();
|
nuclear@0
|
150
|
nuclear@0
|
151 wire_ibo_valid = false;
|
nuclear@0
|
152
|
nuclear@0
|
153 nverts = nfaces = 0;
|
nuclear@0
|
154
|
nuclear@0
|
155 bsph_valid = false;
|
nuclear@0
|
156 aabb_valid = false;
|
nuclear@0
|
157 }
|
nuclear@0
|
158
|
nuclear@0
|
159 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
|
nuclear@0
|
160 {
|
nuclear@0
|
161 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
|
nuclear@0
|
162 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
163 return 0;
|
nuclear@0
|
164 }
|
nuclear@0
|
165
|
nuclear@0
|
166 if(nverts && num != nverts) {
|
nuclear@0
|
167 fprintf(stderr, "%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
|
nuclear@0
|
168 return 0;
|
nuclear@0
|
169 }
|
nuclear@0
|
170 nverts = num;
|
nuclear@0
|
171
|
nuclear@0
|
172 vattr[attrib].data.clear();
|
nuclear@0
|
173 vattr[attrib].nelem = nelem;
|
nuclear@0
|
174 vattr[attrib].data.resize(num * nelem);
|
nuclear@0
|
175
|
nuclear@0
|
176 if(data) {
|
nuclear@0
|
177 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
|
nuclear@0
|
178 }
|
nuclear@0
|
179
|
nuclear@0
|
180 vattr[attrib].data_valid = true;
|
nuclear@0
|
181 vattr[attrib].vbo_valid = false;
|
nuclear@0
|
182 return &vattr[attrib].data[0];
|
nuclear@0
|
183 }
|
nuclear@0
|
184
|
nuclear@0
|
185 float *Mesh::get_attrib_data(int attrib)
|
nuclear@0
|
186 {
|
nuclear@0
|
187 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
|
nuclear@0
|
188 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
189 return 0;
|
nuclear@0
|
190 }
|
nuclear@0
|
191
|
nuclear@0
|
192 vattr[attrib].vbo_valid = false;
|
nuclear@0
|
193 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
|
nuclear@0
|
194 }
|
nuclear@0
|
195
|
nuclear@0
|
196 const float *Mesh::get_attrib_data(int attrib) const
|
nuclear@0
|
197 {
|
nuclear@0
|
198 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
|
nuclear@0
|
199 fprintf(stderr, "%s: invalid attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
200 return 0;
|
nuclear@0
|
201 }
|
nuclear@0
|
202
|
nuclear@0
|
203 if(!vattr[attrib].data_valid) {
|
nuclear@0
|
204 #if GL_ES_VERSION_2_0
|
nuclear@0
|
205 fprintf(stderr, "%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
|
nuclear@0
|
206 return 0;
|
nuclear@0
|
207 #else
|
nuclear@0
|
208 if(!vattr[attrib].vbo_valid) {
|
nuclear@0
|
209 fprintf(stderr, "%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
210 return 0;
|
nuclear@0
|
211 }
|
nuclear@0
|
212
|
nuclear@0
|
213 // local data copy is unavailable, grab the data from the vbo
|
nuclear@0
|
214 Mesh *m = (Mesh*)this;
|
nuclear@0
|
215 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
|
nuclear@0
|
216
|
nuclear@0
|
217 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
|
nuclear@0
|
218 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
|
nuclear@0
|
219 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
|
nuclear@0
|
220 glUnmapBuffer(GL_ARRAY_BUFFER);
|
nuclear@0
|
221
|
nuclear@0
|
222 vattr[attrib].data_valid = true;
|
nuclear@0
|
223 #endif
|
nuclear@0
|
224 }
|
nuclear@0
|
225
|
nuclear@0
|
226 return &vattr[attrib].data[0];
|
nuclear@0
|
227 }
|
nuclear@0
|
228
|
nuclear@0
|
229 void Mesh::set_attrib(int attrib, int idx, const Vector4 &v)
|
nuclear@0
|
230 {
|
nuclear@0
|
231 float *data = get_attrib_data(attrib);
|
nuclear@0
|
232 if(data) {
|
nuclear@0
|
233 data += idx * vattr[attrib].nelem;
|
nuclear@0
|
234 for(int i=0; i<vattr[attrib].nelem; i++) {
|
nuclear@0
|
235 data[i] = v[i];
|
nuclear@0
|
236 }
|
nuclear@0
|
237 }
|
nuclear@0
|
238 }
|
nuclear@0
|
239
|
nuclear@0
|
240 Vector4 Mesh::get_attrib(int attrib, int idx) const
|
nuclear@0
|
241 {
|
nuclear@0
|
242 Vector4 v(0.0, 0.0, 0.0, 1.0);
|
nuclear@0
|
243 const float *data = get_attrib_data(attrib);
|
nuclear@0
|
244 if(data) {
|
nuclear@0
|
245 data += idx * vattr[attrib].nelem;
|
nuclear@0
|
246 for(int i=0; i<vattr[attrib].nelem; i++) {
|
nuclear@0
|
247 v[i] = data[i];
|
nuclear@0
|
248 }
|
nuclear@0
|
249 }
|
nuclear@0
|
250 return v;
|
nuclear@0
|
251 }
|
nuclear@0
|
252
|
nuclear@0
|
253 int Mesh::get_attrib_count(int attrib) const
|
nuclear@0
|
254 {
|
nuclear@0
|
255 return has_attrib(attrib) ? nverts : 0;
|
nuclear@0
|
256 }
|
nuclear@0
|
257
|
nuclear@0
|
258
|
nuclear@0
|
259 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
|
nuclear@0
|
260 {
|
nuclear@0
|
261 int nidx = nfaces * 3;
|
nuclear@0
|
262 if(nidx && num != nidx) {
|
nuclear@0
|
263 fprintf(stderr, "%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
|
nuclear@0
|
264 return 0;
|
nuclear@0
|
265 }
|
nuclear@0
|
266 nfaces = num / 3;
|
nuclear@0
|
267
|
nuclear@0
|
268 idata.clear();
|
nuclear@0
|
269 idata.resize(num);
|
nuclear@0
|
270
|
nuclear@0
|
271 if(indices) {
|
nuclear@0
|
272 memcpy(&idata[0], indices, num * sizeof *indices);
|
nuclear@0
|
273 }
|
nuclear@0
|
274
|
nuclear@0
|
275 idata_valid = true;
|
nuclear@0
|
276 ibo_valid = false;
|
nuclear@0
|
277
|
nuclear@0
|
278 return &idata[0];
|
nuclear@0
|
279 }
|
nuclear@0
|
280
|
nuclear@0
|
281 unsigned int *Mesh::get_index_data()
|
nuclear@0
|
282 {
|
nuclear@0
|
283 ibo_valid = false;
|
nuclear@0
|
284 return (unsigned int*)((const Mesh*)this)->get_index_data();
|
nuclear@0
|
285 }
|
nuclear@0
|
286
|
nuclear@0
|
287 const unsigned int *Mesh::get_index_data() const
|
nuclear@0
|
288 {
|
nuclear@0
|
289 if(!idata_valid) {
|
nuclear@0
|
290 #if GL_ES_VERSION_2_0
|
nuclear@0
|
291 fprintf(stderr, "%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
|
nuclear@0
|
292 return 0;
|
nuclear@0
|
293 #else
|
nuclear@0
|
294 if(!ibo_valid) {
|
nuclear@0
|
295 fprintf(stderr, "%s: indices unavailable\n", __FUNCTION__);
|
nuclear@0
|
296 return 0;
|
nuclear@0
|
297 }
|
nuclear@0
|
298
|
nuclear@0
|
299 // local data copy is unavailable, gram the data from the ibo
|
nuclear@0
|
300 Mesh *m = (Mesh*)this;
|
nuclear@0
|
301 int nidx = nfaces * 3;
|
nuclear@0
|
302 m->idata.resize(nidx);
|
nuclear@0
|
303
|
nuclear@0
|
304 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
|
nuclear@0
|
305 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
|
nuclear@0
|
306 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
|
nuclear@0
|
307 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
|
nuclear@0
|
308
|
nuclear@0
|
309 idata_valid = true;
|
nuclear@0
|
310 #endif
|
nuclear@0
|
311 }
|
nuclear@0
|
312
|
nuclear@0
|
313 return &idata[0];
|
nuclear@0
|
314 }
|
nuclear@0
|
315
|
nuclear@0
|
316 int Mesh::get_index_count() const
|
nuclear@0
|
317 {
|
nuclear@0
|
318 return nfaces * 3;
|
nuclear@0
|
319 }
|
nuclear@0
|
320
|
nuclear@0
|
321 void Mesh::append(const Mesh &mesh)
|
nuclear@0
|
322 {
|
nuclear@0
|
323 unsigned int idxoffs = nverts;
|
nuclear@0
|
324
|
nuclear@0
|
325 nverts += mesh.nverts;
|
nuclear@0
|
326 nfaces += mesh.nfaces;
|
nuclear@0
|
327
|
nuclear@0
|
328 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
329 if(has_attrib(i) && mesh.has_attrib(i)) {
|
nuclear@0
|
330 // force validating the data arrays
|
nuclear@0
|
331 get_attrib_data(i);
|
nuclear@0
|
332 mesh.get_attrib_data(i);
|
nuclear@0
|
333
|
nuclear@0
|
334 // append the mesh data
|
nuclear@0
|
335 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
|
nuclear@0
|
336 }
|
nuclear@0
|
337 }
|
nuclear@0
|
338
|
nuclear@0
|
339 if(ibo_valid || idata_valid) {
|
nuclear@0
|
340 // make index arrays valid
|
nuclear@0
|
341 get_index_data();
|
nuclear@0
|
342 mesh.get_index_data();
|
nuclear@0
|
343
|
nuclear@0
|
344 size_t orig_sz = idata.size();
|
nuclear@0
|
345
|
nuclear@0
|
346 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
|
nuclear@0
|
347
|
nuclear@0
|
348 // fixup all the new indices
|
nuclear@0
|
349 for(size_t i=orig_sz; i<idata.size(); i++) {
|
nuclear@0
|
350 idata[i] += idxoffs;
|
nuclear@0
|
351 }
|
nuclear@0
|
352 }
|
nuclear@0
|
353
|
nuclear@0
|
354 // fuck everything
|
nuclear@0
|
355 wire_ibo_valid = false;
|
nuclear@0
|
356 aabb_valid = false;
|
nuclear@0
|
357 bsph_valid = false;
|
nuclear@0
|
358 }
|
nuclear@0
|
359
|
nuclear@0
|
360 // assemble a complete vertex by adding all the useful attributes
|
nuclear@0
|
361 void Mesh::vertex(float x, float y, float z)
|
nuclear@0
|
362 {
|
nuclear@0
|
363 cur_val[MESH_ATTR_VERTEX] = Vector4(x, y, z, 1.0f);
|
nuclear@0
|
364 vattr[MESH_ATTR_VERTEX].data_valid = true;
|
nuclear@0
|
365 vattr[MESH_ATTR_VERTEX].nelem = 3;
|
nuclear@0
|
366
|
nuclear@0
|
367 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
368 if(vattr[i].data_valid) {
|
nuclear@0
|
369 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
|
nuclear@0
|
370 vattr[i].data.push_back(cur_val[i][j]);
|
nuclear@0
|
371 }
|
nuclear@0
|
372 }
|
nuclear@0
|
373 vattr[i].vbo_valid = false;
|
nuclear@0
|
374 }
|
nuclear@0
|
375
|
nuclear@0
|
376 if(idata_valid) {
|
nuclear@0
|
377 idata.clear();
|
nuclear@0
|
378 }
|
nuclear@0
|
379 ibo_valid = idata_valid = false;
|
nuclear@0
|
380 }
|
nuclear@0
|
381
|
nuclear@0
|
382 void Mesh::normal(float nx, float ny, float nz)
|
nuclear@0
|
383 {
|
nuclear@0
|
384 cur_val[MESH_ATTR_NORMAL] = Vector4(nx, ny, nz, 1.0f);
|
nuclear@0
|
385 vattr[MESH_ATTR_NORMAL].data_valid = true;
|
nuclear@0
|
386 vattr[MESH_ATTR_NORMAL].nelem = 3;
|
nuclear@0
|
387 }
|
nuclear@0
|
388
|
nuclear@0
|
389 void Mesh::tangent(float tx, float ty, float tz)
|
nuclear@0
|
390 {
|
nuclear@0
|
391 cur_val[MESH_ATTR_TANGENT] = Vector4(tx, ty, tz, 1.0f);
|
nuclear@0
|
392 vattr[MESH_ATTR_TANGENT].data_valid = true;
|
nuclear@0
|
393 vattr[MESH_ATTR_TANGENT].nelem = 3;
|
nuclear@0
|
394 }
|
nuclear@0
|
395
|
nuclear@0
|
396 void Mesh::texcoord(float u, float v, float w)
|
nuclear@0
|
397 {
|
nuclear@0
|
398 cur_val[MESH_ATTR_TEXCOORD] = Vector4(u, v, w, 1.0f);
|
nuclear@0
|
399 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
|
nuclear@0
|
400 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
|
nuclear@0
|
401 }
|
nuclear@0
|
402
|
nuclear@0
|
403 void Mesh::boneweights(float w1, float w2, float w3, float w4)
|
nuclear@0
|
404 {
|
nuclear@0
|
405 cur_val[MESH_ATTR_BONEWEIGHTS] = Vector4(w1, w2, w3, w4);
|
nuclear@0
|
406 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
|
nuclear@0
|
407 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
|
nuclear@0
|
408 }
|
nuclear@0
|
409
|
nuclear@0
|
410 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
|
nuclear@0
|
411 {
|
nuclear@0
|
412 cur_val[MESH_ATTR_BONEIDX] = Vector4(idx1, idx2, idx3, idx4);
|
nuclear@0
|
413 vattr[MESH_ATTR_BONEIDX].data_valid = true;
|
nuclear@0
|
414 vattr[MESH_ATTR_BONEIDX].nelem = 4;
|
nuclear@0
|
415 }
|
nuclear@0
|
416
|
nuclear@0
|
417 int Mesh::get_poly_count() const
|
nuclear@0
|
418 {
|
nuclear@0
|
419 if(nfaces) {
|
nuclear@0
|
420 return nfaces;
|
nuclear@0
|
421 }
|
nuclear@0
|
422 if(nverts) {
|
nuclear@0
|
423 return nverts / 3;
|
nuclear@0
|
424 }
|
nuclear@0
|
425 return 0;
|
nuclear@0
|
426 }
|
nuclear@0
|
427
|
nuclear@0
|
428 /// static function
|
nuclear@0
|
429 void Mesh::set_attrib_location(int attr, int loc)
|
nuclear@0
|
430 {
|
nuclear@0
|
431 if(attr < 0 || attr >= NUM_MESH_ATTR) {
|
nuclear@0
|
432 return;
|
nuclear@0
|
433 }
|
nuclear@0
|
434 Mesh::global_sdr_loc[attr] = loc;
|
nuclear@0
|
435 }
|
nuclear@0
|
436
|
nuclear@0
|
437 /// static function
|
nuclear@0
|
438 int Mesh::get_attrib_location(int attr)
|
nuclear@0
|
439 {
|
nuclear@0
|
440 if(attr < 0 || attr >= NUM_MESH_ATTR) {
|
nuclear@0
|
441 return -1;
|
nuclear@0
|
442 }
|
nuclear@0
|
443 return Mesh::global_sdr_loc[attr];
|
nuclear@0
|
444 }
|
nuclear@0
|
445
|
nuclear@0
|
446 /// static function
|
nuclear@0
|
447 void Mesh::clear_attrib_locations()
|
nuclear@0
|
448 {
|
nuclear@0
|
449 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
450 Mesh::global_sdr_loc[i] = -1;
|
nuclear@0
|
451 }
|
nuclear@0
|
452 }
|
nuclear@0
|
453
|
nuclear@0
|
454 /// static function
|
nuclear@0
|
455 void Mesh::set_vis_vecsize(float sz)
|
nuclear@0
|
456 {
|
nuclear@0
|
457 Mesh::vis_vecsize = sz;
|
nuclear@0
|
458 }
|
nuclear@0
|
459
|
nuclear@0
|
460 float Mesh::get_vis_vecsize()
|
nuclear@0
|
461 {
|
nuclear@0
|
462 return Mesh::vis_vecsize;
|
nuclear@0
|
463 }
|
nuclear@0
|
464
|
nuclear@0
|
465 void Mesh::apply_xform(const Matrix4x4 &xform)
|
nuclear@0
|
466 {
|
nuclear@0
|
467 Matrix4x4 dir_xform = xform;
|
nuclear@0
|
468 dir_xform[0][3] = dir_xform[1][3] = dir_xform[2][3] = 0.0f;
|
nuclear@0
|
469 dir_xform[3][0] = dir_xform[3][1] = dir_xform[3][2] = 0.0f;
|
nuclear@0
|
470 dir_xform[3][3] = 1.0f;
|
nuclear@0
|
471
|
nuclear@0
|
472 apply_xform(xform, dir_xform);
|
nuclear@0
|
473 }
|
nuclear@0
|
474
|
nuclear@0
|
475 void Mesh::apply_xform(const Matrix4x4 &xform, const Matrix4x4 &dir_xform)
|
nuclear@0
|
476 {
|
nuclear@0
|
477 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
478 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
479 set_attrib(MESH_ATTR_VERTEX, i, v.transformed(xform));
|
nuclear@0
|
480
|
nuclear@0
|
481 if(has_attrib(MESH_ATTR_NORMAL)) {
|
nuclear@0
|
482 Vector3 n = get_attrib(MESH_ATTR_NORMAL, i);
|
nuclear@0
|
483 set_attrib(MESH_ATTR_NORMAL, i, n.transformed(dir_xform));
|
nuclear@0
|
484 }
|
nuclear@0
|
485 if(has_attrib(MESH_ATTR_TANGENT)) {
|
nuclear@0
|
486 Vector3 t = get_attrib(MESH_ATTR_TANGENT, i);
|
nuclear@0
|
487 set_attrib(MESH_ATTR_TANGENT, i, t.transformed(dir_xform));
|
nuclear@0
|
488 }
|
nuclear@0
|
489 }
|
nuclear@0
|
490 }
|
nuclear@0
|
491
|
nuclear@0
|
492 void Mesh::flip()
|
nuclear@0
|
493 {
|
nuclear@0
|
494 flip_faces();
|
nuclear@0
|
495 flip_normals();
|
nuclear@0
|
496 }
|
nuclear@0
|
497
|
nuclear@0
|
498 void Mesh::flip_faces()
|
nuclear@0
|
499 {
|
nuclear@0
|
500 if(is_indexed()) {
|
nuclear@0
|
501 unsigned int *indices = get_index_data();
|
nuclear@0
|
502 if(!indices) return;
|
nuclear@0
|
503
|
nuclear@0
|
504 int idxnum = get_index_count();
|
nuclear@0
|
505 for(int i=0; i<idxnum; i+=3) {
|
nuclear@0
|
506 unsigned int tmp = indices[i + 2];
|
nuclear@0
|
507 indices[i + 2] = indices[i + 1];
|
nuclear@0
|
508 indices[i + 1] = tmp;
|
nuclear@0
|
509 }
|
nuclear@0
|
510
|
nuclear@0
|
511 } else {
|
nuclear@0
|
512 Vector3 *verts = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
513 if(!verts) return;
|
nuclear@0
|
514
|
nuclear@0
|
515 int vnum = get_attrib_count(MESH_ATTR_VERTEX);
|
nuclear@0
|
516 for(int i=0; i<vnum; i+=3) {
|
nuclear@0
|
517 Vector3 tmp = verts[i + 2];
|
nuclear@0
|
518 verts[i + 2] = verts[i + 1];
|
nuclear@0
|
519 verts[i + 1] = tmp;
|
nuclear@0
|
520 }
|
nuclear@0
|
521 }
|
nuclear@0
|
522 }
|
nuclear@0
|
523
|
nuclear@0
|
524 void Mesh::flip_normals()
|
nuclear@0
|
525 {
|
nuclear@0
|
526 Vector3 *normals = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
|
nuclear@0
|
527 if(!normals) return;
|
nuclear@0
|
528
|
nuclear@0
|
529 int num = get_attrib_count(MESH_ATTR_NORMAL);
|
nuclear@0
|
530 for(int i=0; i<num; i++) {
|
nuclear@0
|
531 normals[i] = -normals[i];
|
nuclear@0
|
532 }
|
nuclear@0
|
533 }
|
nuclear@0
|
534
|
nuclear@0
|
535 /*
|
nuclear@0
|
536 int Mesh::add_bone(XFormNode *bone)
|
nuclear@0
|
537 {
|
nuclear@0
|
538 int idx = bones.size();
|
nuclear@0
|
539 bones.push_back(bone);
|
nuclear@0
|
540 return idx;
|
nuclear@0
|
541 }
|
nuclear@0
|
542
|
nuclear@0
|
543 const XFormNode *Mesh::get_bone(int idx) const
|
nuclear@0
|
544 {
|
nuclear@0
|
545 if(idx < 0 || idx >= (int)bones.size()) {
|
nuclear@0
|
546 return 0;
|
nuclear@0
|
547 }
|
nuclear@0
|
548 return bones[idx];
|
nuclear@0
|
549 }
|
nuclear@0
|
550
|
nuclear@0
|
551 int Mesh::get_bones_count() const
|
nuclear@0
|
552 {
|
nuclear@0
|
553 return (int)bones.size();
|
nuclear@0
|
554 }
|
nuclear@0
|
555 */
|
nuclear@0
|
556
|
nuclear@0
|
557 void Mesh::draw() const
|
nuclear@0
|
558 {
|
nuclear@1
|
559 int cur_sdr;
|
nuclear@1
|
560 glGetIntegerv(GL_CURRENT_PROGRAM, &cur_sdr);
|
nuclear@1
|
561
|
nuclear@0
|
562
|
nuclear@0
|
563 ((Mesh*)this)->update_buffers();
|
nuclear@0
|
564
|
nuclear@0
|
565 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
|
nuclear@0
|
566 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
|
nuclear@0
|
567 return;
|
nuclear@0
|
568 }
|
nuclear@0
|
569
|
nuclear@1
|
570 if(cur_sdr) {
|
nuclear@0
|
571 // rendering with shaders
|
nuclear@0
|
572 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
|
nuclear@0
|
573 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
|
nuclear@0
|
574 return;
|
nuclear@0
|
575 }
|
nuclear@0
|
576
|
nuclear@0
|
577 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
578 int loc = global_sdr_loc[i];
|
nuclear@0
|
579 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
580 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
581 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
|
nuclear@0
|
582 glEnableVertexAttribArray(loc);
|
nuclear@0
|
583 }
|
nuclear@0
|
584 }
|
nuclear@0
|
585 } else {
|
nuclear@0
|
586 #ifndef GL_ES_VERSION_2_0
|
nuclear@0
|
587 // rendering with fixed-function (not available in GLES2)
|
nuclear@0
|
588 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_VERTEX].vbo);
|
nuclear@0
|
589 glVertexPointer(vattr[MESH_ATTR_VERTEX].nelem, GL_FLOAT, 0, 0);
|
nuclear@0
|
590 glEnableClientState(GL_VERTEX_ARRAY);
|
nuclear@0
|
591
|
nuclear@0
|
592 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
|
nuclear@0
|
593 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_NORMAL].vbo);
|
nuclear@0
|
594 glNormalPointer(GL_FLOAT, 0, 0);
|
nuclear@0
|
595 glEnableClientState(GL_NORMAL_ARRAY);
|
nuclear@0
|
596 }
|
nuclear@0
|
597 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
|
nuclear@0
|
598 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_TEXCOORD].vbo);
|
nuclear@0
|
599 glTexCoordPointer(vattr[MESH_ATTR_TEXCOORD].nelem, GL_FLOAT, 0, 0);
|
nuclear@0
|
600 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
|
nuclear@0
|
601 }
|
nuclear@0
|
602 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
|
nuclear@0
|
603 glBindBuffer(GL_ARRAY_BUFFER, vattr[MESH_ATTR_COLOR].vbo);
|
nuclear@0
|
604 glColorPointer(vattr[MESH_ATTR_COLOR].nelem, GL_FLOAT, 0, 0);
|
nuclear@0
|
605 glEnableClientState(GL_COLOR_ARRAY);
|
nuclear@0
|
606 }
|
nuclear@0
|
607 #endif
|
nuclear@0
|
608 }
|
nuclear@0
|
609 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
610
|
nuclear@0
|
611 if(ibo_valid) {
|
nuclear@0
|
612 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
|
nuclear@0
|
613 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
|
nuclear@0
|
614 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
615 } else {
|
nuclear@0
|
616 glDrawArrays(GL_TRIANGLES, 0, nverts);
|
nuclear@0
|
617 }
|
nuclear@0
|
618
|
nuclear@1
|
619 if(cur_sdr) {
|
nuclear@0
|
620 // rendered with shaders
|
nuclear@0
|
621 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
622 int loc = global_sdr_loc[i];
|
nuclear@0
|
623 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
624 glDisableVertexAttribArray(loc);
|
nuclear@0
|
625 }
|
nuclear@0
|
626 }
|
nuclear@0
|
627 } else {
|
nuclear@0
|
628 #ifndef GL_ES_VERSION_2_0
|
nuclear@0
|
629 // rendered with fixed-function
|
nuclear@0
|
630 glDisableClientState(GL_VERTEX_ARRAY);
|
nuclear@0
|
631 if(vattr[MESH_ATTR_NORMAL].vbo_valid) {
|
nuclear@0
|
632 glDisableClientState(GL_NORMAL_ARRAY);
|
nuclear@0
|
633 }
|
nuclear@0
|
634 if(vattr[MESH_ATTR_TEXCOORD].vbo_valid) {
|
nuclear@0
|
635 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
|
nuclear@0
|
636 }
|
nuclear@0
|
637 if(vattr[MESH_ATTR_COLOR].vbo_valid) {
|
nuclear@0
|
638 glDisableClientState(GL_COLOR_ARRAY);
|
nuclear@0
|
639 }
|
nuclear@0
|
640 #endif
|
nuclear@0
|
641 }
|
nuclear@0
|
642 }
|
nuclear@0
|
643
|
nuclear@0
|
644 void Mesh::draw_wire() const
|
nuclear@0
|
645 {
|
nuclear@0
|
646 ((Mesh*)this)->update_wire_ibo();
|
nuclear@0
|
647
|
nuclear@0
|
648 if(!vattr[MESH_ATTR_VERTEX].vbo_valid || !wire_ibo_valid) {
|
nuclear@0
|
649 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
|
nuclear@0
|
650 return;
|
nuclear@0
|
651 }
|
nuclear@0
|
652 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
|
nuclear@0
|
653 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
|
nuclear@0
|
654 return;
|
nuclear@0
|
655 }
|
nuclear@0
|
656
|
nuclear@0
|
657 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
658 int loc = global_sdr_loc[i];
|
nuclear@0
|
659 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
660 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
661 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
|
nuclear@0
|
662 glEnableVertexAttribArray(loc);
|
nuclear@0
|
663 }
|
nuclear@0
|
664 }
|
nuclear@0
|
665 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
666
|
nuclear@0
|
667 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
|
nuclear@0
|
668 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
|
nuclear@0
|
669 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
670
|
nuclear@0
|
671 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
672 int loc = global_sdr_loc[i];
|
nuclear@0
|
673 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
674 glDisableVertexAttribArray(loc);
|
nuclear@0
|
675 }
|
nuclear@0
|
676 }
|
nuclear@0
|
677 }
|
nuclear@0
|
678
|
nuclear@0
|
679 void Mesh::draw_vertices() const
|
nuclear@0
|
680 {
|
nuclear@0
|
681 ((Mesh*)this)->update_buffers();
|
nuclear@0
|
682
|
nuclear@0
|
683 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
|
nuclear@0
|
684 fprintf(stderr, "%s: invalid vertex buffer\n", __FUNCTION__);
|
nuclear@0
|
685 return;
|
nuclear@0
|
686 }
|
nuclear@0
|
687 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
|
nuclear@0
|
688 fprintf(stderr, "%s: shader attribute location for vertices unset\n", __FUNCTION__);
|
nuclear@0
|
689 return;
|
nuclear@0
|
690 }
|
nuclear@0
|
691
|
nuclear@0
|
692 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
693 int loc = global_sdr_loc[i];
|
nuclear@0
|
694 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
695 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
696 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
|
nuclear@0
|
697 glEnableVertexAttribArray(loc);
|
nuclear@0
|
698 }
|
nuclear@0
|
699 }
|
nuclear@0
|
700 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
701
|
nuclear@0
|
702 glDrawArrays(GL_POINTS, 0, nverts);
|
nuclear@0
|
703
|
nuclear@0
|
704 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
705 int loc = global_sdr_loc[i];
|
nuclear@0
|
706 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
707 glDisableVertexAttribArray(loc);
|
nuclear@0
|
708 }
|
nuclear@0
|
709 }
|
nuclear@0
|
710 }
|
nuclear@0
|
711
|
nuclear@0
|
712 void Mesh::draw_normals() const
|
nuclear@0
|
713 {
|
nuclear@0
|
714 #ifdef USE_OLDGL
|
nuclear@0
|
715 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
716 Vector3 *norm = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
|
nuclear@0
|
717 if(!varr || !norm) {
|
nuclear@0
|
718 return;
|
nuclear@0
|
719 }
|
nuclear@0
|
720
|
nuclear@0
|
721 glBegin(GL_LINES);
|
nuclear@0
|
722 if(get_current_shader()) {
|
nuclear@0
|
723 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
|
nuclear@0
|
724 if(vert_loc < 0) {
|
nuclear@0
|
725 glEnd();
|
nuclear@0
|
726 return;
|
nuclear@0
|
727 }
|
nuclear@0
|
728
|
nuclear@0
|
729 for(size_t i=0; i<nverts; i++) {
|
nuclear@0
|
730 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
|
nuclear@0
|
731 Vector3 end = varr[i] + norm[i] * vis_vecsize;
|
nuclear@0
|
732 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
|
nuclear@0
|
733 }
|
nuclear@0
|
734 } else {
|
nuclear@0
|
735 for(size_t i=0; i<nverts; i++) {
|
nuclear@0
|
736 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
|
nuclear@0
|
737 Vector3 end = varr[i] + norm[i] * vis_vecsize;
|
nuclear@0
|
738 glVertex3f(end.x, end.y, end.z);
|
nuclear@0
|
739 }
|
nuclear@0
|
740 }
|
nuclear@0
|
741 glEnd();
|
nuclear@0
|
742 #endif // USE_OLDGL
|
nuclear@0
|
743 }
|
nuclear@0
|
744
|
nuclear@0
|
745 void Mesh::draw_tangents() const
|
nuclear@0
|
746 {
|
nuclear@0
|
747 #ifdef USE_OLDGL
|
nuclear@0
|
748 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
749 Vector3 *tang = (Vector3*)get_attrib_data(MESH_ATTR_TANGENT);
|
nuclear@0
|
750 if(!varr || !tang) {
|
nuclear@0
|
751 return;
|
nuclear@0
|
752 }
|
nuclear@0
|
753
|
nuclear@0
|
754 glBegin(GL_LINES);
|
nuclear@0
|
755 if(get_current_shader()) {
|
nuclear@0
|
756 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
|
nuclear@0
|
757 if(vert_loc < 0) {
|
nuclear@0
|
758 glEnd();
|
nuclear@0
|
759 return;
|
nuclear@0
|
760 }
|
nuclear@0
|
761
|
nuclear@0
|
762 for(size_t i=0; i<nverts; i++) {
|
nuclear@0
|
763 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
|
nuclear@0
|
764 Vector3 end = varr[i] + tang[i] * vis_vecsize;
|
nuclear@0
|
765 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
|
nuclear@0
|
766 }
|
nuclear@0
|
767 } else {
|
nuclear@0
|
768 for(size_t i=0; i<nverts; i++) {
|
nuclear@0
|
769 glVertex3f(varr[i].x, varr[i].y, varr[i].z);
|
nuclear@0
|
770 Vector3 end = varr[i] + tang[i] * vis_vecsize;
|
nuclear@0
|
771 glVertex3f(end.x, end.y, end.z);
|
nuclear@0
|
772 }
|
nuclear@0
|
773 }
|
nuclear@0
|
774 glEnd();
|
nuclear@0
|
775 #endif // USE_OLDGL
|
nuclear@0
|
776 }
|
nuclear@0
|
777
|
nuclear@0
|
778 void Mesh::get_aabbox(Vector3 *vmin, Vector3 *vmax) const
|
nuclear@0
|
779 {
|
nuclear@0
|
780 if(!aabb_valid) {
|
nuclear@0
|
781 ((Mesh*)this)->calc_aabb();
|
nuclear@0
|
782 }
|
nuclear@0
|
783 *vmin = aabb.min;
|
nuclear@0
|
784 *vmax = aabb.max;
|
nuclear@0
|
785 }
|
nuclear@0
|
786
|
nuclear@0
|
787 const AABox &Mesh::get_aabbox() const
|
nuclear@0
|
788 {
|
nuclear@0
|
789 if(!aabb_valid) {
|
nuclear@0
|
790 ((Mesh*)this)->calc_aabb();
|
nuclear@0
|
791 }
|
nuclear@0
|
792 return aabb;
|
nuclear@0
|
793 }
|
nuclear@0
|
794
|
nuclear@0
|
795 float Mesh::get_bsphere(Vector3 *center, float *rad) const
|
nuclear@0
|
796 {
|
nuclear@0
|
797 if(!bsph_valid) {
|
nuclear@0
|
798 ((Mesh*)this)->calc_bsph();
|
nuclear@0
|
799 }
|
nuclear@0
|
800 *center = bsph.center;
|
nuclear@0
|
801 *rad = bsph.radius;
|
nuclear@0
|
802 return bsph.radius;
|
nuclear@0
|
803 }
|
nuclear@0
|
804
|
nuclear@0
|
805 const Sphere &Mesh::get_bsphere() const
|
nuclear@0
|
806 {
|
nuclear@0
|
807 if(!bsph_valid) {
|
nuclear@0
|
808 ((Mesh*)this)->calc_bsph();
|
nuclear@0
|
809 }
|
nuclear@0
|
810 return bsph;
|
nuclear@0
|
811 }
|
nuclear@0
|
812
|
nuclear@0
|
813 /// static function
|
nuclear@0
|
814 void Mesh::set_intersect_mode(unsigned int mode)
|
nuclear@0
|
815 {
|
nuclear@0
|
816 Mesh::intersect_mode = mode;
|
nuclear@0
|
817 }
|
nuclear@0
|
818
|
nuclear@0
|
819 /// static function
|
nuclear@0
|
820 unsigned int Mesh::get_intersect_mode()
|
nuclear@0
|
821 {
|
nuclear@0
|
822 return Mesh::intersect_mode;
|
nuclear@0
|
823 }
|
nuclear@0
|
824
|
nuclear@0
|
825 /// static function
|
nuclear@0
|
826 void Mesh::set_vertex_select_distance(float dist)
|
nuclear@0
|
827 {
|
nuclear@0
|
828 Mesh::vertex_sel_dist = dist;
|
nuclear@0
|
829 }
|
nuclear@0
|
830
|
nuclear@0
|
831 /// static function
|
nuclear@0
|
832 float Mesh::get_vertex_select_distance()
|
nuclear@0
|
833 {
|
nuclear@0
|
834 return Mesh::vertex_sel_dist;
|
nuclear@0
|
835 }
|
nuclear@0
|
836
|
nuclear@0
|
837 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
|
nuclear@0
|
838 {
|
nuclear@0
|
839 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
|
nuclear@0
|
840
|
nuclear@0
|
841 const Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
842 const Vector3 *narr = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
|
nuclear@0
|
843 if(!varr) {
|
nuclear@0
|
844 return false;
|
nuclear@0
|
845 }
|
nuclear@0
|
846 const unsigned int *idxarr = get_index_data();
|
nuclear@0
|
847
|
nuclear@0
|
848 // first test with the bounding box
|
nuclear@0
|
849 AABox box;
|
nuclear@0
|
850 get_aabbox(&box.min, &box.max);
|
nuclear@0
|
851 if(!box.intersect(ray)) {
|
nuclear@0
|
852 return false;
|
nuclear@0
|
853 }
|
nuclear@0
|
854
|
nuclear@0
|
855 HitPoint nearest_hit;
|
nuclear@0
|
856 nearest_hit.dist = FLT_MAX;
|
nuclear@0
|
857 nearest_hit.obj = 0;
|
nuclear@0
|
858
|
nuclear@0
|
859 if(Mesh::intersect_mode & ISECT_VERTICES) {
|
nuclear@0
|
860 // we asked for "intersections" with the vertices of the mesh
|
nuclear@0
|
861 long nearest_vidx = -1;
|
nuclear@0
|
862 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
|
nuclear@0
|
863
|
nuclear@0
|
864 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
865
|
nuclear@0
|
866 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(narr[i], ray.dir) > 0) {
|
nuclear@0
|
867 continue;
|
nuclear@0
|
868 }
|
nuclear@0
|
869
|
nuclear@0
|
870 // project the vertex onto the ray line
|
nuclear@0
|
871 float t = dot_product(varr[i] - ray.origin, ray.dir);
|
nuclear@0
|
872 Vector3 vproj = ray.origin + ray.dir * t;
|
nuclear@0
|
873
|
nuclear@0
|
874 float dist_sq = (vproj - varr[i]).length_sq();
|
nuclear@0
|
875 if(dist_sq < thres_sq) {
|
nuclear@0
|
876 if(!hit) {
|
nuclear@0
|
877 return true;
|
nuclear@0
|
878 }
|
nuclear@0
|
879 if(t < nearest_hit.dist) {
|
nuclear@0
|
880 nearest_hit.dist = t;
|
nuclear@0
|
881 nearest_vidx = i;
|
nuclear@0
|
882 }
|
nuclear@0
|
883 }
|
nuclear@0
|
884 }
|
nuclear@0
|
885
|
nuclear@0
|
886 if(nearest_vidx != -1) {
|
nuclear@0
|
887 hitvert = varr[nearest_vidx];
|
nuclear@0
|
888 nearest_hit.obj = &hitvert;
|
nuclear@0
|
889 }
|
nuclear@0
|
890
|
nuclear@0
|
891 } else {
|
nuclear@0
|
892 // regular intersection test with polygons
|
nuclear@0
|
893
|
nuclear@0
|
894 for(unsigned int i=0; i<nfaces; i++) {
|
nuclear@0
|
895 Triangle face(i, varr, idxarr);
|
nuclear@0
|
896
|
nuclear@0
|
897 // ignore back-facing polygons if the mode flags include ISECT_FRONT
|
nuclear@0
|
898 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(face.get_normal(), ray.dir) > 0) {
|
nuclear@0
|
899 continue;
|
nuclear@0
|
900 }
|
nuclear@0
|
901
|
nuclear@0
|
902 HitPoint fhit;
|
nuclear@0
|
903 if(face.intersect(ray, hit ? &fhit : 0)) {
|
nuclear@0
|
904 if(!hit) {
|
nuclear@0
|
905 return true;
|
nuclear@0
|
906 }
|
nuclear@0
|
907 if(fhit.dist < nearest_hit.dist) {
|
nuclear@0
|
908 nearest_hit = fhit;
|
nuclear@0
|
909 hitface = face;
|
nuclear@0
|
910 }
|
nuclear@0
|
911 }
|
nuclear@0
|
912 }
|
nuclear@0
|
913 }
|
nuclear@0
|
914
|
nuclear@0
|
915 if(nearest_hit.obj) {
|
nuclear@0
|
916 if(hit) {
|
nuclear@0
|
917 *hit = nearest_hit;
|
nuclear@0
|
918
|
nuclear@0
|
919 // if we are interested in the mesh and not the faces set obj to this
|
nuclear@0
|
920 if(Mesh::intersect_mode & ISECT_FACE) {
|
nuclear@0
|
921 hit->obj = &hitface;
|
nuclear@0
|
922 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
|
nuclear@0
|
923 hit->obj = &hitvert;
|
nuclear@0
|
924 } else {
|
nuclear@0
|
925 hit->obj = this;
|
nuclear@0
|
926 }
|
nuclear@0
|
927 }
|
nuclear@0
|
928 return true;
|
nuclear@0
|
929 }
|
nuclear@0
|
930 return false;
|
nuclear@0
|
931 }
|
nuclear@0
|
932
|
nuclear@0
|
933
|
nuclear@0
|
934 // ------ private member functions ------
|
nuclear@0
|
935
|
nuclear@0
|
936 void Mesh::calc_aabb()
|
nuclear@0
|
937 {
|
nuclear@0
|
938 // the cast is to force calling the const version which doesn't invalidate
|
nuclear@0
|
939 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
|
nuclear@0
|
940 return;
|
nuclear@0
|
941 }
|
nuclear@0
|
942
|
nuclear@0
|
943 aabb.min = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
|
nuclear@0
|
944 aabb.max = -aabb.min;
|
nuclear@0
|
945
|
nuclear@0
|
946 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
947 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
948 for(int j=0; j<3; j++) {
|
nuclear@0
|
949 if(v[j] < aabb.min[j]) {
|
nuclear@0
|
950 aabb.min[j] = v[j];
|
nuclear@0
|
951 }
|
nuclear@0
|
952 if(v[j] > aabb.max[j]) {
|
nuclear@0
|
953 aabb.max[j] = v[j];
|
nuclear@0
|
954 }
|
nuclear@0
|
955 }
|
nuclear@0
|
956 }
|
nuclear@0
|
957 aabb_valid = true;
|
nuclear@0
|
958 }
|
nuclear@0
|
959
|
nuclear@0
|
960 void Mesh::calc_bsph()
|
nuclear@0
|
961 {
|
nuclear@0
|
962 // the cast is to force calling the const version which doesn't invalidate
|
nuclear@0
|
963 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
|
nuclear@0
|
964 return;
|
nuclear@0
|
965 }
|
nuclear@0
|
966
|
nuclear@0
|
967 Vector3 v;
|
nuclear@0
|
968 bsph.center = Vector3(0, 0, 0);
|
nuclear@0
|
969
|
nuclear@0
|
970 // first find the center
|
nuclear@0
|
971 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
972 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
973 bsph.center += v;
|
nuclear@0
|
974 }
|
nuclear@0
|
975 bsph.center /= (float)nverts;
|
nuclear@0
|
976
|
nuclear@0
|
977 bsph.radius = 0.0f;
|
nuclear@0
|
978 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
979 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
980 float dist_sq = (v - bsph.center).length_sq();
|
nuclear@0
|
981 if(dist_sq > bsph.radius) {
|
nuclear@0
|
982 bsph.radius = dist_sq;
|
nuclear@0
|
983 }
|
nuclear@0
|
984 }
|
nuclear@0
|
985 bsph.radius = sqrt(bsph.radius);
|
nuclear@0
|
986
|
nuclear@0
|
987 bsph_valid = true;
|
nuclear@0
|
988 }
|
nuclear@0
|
989
|
nuclear@0
|
990 void Mesh::update_buffers()
|
nuclear@0
|
991 {
|
nuclear@0
|
992 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
993 if(has_attrib(i) && !vattr[i].vbo_valid) {
|
nuclear@0
|
994 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
995 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
|
nuclear@0
|
996 vattr[i].vbo_valid = true;
|
nuclear@0
|
997 }
|
nuclear@0
|
998 }
|
nuclear@0
|
999 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
1000
|
nuclear@0
|
1001 if(idata_valid && !ibo_valid) {
|
nuclear@0
|
1002 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
|
nuclear@0
|
1003 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
|
nuclear@0
|
1004 ibo_valid = true;
|
nuclear@0
|
1005 }
|
nuclear@0
|
1006 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
1007 }
|
nuclear@0
|
1008
|
nuclear@0
|
1009 void Mesh::update_wire_ibo()
|
nuclear@0
|
1010 {
|
nuclear@0
|
1011 update_buffers();
|
nuclear@0
|
1012
|
nuclear@0
|
1013 if(wire_ibo_valid) {
|
nuclear@0
|
1014 return;
|
nuclear@0
|
1015 }
|
nuclear@0
|
1016
|
nuclear@0
|
1017 if(!wire_ibo) {
|
nuclear@0
|
1018 glGenBuffers(1, &wire_ibo);
|
nuclear@0
|
1019 }
|
nuclear@0
|
1020
|
nuclear@0
|
1021 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
|
nuclear@0
|
1022 unsigned int *dest = wire_idxarr;
|
nuclear@0
|
1023
|
nuclear@0
|
1024 if(ibo_valid) {
|
nuclear@0
|
1025 // we're dealing with an indexed mesh
|
nuclear@0
|
1026 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
|
nuclear@0
|
1027
|
nuclear@0
|
1028 for(unsigned int i=0; i<nfaces; i++) {
|
nuclear@0
|
1029 *dest++ = idxarr[0];
|
nuclear@0
|
1030 *dest++ = idxarr[1];
|
nuclear@0
|
1031 *dest++ = idxarr[1];
|
nuclear@0
|
1032 *dest++ = idxarr[2];
|
nuclear@0
|
1033 *dest++ = idxarr[2];
|
nuclear@0
|
1034 *dest++ = idxarr[0];
|
nuclear@0
|
1035 idxarr += 3;
|
nuclear@0
|
1036 }
|
nuclear@0
|
1037 } else {
|
nuclear@0
|
1038 // not an indexed mesh ...
|
nuclear@0
|
1039 for(unsigned int i=0; i<nfaces; i++) {
|
nuclear@0
|
1040 int vidx = i * 3;
|
nuclear@0
|
1041 *dest++ = vidx;
|
nuclear@0
|
1042 *dest++ = vidx + 1;
|
nuclear@0
|
1043 *dest++ = vidx + 1;
|
nuclear@0
|
1044 *dest++ = vidx + 2;
|
nuclear@0
|
1045 *dest++ = vidx + 2;
|
nuclear@0
|
1046 *dest++ = vidx;
|
nuclear@0
|
1047 }
|
nuclear@0
|
1048 }
|
nuclear@0
|
1049
|
nuclear@0
|
1050 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
|
nuclear@0
|
1051 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
|
nuclear@0
|
1052 delete [] wire_idxarr;
|
nuclear@0
|
1053 wire_ibo_valid = true;
|
nuclear@0
|
1054 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
1055 }
|
nuclear@0
|
1056
|
nuclear@0
|
1057
|
nuclear@0
|
1058 // ------ class Triangle ------
|
nuclear@0
|
1059 Triangle::Triangle()
|
nuclear@0
|
1060 {
|
nuclear@0
|
1061 normal_valid = false;
|
nuclear@0
|
1062 id = -1;
|
nuclear@0
|
1063 }
|
nuclear@0
|
1064
|
nuclear@0
|
1065 Triangle::Triangle(const Vector3 &v0, const Vector3 &v1, const Vector3 &v2)
|
nuclear@0
|
1066 {
|
nuclear@0
|
1067 v[0] = v0;
|
nuclear@0
|
1068 v[1] = v1;
|
nuclear@0
|
1069 v[2] = v2;
|
nuclear@0
|
1070 normal_valid = false;
|
nuclear@0
|
1071 id = -1;
|
nuclear@0
|
1072 }
|
nuclear@0
|
1073
|
nuclear@0
|
1074 Triangle::Triangle(int n, const Vector3 *varr, const unsigned int *idxarr)
|
nuclear@0
|
1075 {
|
nuclear@0
|
1076 if(idxarr) {
|
nuclear@0
|
1077 v[0] = varr[idxarr[n * 3]];
|
nuclear@0
|
1078 v[1] = varr[idxarr[n * 3 + 1]];
|
nuclear@0
|
1079 v[2] = varr[idxarr[n * 3 + 2]];
|
nuclear@0
|
1080 } else {
|
nuclear@0
|
1081 v[0] = varr[n * 3];
|
nuclear@0
|
1082 v[1] = varr[n * 3 + 1];
|
nuclear@0
|
1083 v[2] = varr[n * 3 + 2];
|
nuclear@0
|
1084 }
|
nuclear@0
|
1085 normal_valid = false;
|
nuclear@0
|
1086 id = n;
|
nuclear@0
|
1087 }
|
nuclear@0
|
1088
|
nuclear@0
|
1089 void Triangle::calc_normal()
|
nuclear@0
|
1090 {
|
nuclear@0
|
1091 normal = cross_product(v[1] - v[0], v[2] - v[0]).normalized();
|
nuclear@0
|
1092 normal_valid = true;
|
nuclear@0
|
1093 }
|
nuclear@0
|
1094
|
nuclear@0
|
1095 const Vector3 &Triangle::get_normal() const
|
nuclear@0
|
1096 {
|
nuclear@0
|
1097 if(!normal_valid) {
|
nuclear@0
|
1098 ((Triangle*)this)->calc_normal();
|
nuclear@0
|
1099 }
|
nuclear@0
|
1100 return normal;
|
nuclear@0
|
1101 }
|
nuclear@0
|
1102
|
nuclear@0
|
1103 void Triangle::transform(const Matrix4x4 &xform)
|
nuclear@0
|
1104 {
|
nuclear@0
|
1105 v[0].transform(xform);
|
nuclear@0
|
1106 v[1].transform(xform);
|
nuclear@0
|
1107 v[2].transform(xform);
|
nuclear@0
|
1108 normal_valid = false;
|
nuclear@0
|
1109 }
|
nuclear@0
|
1110
|
nuclear@0
|
1111 void Triangle::draw() const
|
nuclear@0
|
1112 {
|
nuclear@0
|
1113 Vector3 n[3];
|
nuclear@0
|
1114 n[0] = get_normal();
|
nuclear@0
|
1115 n[1] = get_normal();
|
nuclear@0
|
1116 n[2] = get_normal();
|
nuclear@0
|
1117
|
nuclear@0
|
1118 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
|
nuclear@0
|
1119 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
|
nuclear@0
|
1120
|
nuclear@0
|
1121 glEnableVertexAttribArray(vloc);
|
nuclear@0
|
1122 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
|
nuclear@0
|
1123 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
|
nuclear@0
|
1124
|
nuclear@0
|
1125 glDrawArrays(GL_TRIANGLES, 0, 3);
|
nuclear@0
|
1126
|
nuclear@0
|
1127 glDisableVertexAttribArray(vloc);
|
nuclear@0
|
1128 glDisableVertexAttribArray(nloc);
|
nuclear@0
|
1129 }
|
nuclear@0
|
1130
|
nuclear@0
|
1131 void Triangle::draw_wire() const
|
nuclear@0
|
1132 {
|
nuclear@0
|
1133 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
|
nuclear@0
|
1134 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
|
nuclear@0
|
1135
|
nuclear@0
|
1136 glEnableVertexAttribArray(vloc);
|
nuclear@0
|
1137 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
|
nuclear@0
|
1138
|
nuclear@0
|
1139 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
|
nuclear@0
|
1140
|
nuclear@0
|
1141 glDisableVertexAttribArray(vloc);
|
nuclear@0
|
1142 }
|
nuclear@0
|
1143
|
nuclear@0
|
1144 Vector3 Triangle::calc_barycentric(const Vector3 &pos) const
|
nuclear@0
|
1145 {
|
nuclear@0
|
1146 Vector3 norm = get_normal();
|
nuclear@0
|
1147
|
nuclear@0
|
1148 float area_sq = fabs(dot_product(cross_product(v[1] - v[0], v[2] - v[0]), norm));
|
nuclear@0
|
1149 if(area_sq < 1e-5) {
|
nuclear@0
|
1150 return Vector3(0, 0, 0);
|
nuclear@0
|
1151 }
|
nuclear@0
|
1152
|
nuclear@0
|
1153 float asq0 = fabs(dot_product(cross_product(v[1] - pos, v[2] - pos), norm));
|
nuclear@0
|
1154 float asq1 = fabs(dot_product(cross_product(v[2] - pos, v[0] - pos), norm));
|
nuclear@0
|
1155 float asq2 = fabs(dot_product(cross_product(v[0] - pos, v[1] - pos), norm));
|
nuclear@0
|
1156
|
nuclear@0
|
1157 return Vector3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
|
nuclear@0
|
1158 }
|
nuclear@0
|
1159
|
nuclear@0
|
1160 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
|
nuclear@0
|
1161 {
|
nuclear@0
|
1162 Vector3 normal = get_normal();
|
nuclear@0
|
1163
|
nuclear@0
|
1164 float ndotdir = dot_product(ray.dir, normal);
|
nuclear@0
|
1165 if(fabs(ndotdir) < 1e-4) {
|
nuclear@0
|
1166 return false;
|
nuclear@0
|
1167 }
|
nuclear@0
|
1168
|
nuclear@0
|
1169 Vector3 vertdir = v[0] - ray.origin;
|
nuclear@0
|
1170 float t = dot_product(normal, vertdir) / ndotdir;
|
nuclear@0
|
1171
|
nuclear@0
|
1172 Vector3 pos = ray.origin + ray.dir * t;
|
nuclear@0
|
1173 Vector3 bary = calc_barycentric(pos);
|
nuclear@0
|
1174
|
nuclear@0
|
1175 if(bary.x + bary.y + bary.z > 1.00001) {
|
nuclear@0
|
1176 return false;
|
nuclear@0
|
1177 }
|
nuclear@0
|
1178
|
nuclear@0
|
1179 if(hit) {
|
nuclear@0
|
1180 hit->dist = t;
|
nuclear@0
|
1181 hit->pos = ray.origin + ray.dir * t;
|
nuclear@0
|
1182 hit->normal = normal;
|
nuclear@0
|
1183 hit->obj = this;
|
nuclear@0
|
1184 }
|
nuclear@0
|
1185 return true;
|
nuclear@0
|
1186 }
|