rev |
line source |
nuclear@1
|
1 #include <stdlib.h>
|
nuclear@1
|
2 #include "min3d.h"
|
nuclear@1
|
3 #include "m3dimpl.h"
|
nuclear@1
|
4
|
nuclear@1
|
5 #ifndef M_PI
|
nuclear@1
|
6 #define M_PI 3.141592653
|
nuclear@1
|
7 #endif
|
nuclear@1
|
8
|
nuclear@3
|
9 struct min3d_context *m3dctx;
|
nuclear@3
|
10
|
nuclear@1
|
11 int m3d_init(void)
|
nuclear@1
|
12 {
|
nuclear@1
|
13 if(!(m3dctx = malloc(sizeof *m3dctx))) {
|
nuclear@1
|
14 return -1;
|
nuclear@1
|
15 }
|
nuclear@1
|
16 memset(m3dctx, 0, sizeof *m3dctx);
|
nuclear@1
|
17
|
nuclear@1
|
18 m3d_matrix_mode(M3D_PROJECTION);
|
nuclear@1
|
19 m3d_load_identity();
|
nuclear@1
|
20 m3d_matrix_mode(M3D_MODELVIEW);
|
nuclear@1
|
21 m3d_load_identity();
|
nuclear@1
|
22 return 0;
|
nuclear@1
|
23 }
|
nuclear@1
|
24
|
nuclear@1
|
25 void m3d_shutdown(void)
|
nuclear@1
|
26 {
|
nuclear@1
|
27 free(m3dctx);
|
nuclear@1
|
28 }
|
nuclear@1
|
29
|
nuclear@1
|
30 void m3d_set_buffers(struct m3d_image *cbuf, uint16_t *zbuf)
|
nuclear@1
|
31 {
|
nuclear@1
|
32 m3dctx->cbuf = cbuf;
|
nuclear@1
|
33 m3dctx->zbuf = zbuf;
|
nuclear@1
|
34 }
|
nuclear@1
|
35
|
nuclear@1
|
36 void m3d_clear(unsigned int bmask)
|
nuclear@1
|
37 {
|
nuclear@1
|
38 int num_pixels = m3dctx->cbuf->xsz * m3dctx->cbuf->ysz;
|
nuclear@1
|
39 if(bmask & M3D_COLOR_BUFFER_BIT) {
|
nuclear@1
|
40 memset(m3dctx->cbuf->pixels, 0, num_pixels * 3);
|
nuclear@1
|
41 }
|
nuclear@1
|
42 if(bmask & M3D_DEPTH_BUFFER_BIT) {
|
nuclear@1
|
43 memset(m3dctx->zbuf, 0xff, num_pixels * sizeof *m3dctx->zbuf);
|
nuclear@1
|
44 }
|
nuclear@1
|
45 }
|
nuclear@1
|
46
|
nuclear@1
|
47
|
nuclear@1
|
48 void m3d_enable(int bit)
|
nuclear@1
|
49 {
|
nuclear@1
|
50 m3dctx->state |= (1 << bit);
|
nuclear@1
|
51 }
|
nuclear@1
|
52
|
nuclear@1
|
53 void m3d_disable(int bit)
|
nuclear@1
|
54 {
|
nuclear@1
|
55 m3dctx->state &= ~(1 << bit);
|
nuclear@1
|
56 }
|
nuclear@1
|
57
|
nuclear@1
|
58
|
nuclear@1
|
59 /* matrix stack */
|
nuclear@1
|
60 void m3d_matrix_mode(int mode)
|
nuclear@1
|
61 {
|
nuclear@1
|
62 m3dctx->mmode = mode;
|
nuclear@1
|
63 }
|
nuclear@1
|
64
|
nuclear@1
|
65 void m3d_load_identity(void)
|
nuclear@1
|
66 {
|
nuclear@1
|
67 static const float mid[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
|
nuclear@1
|
68 m3d_load_matrix(mid);
|
nuclear@1
|
69 }
|
nuclear@1
|
70
|
nuclear@1
|
71 void m3d_load_matrix(const float *m)
|
nuclear@1
|
72 {
|
nuclear@1
|
73 int top = m3dctx->mstack[m3dctx->mmode].top;
|
nuclear@1
|
74 memcpy(m3dctx->mstack[m3dctx->mmode].m[top], m, 16 * sizeof *m);
|
nuclear@1
|
75 }
|
nuclear@1
|
76
|
nuclear@1
|
77 #define M(i,j) (((i) << 2) + (j))
|
nuclear@1
|
78 void m3d_mult_matrix(const float *m2)
|
nuclear@1
|
79 {
|
nuclear@1
|
80 int i, j, top = m3dctx->mstack[m3dctx->mmode].top;
|
nuclear@1
|
81 float m1[16];
|
nuclear@1
|
82 float *dest = m3dctx->mstack[m3dctx->mmode].m[top];
|
nuclear@1
|
83
|
nuclear@1
|
84 memcpy(m1, dest, sizeof m1);
|
nuclear@1
|
85
|
nuclear@1
|
86 for(i=0; i<4; i++) {
|
nuclear@1
|
87 for(j=0; j<4; j++) {
|
nuclear@1
|
88 dest[M(i,j)] = m1[M(0,j)] * m2[M(i,0)] +
|
nuclear@1
|
89 m1[M(1,j)] * m2[M(i,1)] +
|
nuclear@1
|
90 m1[M(2,j)] * m2[M(i,2)] +
|
nuclear@1
|
91 m1[M(3,j)] * m2[M(i,3)];
|
nuclear@1
|
92 }
|
nuclear@1
|
93 }
|
nuclear@1
|
94 }
|
nuclear@1
|
95
|
nuclear@1
|
96 void m3d_translate(float x, float y, float z)
|
nuclear@1
|
97 {
|
nuclear@1
|
98 float m[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
|
nuclear@1
|
99 m[12] = x;
|
nuclear@1
|
100 m[13] = y;
|
nuclear@1
|
101 m[14] = z;
|
nuclear@1
|
102 m3d_mult_matrix(m);
|
nuclear@1
|
103 }
|
nuclear@1
|
104
|
nuclear@1
|
105 void m3d_rotate(float deg, float x, float y, float z)
|
nuclear@1
|
106 {
|
nuclear@1
|
107 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
|
nuclear@1
|
108
|
nuclear@1
|
109 float angle = M_PI * deg / 180.0f;
|
nuclear@1
|
110 float sina = sin(angle);
|
nuclear@1
|
111 float cosa = cos(angle);
|
nuclear@1
|
112 float one_minus_cosa = 1.0f - cosa;
|
nuclear@1
|
113 float nxsq = x * x;
|
nuclear@1
|
114 float nysq = y * y;
|
nuclear@1
|
115 float nzsq = z * z;
|
nuclear@1
|
116
|
nuclear@1
|
117 xform[0] = nxsq + (1.0f - nxsq) * cosa;
|
nuclear@1
|
118 xform[4] = x * y * one_minus_cosa - z * sina;
|
nuclear@1
|
119 xform[8] = x * z * one_minus_cosa + y * sina;
|
nuclear@1
|
120 xform[1] = x * y * one_minus_cosa + z * sina;
|
nuclear@1
|
121 xform[5] = nysq + (1.0 - nysq) * cosa;
|
nuclear@1
|
122 xform[9] = y * z * one_minus_cosa - x * sina;
|
nuclear@1
|
123 xform[2] = x * z * one_minus_cosa - y * sina;
|
nuclear@1
|
124 xform[6] = y * z * one_minus_cosa + x * sina;
|
nuclear@1
|
125 xform[10] = nzsq + (1.0 - nzsq) * cosa;
|
nuclear@1
|
126
|
nuclear@1
|
127 m3d_mult_matrix(xform);
|
nuclear@1
|
128 }
|
nuclear@1
|
129
|
nuclear@1
|
130 void m3d_scale(float x, float y, float z)
|
nuclear@1
|
131 {
|
nuclear@1
|
132 static float m[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
|
nuclear@1
|
133 m[0] = x;
|
nuclear@1
|
134 m[5] = y;
|
nuclear@1
|
135 m[10] = z;
|
nuclear@1
|
136 m3d_mult_matrix(m);
|
nuclear@1
|
137 }
|
nuclear@1
|
138
|
nuclear@1
|
139 void m3d_frustum(float left, float right, float bottom, float top, float nr, float fr)
|
nuclear@1
|
140 {
|
nuclear@1
|
141 float xform[] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1};
|
nuclear@1
|
142
|
nuclear@1
|
143 float dx = right - left;
|
nuclear@1
|
144 float dy = top - bottom;
|
nuclear@1
|
145 float dz = fr - nr;
|
nuclear@1
|
146
|
nuclear@1
|
147 float a = (right + left) / dx;
|
nuclear@1
|
148 float b = (top + bottom) / dy;
|
nuclear@1
|
149 float c = -(fr + nr) / dz;
|
nuclear@1
|
150 float d = -2.0 * fr * nr / dz;
|
nuclear@1
|
151
|
nuclear@1
|
152 xform[0] = 2.0 * nr / dx;
|
nuclear@1
|
153 xform[5] = 2.0 * nr / dy;
|
nuclear@1
|
154 xform[8] = a;
|
nuclear@1
|
155 xform[9] = b;
|
nuclear@1
|
156 xform[10] = c;
|
nuclear@1
|
157 xform[11] = -1.0f;
|
nuclear@1
|
158 xform[14] = d;
|
nuclear@1
|
159
|
nuclear@1
|
160 m3d_mult_matrix(xform);
|
nuclear@1
|
161 }
|
nuclear@1
|
162
|
nuclear@1
|
163 void m3d_perspective(float vfov, float aspect, float nr, float fr)
|
nuclear@1
|
164 {
|
nuclear@1
|
165 float vfov_rad = M_PI * vfov / 180.0;
|
nuclear@1
|
166 float x = nr * tan(vfov_rad / 2.0);
|
nuclear@1
|
167 m3d_frustum(-aspect * x, aspect * x, -x, x, nr, fr);
|
nuclear@1
|
168 }
|
nuclear@1
|
169
|
nuclear@2
|
170 static void xform4(float *mat, float *vec)
|
nuclear@2
|
171 {
|
nuclear@2
|
172 float x = mat[0] * vec[0] + mat[1] * vec[1] + mat[2] * vec[2] + mat[3];
|
nuclear@2
|
173 float y = mat[4] * vec[0] + mat[5] * vec[1] + mat[6] * vec[2] + mat[7];
|
nuclear@2
|
174 float z = mat[8] * vec[0] + mat[9] * vec[1] + mat[10] * vec[2] + mat[11];
|
nuclear@2
|
175 float w = mat[12] * vec[0] + mat[13] * vec[1] + mat[14] * vec[2] + mat[15];
|
nuclear@2
|
176
|
nuclear@2
|
177 vec[0] = x;
|
nuclear@2
|
178 vec[1] = y;
|
nuclear@2
|
179 vec[2] = z;
|
nuclear@2
|
180 vec[3] = w;
|
nuclear@2
|
181 }
|
nuclear@2
|
182
|
nuclear@3
|
183 static int proc_prim(int prim, struct min3d_vertex *res, struct min3d_vertex *v)
|
nuclear@2
|
184 {
|
nuclear@3
|
185 int i;
|
nuclear@3
|
186 int vcount = prim;
|
nuclear@3
|
187 int mvtop, ptop;
|
nuclear@3
|
188 float *mvmat, *pmat;
|
nuclear@3
|
189
|
nuclear@3
|
190 mvtop = m3dctx->mstack[M3D_MODELVIEW].top;
|
nuclear@3
|
191 mvmat = m3dctx->mstack[M3D_MODELVIEW].m[mvtop];
|
nuclear@3
|
192 ptop = m3dctx->mstack[M3D_PROJECTION].top;
|
nuclear@3
|
193 pmat = m3dctx->mstack[M3D_PROJECTION].m[ptop];
|
nuclear@3
|
194
|
nuclear@3
|
195 /* transform to view space */
|
nuclear@3
|
196 for(i=0; i<vcount; i++) {
|
nuclear@3
|
197 res[i] = v[i];
|
nuclear@3
|
198 xform4(mvmat, res[i].pos);
|
nuclear@3
|
199 /* TODO: normal */
|
nuclear@3
|
200 }
|
nuclear@3
|
201
|
nuclear@3
|
202 /* TODO: lighting */
|
nuclear@3
|
203
|
nuclear@3
|
204 /* project */
|
nuclear@3
|
205 for(i=0; i<vcount; i++) {
|
nuclear@3
|
206 xform4(pmat, res[i].pos);
|
nuclear@3
|
207 }
|
nuclear@3
|
208
|
nuclear@3
|
209 /* clip */
|
nuclear@3
|
210 switch(prim) {
|
nuclear@3
|
211 case M3D_POINTS:
|
nuclear@3
|
212 {
|
nuclear@3
|
213 float w = res[0].pos[3];
|
nuclear@3
|
214 if(res[0].pos[2] < -w || res[0].pos[2] >= w ||
|
nuclear@3
|
215 res[0].pos[0] / w < -1 || res[0].pos[0] / w >= 1 ||
|
nuclear@3
|
216 res[0].pos[1] / w < -1 || res[0].pos[1] / w >= 1) {
|
nuclear@3
|
217 vcount = 0;
|
nuclear@3
|
218 }
|
nuclear@3
|
219 }
|
nuclear@3
|
220 break;
|
nuclear@3
|
221
|
nuclear@3
|
222 default:
|
nuclear@3
|
223 break; /* TODO */
|
nuclear@3
|
224 }
|
nuclear@3
|
225
|
nuclear@3
|
226 /* perspective division */
|
nuclear@3
|
227 for(i=0; i<vcount; i++) {
|
nuclear@3
|
228 res[i].pos[0] = res[i].pos[3];
|
nuclear@3
|
229 res[i].pos[1] = res[i].pos[3];
|
nuclear@3
|
230 res[i].pos[2] = res[i].pos[3];
|
nuclear@3
|
231 }
|
nuclear@3
|
232 return vcount;
|
nuclear@2
|
233 }
|
nuclear@2
|
234
|
nuclear@1
|
235 /* drawing */
|
nuclear@1
|
236 void m3d_draw(int prim, const float *varr, int vcount)
|
nuclear@1
|
237 {
|
nuclear@3
|
238 int i;
|
nuclear@3
|
239 struct min3d_vertex v[4];
|
nuclear@3
|
240 struct min3d_vertex resv[16];
|
nuclear@3
|
241
|
nuclear@3
|
242 for(i=0; i<vcount; i++) {
|
nuclear@3
|
243 int idx = i % prim;
|
nuclear@3
|
244
|
nuclear@3
|
245 v[idx].pos[0] = *varr++;
|
nuclear@3
|
246 v[idx].pos[1] = *varr++;
|
nuclear@3
|
247 v[idx].pos[2] = *varr++;
|
nuclear@3
|
248
|
nuclear@3
|
249 if(idx == prim - 1) {
|
nuclear@3
|
250 int resnum = proc_prim(prim, resv, v);
|
nuclear@3
|
251 switch(resnum) {
|
nuclear@3
|
252 case 1:
|
nuclear@3
|
253 draw_point(resv);
|
nuclear@3
|
254 break;
|
nuclear@3
|
255
|
nuclear@3
|
256 case '2':
|
nuclear@3
|
257 draw_line(resv);
|
nuclear@3
|
258 break;
|
nuclear@3
|
259
|
nuclear@3
|
260 default:
|
nuclear@3
|
261 draw_poly(resv, resnum);
|
nuclear@3
|
262 }
|
nuclear@3
|
263 }
|
nuclear@3
|
264 }
|
nuclear@1
|
265 }
|
nuclear@1
|
266
|
nuclear@1
|
267 void m3d_draw_indexed(int prim, const float *varr, const int *idxarr, int icount)
|
nuclear@1
|
268 {
|
nuclear@1
|
269 /* TODO */
|
nuclear@1
|
270 }
|
nuclear@1
|
271
|