ovr_sdk

diff LibOVR/Src/OVR_Stereo.cpp @ 0:1b39a1b46319

initial 0.4.4
author John Tsiombikas <nuclear@member.fsf.org>
date Wed, 14 Jan 2015 06:51:16 +0200
parents
children
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/LibOVR/Src/OVR_Stereo.cpp	Wed Jan 14 06:51:16 2015 +0200
     1.3 @@ -0,0 +1,1874 @@
     1.4 +/************************************************************************************
     1.5 +
     1.6 +Filename    :   OVR_Stereo.cpp
     1.7 +Content     :   Stereo rendering functions
     1.8 +Created     :   November 30, 2013
     1.9 +Authors     :   Tom Fosyth
    1.10 +
    1.11 +Copyright   :   Copyright 2014 Oculus VR, LLC All Rights reserved.
    1.12 +
    1.13 +Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); 
    1.14 +you may not use the Oculus VR Rift SDK except in compliance with the License, 
    1.15 +which is provided at the time of installation or download, or which 
    1.16 +otherwise accompanies this software in either electronic or hard copy form.
    1.17 +
    1.18 +You may obtain a copy of the License at
    1.19 +
    1.20 +http://www.oculusvr.com/licenses/LICENSE-3.2 
    1.21 +
    1.22 +Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
    1.23 +distributed under the License is distributed on an "AS IS" BASIS,
    1.24 +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    1.25 +See the License for the specific language governing permissions and
    1.26 +limitations under the License.
    1.27 +
    1.28 +*************************************************************************************/
    1.29 +
    1.30 +#include "OVR_Stereo.h"
    1.31 +#include "OVR_Profile.h"
    1.32 +#include "Kernel/OVR_Log.h"
    1.33 +#include "Kernel/OVR_Alg.h"
    1.34 +
    1.35 +//To allow custom distortion to be introduced to CatMulSpline.
    1.36 +float (*CustomDistortion)(float) = NULL;
    1.37 +float (*CustomDistortionInv)(float) = NULL;
    1.38 +
    1.39 +
    1.40 +namespace OVR {
    1.41 +
    1.42 +
    1.43 +using namespace Alg;
    1.44 +
    1.45 +//-----------------------------------------------------------------------------------
    1.46 +
    1.47 +// Inputs are 4 points (pFitX[0],pFitY[0]) through (pFitX[3],pFitY[3])
    1.48 +// Result is four coefficients in pResults[0] through pResults[3] such that
    1.49 +//      y = pResult[0] + x * ( pResult[1] + x * ( pResult[2] + x * ( pResult[3] ) ) );
    1.50 +// passes through all four input points.
    1.51 +// Return is true if it succeeded, false if it failed (because two control points
    1.52 +// have the same pFitX value).
    1.53 +bool FitCubicPolynomial ( float *pResult, const float *pFitX, const float *pFitY )
    1.54 +{
    1.55 +    float d0 = ( ( pFitX[0]-pFitX[1] ) * ( pFitX[0]-pFitX[2] ) * ( pFitX[0]-pFitX[3] ) );
    1.56 +    float d1 = ( ( pFitX[1]-pFitX[2] ) * ( pFitX[1]-pFitX[3] ) * ( pFitX[1]-pFitX[0] ) );
    1.57 +    float d2 = ( ( pFitX[2]-pFitX[3] ) * ( pFitX[2]-pFitX[0] ) * ( pFitX[2]-pFitX[1] ) );
    1.58 +    float d3 = ( ( pFitX[3]-pFitX[0] ) * ( pFitX[3]-pFitX[1] ) * ( pFitX[3]-pFitX[2] ) );
    1.59 +
    1.60 +    if ( ( d0 == 0.0f ) || ( d1 == 0.0f ) || ( d2 == 0.0f ) || ( d3 == 0.0f ) )
    1.61 +    {
    1.62 +        return false;
    1.63 +    }
    1.64 +
    1.65 +    float f0 = pFitY[0] / d0;
    1.66 +    float f1 = pFitY[1] / d1;
    1.67 +    float f2 = pFitY[2] / d2;
    1.68 +    float f3 = pFitY[3] / d3;
    1.69 +
    1.70 +    pResult[0] = -( f0*pFitX[1]*pFitX[2]*pFitX[3]
    1.71 +                  + f1*pFitX[0]*pFitX[2]*pFitX[3]
    1.72 +                  + f2*pFitX[0]*pFitX[1]*pFitX[3]
    1.73 +                  + f3*pFitX[0]*pFitX[1]*pFitX[2] );
    1.74 +    pResult[1] = f0*(pFitX[1]*pFitX[2] + pFitX[2]*pFitX[3] + pFitX[3]*pFitX[1])
    1.75 +               + f1*(pFitX[0]*pFitX[2] + pFitX[2]*pFitX[3] + pFitX[3]*pFitX[0])
    1.76 +               + f2*(pFitX[0]*pFitX[1] + pFitX[1]*pFitX[3] + pFitX[3]*pFitX[0])
    1.77 +               + f3*(pFitX[0]*pFitX[1] + pFitX[1]*pFitX[2] + pFitX[2]*pFitX[0]);
    1.78 +    pResult[2] = -( f0*(pFitX[1]+pFitX[2]+pFitX[3])
    1.79 +                  + f1*(pFitX[0]+pFitX[2]+pFitX[3])
    1.80 +                  + f2*(pFitX[0]+pFitX[1]+pFitX[3])
    1.81 +                  + f3*(pFitX[0]+pFitX[1]+pFitX[2]) );
    1.82 +    pResult[3] = f0 + f1 + f2 + f3;
    1.83 +
    1.84 +    return true;
    1.85 +}
    1.86 +
    1.87 +#define TPH_SPLINE_STATISTICS 0
    1.88 +#if TPH_SPLINE_STATISTICS
    1.89 +static float max_scaledVal = 0;
    1.90 +static float average_total_out_of_range = 0;
    1.91 +static float average_out_of_range;
    1.92 +static int num_total = 0;
    1.93 +static int num_out_of_range = 0;
    1.94 +static int num_out_of_range_over_1 = 0;
    1.95 +static int num_out_of_range_over_2 = 0;
    1.96 +static int num_out_of_range_over_3 = 0;
    1.97 +static float percent_out_of_range;
    1.98 +#endif
    1.99 +
   1.100 +float EvalCatmullRom10Spline ( float const *K, float scaledVal )
   1.101 +{
   1.102 +    int const NumSegments = LensConfig::NumCoefficients;
   1.103 +
   1.104 +	#if TPH_SPLINE_STATISTICS
   1.105 +	//Value should be in range of 0 to (NumSegments-1) (typically 10) if spline is valid. Right?
   1.106 +	if (scaledVal > (NumSegments-1))
   1.107 +	{
   1.108 +		num_out_of_range++;
   1.109 +		average_total_out_of_range+=scaledVal;
   1.110 +		average_out_of_range = average_total_out_of_range / ((float) num_out_of_range); 
   1.111 +		percent_out_of_range = 100.0f*(num_out_of_range)/num_total;
   1.112 +	}
   1.113 +	if (scaledVal > (NumSegments-1+1)) num_out_of_range_over_1++;
   1.114 +	if (scaledVal > (NumSegments-1+2)) num_out_of_range_over_2++;
   1.115 +	if (scaledVal > (NumSegments-1+3)) num_out_of_range_over_3++;
   1.116 +	num_total++;
   1.117 +	if (scaledVal > max_scaledVal)
   1.118 +	{
   1.119 +		max_scaledVal = scaledVal;
   1.120 +		max_scaledVal = scaledVal;
   1.121 +	}
   1.122 +	#endif
   1.123 +
   1.124 +    float scaledValFloor = floorf ( scaledVal );
   1.125 +    scaledValFloor = Alg::Max ( 0.0f, Alg::Min ( (float)(NumSegments-1), scaledValFloor ) );
   1.126 +    float t = scaledVal - scaledValFloor;
   1.127 +    int k = (int)scaledValFloor;
   1.128 +
   1.129 +    float p0, p1;
   1.130 +    float m0, m1;
   1.131 +    switch ( k )
   1.132 +    {
   1.133 +    case 0:
   1.134 +        // Curve starts at 1.0 with gradient K[1]-K[0]
   1.135 +        p0 = 1.0f;
   1.136 +        m0 =        ( K[1] - K[0] );    // general case would have been (K[1]-K[-1])/2
   1.137 +        p1 = K[1];
   1.138 +        m1 = 0.5f * ( K[2] - K[0] );
   1.139 +        break;
   1.140 +    default:
   1.141 +        // General case
   1.142 +        p0 = K[k  ];
   1.143 +        m0 = 0.5f * ( K[k+1] - K[k-1] );
   1.144 +        p1 = K[k+1];
   1.145 +        m1 = 0.5f * ( K[k+2] - K[k  ] );
   1.146 +        break;
   1.147 +    case NumSegments-2:
   1.148 +        // Last tangent is just the slope of the last two points.
   1.149 +        p0 = K[NumSegments-2];
   1.150 +        m0 = 0.5f * ( K[NumSegments-1] - K[NumSegments-2] );
   1.151 +        p1 = K[NumSegments-1];
   1.152 +        m1 = K[NumSegments-1] - K[NumSegments-2];
   1.153 +        break;
   1.154 +    case NumSegments-1:
   1.155 +        // Beyond the last segment it's just a straight line
   1.156 +        p0 = K[NumSegments-1];
   1.157 +        m0 = K[NumSegments-1] - K[NumSegments-2];
   1.158 +        p1 = p0 + m0;
   1.159 +        m1 = m0;
   1.160 +        break;
   1.161 +    }
   1.162 +
   1.163 +    float omt = 1.0f - t;
   1.164 +    float res  = ( p0 * ( 1.0f + 2.0f *   t ) + m0 *   t ) * omt * omt
   1.165 +               + ( p1 * ( 1.0f + 2.0f * omt ) - m1 * omt ) *   t *   t;
   1.166 +
   1.167 +    return res;
   1.168 +}
   1.169 +
   1.170 +
   1.171 +
   1.172 +
   1.173 +// Converts a Profile eyecup string into an eyecup enumeration
   1.174 +void SetEyeCup(HmdRenderInfo* renderInfo, const char* cup)
   1.175 +{
   1.176 +    if (OVR_strcmp(cup, "A") == 0)
   1.177 +        renderInfo->EyeCups = EyeCup_DK1A;
   1.178 +    else if (OVR_strcmp(cup, "B") == 0)
   1.179 +        renderInfo->EyeCups = EyeCup_DK1B;
   1.180 +    else if (OVR_strcmp(cup, "C") == 0)
   1.181 +        renderInfo->EyeCups = EyeCup_DK1C;
   1.182 +    else if (OVR_strcmp(cup, "Orange A") == 0)
   1.183 +        renderInfo->EyeCups =  EyeCup_OrangeA;
   1.184 +    else if (OVR_strcmp(cup, "Red A") == 0)
   1.185 +        renderInfo->EyeCups = EyeCup_RedA;
   1.186 +    else if (OVR_strcmp(cup, "Pink A") == 0)
   1.187 +        renderInfo->EyeCups = EyeCup_PinkA;
   1.188 +    else if (OVR_strcmp(cup, "Blue A") == 0)
   1.189 +        renderInfo->EyeCups = EyeCup_BlueA;
   1.190 +    else
   1.191 +        renderInfo->EyeCups = EyeCup_DK1A;
   1.192 +}
   1.193 +
   1.194 +
   1.195 +
   1.196 +//-----------------------------------------------------------------------------------
   1.197 +
   1.198 +
   1.199 +// The result is a scaling applied to the distance.
   1.200 +float LensConfig::DistortionFnScaleRadiusSquared (float rsq) const
   1.201 +{
   1.202 +    float scale = 1.0f;
   1.203 +    switch ( Eqn )
   1.204 +    {
   1.205 +    case Distortion_Poly4:
   1.206 +        // This version is deprecated! Prefer one of the other two.
   1.207 +        scale = ( K[0] + rsq * ( K[1] + rsq * ( K[2] + rsq * K[3] ) ) );
   1.208 +        break;
   1.209 +    case Distortion_RecipPoly4:
   1.210 +        scale = 1.0f / ( K[0] + rsq * ( K[1] + rsq * ( K[2] + rsq * K[3] ) ) );
   1.211 +        break;
   1.212 +    case Distortion_CatmullRom10:{
   1.213 +        // A Catmull-Rom spline through the values 1.0, K[1], K[2] ... K[10]
   1.214 +        // evenly spaced in R^2 from 0.0 to MaxR^2
   1.215 +        // K[0] controls the slope at radius=0.0, rather than the actual value.
   1.216 +        const int NumSegments = LensConfig::NumCoefficients;
   1.217 +        OVR_ASSERT ( NumSegments <= NumCoefficients );
   1.218 +        float scaledRsq = (float)(NumSegments-1) * rsq / ( MaxR * MaxR );
   1.219 +        scale = EvalCatmullRom10Spline ( K, scaledRsq );
   1.220 +
   1.221 +
   1.222 +		//Intercept, and overrule if needed
   1.223 +		if (CustomDistortion)
   1.224 +		{
   1.225 +			scale = CustomDistortion(rsq);
   1.226 +		}
   1.227 +
   1.228 +        }break;
   1.229 +    default:
   1.230 +        OVR_ASSERT ( false );
   1.231 +        break;
   1.232 +    }
   1.233 +    return scale;
   1.234 +}
   1.235 +
   1.236 +// x,y,z components map to r,g,b
   1.237 +Vector3f LensConfig::DistortionFnScaleRadiusSquaredChroma (float rsq) const
   1.238 +{
   1.239 +    float scale = DistortionFnScaleRadiusSquared ( rsq );
   1.240 +    Vector3f scaleRGB;
   1.241 +    scaleRGB.x = scale * ( 1.0f + ChromaticAberration[0] + rsq * ChromaticAberration[1] );     // Red
   1.242 +    scaleRGB.y = scale;                                                                        // Green
   1.243 +    scaleRGB.z = scale * ( 1.0f + ChromaticAberration[2] + rsq * ChromaticAberration[3] );     // Blue
   1.244 +    return scaleRGB;
   1.245 +}
   1.246 +
   1.247 +// DistortionFnInverse computes the inverse of the distortion function on an argument.
   1.248 +float LensConfig::DistortionFnInverse(float r) const
   1.249 +{    
   1.250 +    OVR_ASSERT((r <= 20.0f));
   1.251 +
   1.252 +    float s, d;
   1.253 +    float delta = r * 0.25f;
   1.254 +
   1.255 +    // Better to start guessing too low & take longer to converge than too high
   1.256 +    // and hit singularities. Empirically, r * 0.5f is too high in some cases.
   1.257 +    s = r * 0.25f;
   1.258 +    d = fabs(r - DistortionFn(s));
   1.259 +
   1.260 +    for (int i = 0; i < 20; i++)
   1.261 +    {
   1.262 +        float sUp   = s + delta;
   1.263 +        float sDown = s - delta;
   1.264 +        float dUp   = fabs(r - DistortionFn(sUp));
   1.265 +        float dDown = fabs(r - DistortionFn(sDown));
   1.266 +
   1.267 +        if (dUp < d)
   1.268 +        {
   1.269 +            s = sUp;
   1.270 +            d = dUp;
   1.271 +        }
   1.272 +        else if (dDown < d)
   1.273 +        {
   1.274 +            s = sDown;
   1.275 +            d = dDown;
   1.276 +        }
   1.277 +        else
   1.278 +        {
   1.279 +            delta *= 0.5f;
   1.280 +        }
   1.281 +    }
   1.282 +
   1.283 +    return s;
   1.284 +}
   1.285 +
   1.286 +
   1.287 +
   1.288 +float LensConfig::DistortionFnInverseApprox(float r) const
   1.289 +{
   1.290 +    float rsq = r * r;
   1.291 +    float scale = 1.0f;
   1.292 +    switch ( Eqn )
   1.293 +    {
   1.294 +    case Distortion_Poly4:
   1.295 +        // Deprecated
   1.296 +        OVR_ASSERT ( false );
   1.297 +        break;
   1.298 +    case Distortion_RecipPoly4:
   1.299 +        scale = 1.0f / ( InvK[0] + rsq * ( InvK[1] + rsq * ( InvK[2] + rsq * InvK[3] ) ) );
   1.300 +        break;
   1.301 +    case Distortion_CatmullRom10:{
   1.302 +        // A Catmull-Rom spline through the values 1.0, K[1], K[2] ... K[9]
   1.303 +        // evenly spaced in R^2 from 0.0 to MaxR^2
   1.304 +        // K[0] controls the slope at radius=0.0, rather than the actual value.
   1.305 +        const int NumSegments = LensConfig::NumCoefficients;
   1.306 +        OVR_ASSERT ( NumSegments <= NumCoefficients );
   1.307 +        float scaledRsq = (float)(NumSegments-1) * rsq / ( MaxInvR * MaxInvR );
   1.308 +        scale = EvalCatmullRom10Spline ( InvK, scaledRsq );
   1.309 +
   1.310 +		//Intercept, and overrule if needed
   1.311 +		if (CustomDistortionInv)
   1.312 +		{
   1.313 +			scale = CustomDistortionInv(rsq);
   1.314 +		}
   1.315 +
   1.316 +        }break;
   1.317 +    default:
   1.318 +        OVR_ASSERT ( false );
   1.319 +        break;
   1.320 +    }
   1.321 +    return r * scale;
   1.322 +}
   1.323 +
   1.324 +void LensConfig::SetUpInverseApprox()
   1.325 +{
   1.326 +    float maxR = MaxInvR;
   1.327 +
   1.328 +    switch ( Eqn )
   1.329 +    {
   1.330 +    case Distortion_Poly4:
   1.331 +        // Deprecated
   1.332 +        OVR_ASSERT ( false );
   1.333 +        break;
   1.334 +    case Distortion_RecipPoly4:{
   1.335 +
   1.336 +        float sampleR[4];
   1.337 +        float sampleRSq[4];
   1.338 +        float sampleInv[4];
   1.339 +        float sampleFit[4];
   1.340 +
   1.341 +        // Found heuristically...
   1.342 +        sampleR[0] = 0.0f;
   1.343 +        sampleR[1] = maxR * 0.4f;
   1.344 +        sampleR[2] = maxR * 0.8f;
   1.345 +        sampleR[3] = maxR * 1.5f;
   1.346 +        for ( int i = 0; i < 4; i++ )
   1.347 +        {
   1.348 +            sampleRSq[i] = sampleR[i] * sampleR[i];
   1.349 +            sampleInv[i] = DistortionFnInverse ( sampleR[i] );
   1.350 +            sampleFit[i] = sampleR[i] / sampleInv[i];
   1.351 +        }
   1.352 +        sampleFit[0] = 1.0f;
   1.353 +        FitCubicPolynomial ( InvK, sampleRSq, sampleFit );
   1.354 +
   1.355 +    #if 0
   1.356 +        // Should be a nearly exact match on the chosen points.
   1.357 +        OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[0] ) - DistortionFnInverseApprox ( sampleR[0] ) ) / maxR < 0.0001f );
   1.358 +        OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[1] ) - DistortionFnInverseApprox ( sampleR[1] ) ) / maxR < 0.0001f );
   1.359 +        OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[2] ) - DistortionFnInverseApprox ( sampleR[2] ) ) / maxR < 0.0001f );
   1.360 +        OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[3] ) - DistortionFnInverseApprox ( sampleR[3] ) ) / maxR < 0.0001f );
   1.361 +        // Should be a decent match on the rest of the range.
   1.362 +        const int maxCheck = 20;
   1.363 +        for ( int i = 0; i < maxCheck; i++ )
   1.364 +        {
   1.365 +            float checkR = (float)i * maxR / (float)maxCheck;
   1.366 +            float realInv = DistortionFnInverse       ( checkR );
   1.367 +            float testInv = DistortionFnInverseApprox ( checkR );
   1.368 +            float error = fabsf ( realInv - testInv ) / maxR;
   1.369 +            OVR_ASSERT ( error < 0.1f );
   1.370 +        }
   1.371 +    #endif
   1.372 +
   1.373 +        }break;
   1.374 +    case Distortion_CatmullRom10:{
   1.375 +
   1.376 +        const int NumSegments = LensConfig::NumCoefficients;
   1.377 +        OVR_ASSERT ( NumSegments <= NumCoefficients );
   1.378 +        for ( int i = 1; i < NumSegments; i++ )
   1.379 +        {
   1.380 +            float scaledRsq = (float)i;
   1.381 +            float rsq = scaledRsq * MaxInvR * MaxInvR / (float)( NumSegments - 1);
   1.382 +            float r = sqrtf ( rsq );
   1.383 +            float inv = DistortionFnInverse ( r );
   1.384 +            InvK[i] = inv / r;
   1.385 +            InvK[0] = 1.0f;     // TODO: fix this.
   1.386 +        }
   1.387 +
   1.388 +#if 0
   1.389 +        const int maxCheck = 20;
   1.390 +        for ( int i = 0; i <= maxCheck; i++ )
   1.391 +        {
   1.392 +            float checkR = (float)i * MaxInvR / (float)maxCheck;
   1.393 +            float realInv = DistortionFnInverse       ( checkR );
   1.394 +            float testInv = DistortionFnInverseApprox ( checkR );
   1.395 +            float error = fabsf ( realInv - testInv ) / MaxR;
   1.396 +            OVR_ASSERT ( error < 0.01f );
   1.397 +        }
   1.398 +#endif
   1.399 +
   1.400 +        }break;
   1.401 +
   1.402 +    default:
   1.403 +        break;
   1.404 +    }
   1.405 +}
   1.406 +
   1.407 +
   1.408 +void LensConfig::SetToIdentity()
   1.409 +{
   1.410 +    for ( int i = 0; i < NumCoefficients; i++ )
   1.411 +    {
   1.412 +        K[i] = 0.0f;
   1.413 +        InvK[i] = 0.0f;
   1.414 +    }
   1.415 +    Eqn = Distortion_RecipPoly4;
   1.416 +    K[0] = 1.0f;
   1.417 +    InvK[0] = 1.0f;
   1.418 +    MaxR = 1.0f;
   1.419 +    MaxInvR = 1.0f;
   1.420 +    ChromaticAberration[0] = 0.0f;
   1.421 +    ChromaticAberration[1] = 0.0f;
   1.422 +    ChromaticAberration[2] = 0.0f;
   1.423 +    ChromaticAberration[3] = 0.0f;
   1.424 +    MetersPerTanAngleAtCenter = 0.05f;
   1.425 +}
   1.426 +
   1.427 +
   1.428 +enum LensConfigStoredVersion
   1.429 +{
   1.430 +    LCSV_CatmullRom10Version1 = 1
   1.431 +};
   1.432 +
   1.433 +// DO NOT CHANGE THESE ONCE THEY HAVE BEEN BAKED INTO FIRMWARE.
   1.434 +// If something needs to change, add a new one!
   1.435 +struct LensConfigStored_CatmullRom10Version1
   1.436 +{
   1.437 +    // All these items must be fixed-length integers - no "float", no "int", etc.
   1.438 +    uint16_t    VersionNumber;      // Must be LCSV_CatmullRom10Version1
   1.439 +
   1.440 +    uint16_t    K[11];
   1.441 +    uint16_t    MaxR;
   1.442 +    uint16_t    MetersPerTanAngleAtCenter;
   1.443 +    uint16_t    ChromaticAberration[4];
   1.444 +    // InvK and MaxInvR are calculated on load.
   1.445 +};
   1.446 +
   1.447 +uint16_t EncodeFixedPointUInt16 ( float val, uint16_t zeroVal, int fractionalBits )
   1.448 +{
   1.449 +    OVR_ASSERT ( ( fractionalBits >= 0 ) && ( fractionalBits < 31 ) );
   1.450 +    float valWhole = val * (float)( 1 << fractionalBits );
   1.451 +    valWhole += (float)zeroVal + 0.5f;
   1.452 +    valWhole = floorf ( valWhole );
   1.453 +    OVR_ASSERT ( ( valWhole >= 0.0f ) && ( valWhole < (float)( 1 << 16 ) ) );
   1.454 +    return (uint16_t)valWhole;
   1.455 +}
   1.456 +
   1.457 +float DecodeFixedPointUInt16 ( uint16_t val, uint16_t zeroVal, int fractionalBits )
   1.458 +{
   1.459 +    OVR_ASSERT ( ( fractionalBits >= 0 ) && ( fractionalBits < 31 ) );
   1.460 +    float valFloat = (float)val;
   1.461 +    valFloat -= (float)zeroVal;
   1.462 +    valFloat *= 1.0f / (float)( 1 << fractionalBits );
   1.463 +    return valFloat;
   1.464 +}
   1.465 +
   1.466 +
   1.467 +// Returns true on success.
   1.468 +bool LoadLensConfig ( LensConfig *presult, uint8_t const *pbuffer, int bufferSizeInBytes )
   1.469 +{
   1.470 +    if ( bufferSizeInBytes < 2 )
   1.471 +    {
   1.472 +        // Can't even tell the version number!
   1.473 +        return false;
   1.474 +    }
   1.475 +    uint16_t version = DecodeUInt16 ( pbuffer + 0 );
   1.476 +    switch ( version )
   1.477 +    {
   1.478 +    case LCSV_CatmullRom10Version1:
   1.479 +        {
   1.480 +            if ( bufferSizeInBytes < (int)sizeof(LensConfigStored_CatmullRom10Version1) )
   1.481 +            {
   1.482 +                return false;
   1.483 +            }
   1.484 +            LensConfigStored_CatmullRom10Version1 lcs;
   1.485 +            lcs.VersionNumber               = DecodeUInt16 ( pbuffer + 0 );
   1.486 +            for ( int i = 0; i < 11; i++ )
   1.487 +            {
   1.488 +                lcs.K[i]                    = DecodeUInt16 ( pbuffer + 2 + 2*i );
   1.489 +            }
   1.490 +            lcs.MaxR                        = DecodeUInt16 ( pbuffer + 24 );
   1.491 +            lcs.MetersPerTanAngleAtCenter   = DecodeUInt16 ( pbuffer + 26 );
   1.492 +            for ( int i = 0; i < 4; i++ )
   1.493 +            {
   1.494 +                lcs.ChromaticAberration[i]  = DecodeUInt16 ( pbuffer + 28 + 2*i );
   1.495 +            }
   1.496 +            OVR_COMPILER_ASSERT ( sizeof(lcs) ==                       36 );
   1.497 +
   1.498 +            // Convert to the real thing.
   1.499 +            LensConfig result;
   1.500 +            result.Eqn = Distortion_CatmullRom10;
   1.501 +            for ( int i = 0; i < 11; i++ )
   1.502 +            {
   1.503 +                // K[] are mostly 1.something. They may get significantly bigger, but they never hit 0.0.
   1.504 +                result.K[i] = DecodeFixedPointUInt16 ( lcs.K[i], 0, 14 );
   1.505 +            }
   1.506 +            // MaxR is tan(angle), so always >0, typically just over 1.0 (45 degrees half-fov),
   1.507 +            // but may get arbitrarily high. tan(76)=4 is a very reasonable limit!
   1.508 +            result.MaxR = DecodeFixedPointUInt16 ( lcs.MaxR, 0, 14 );
   1.509 +            // MetersPerTanAngleAtCenter is also known as focal length!
   1.510 +            // Typically around 0.04 for our current screens, minimum of 0, sensible maximum of 0.125 (i.e. 3 "extra" bits of fraction)
   1.511 +            result.MetersPerTanAngleAtCenter = DecodeFixedPointUInt16 ( lcs.MetersPerTanAngleAtCenter, 0, 16+3 );
   1.512 +            for ( int i = 0; i < 4; i++ )
   1.513 +            {
   1.514 +                // ChromaticAberration[] are mostly 0.0something, centered on 0.0. Largest seen is 0.04, so set max to 0.125 (i.e. 3 "extra" bits of fraction)
   1.515 +                result.ChromaticAberration[i] = DecodeFixedPointUInt16 ( lcs.ChromaticAberration[i], 0x8000, 16+3 );
   1.516 +            }
   1.517 +            result.MaxInvR = result.DistortionFn ( result.MaxR );
   1.518 +            result.SetUpInverseApprox();
   1.519 +
   1.520 +            OVR_ASSERT ( version == lcs.VersionNumber );
   1.521 +
   1.522 +            *presult = result;
   1.523 +        }
   1.524 +        break;
   1.525 +    default:
   1.526 +        // Unknown format.
   1.527 +        return false;
   1.528 +        break;
   1.529 +    }
   1.530 +    return true;
   1.531 +}
   1.532 +
   1.533 +// Returns number of bytes needed.
   1.534 +int SaveLensConfigSizeInBytes ( LensConfig const &config )
   1.535 +{
   1.536 +    OVR_UNUSED ( config );
   1.537 +    return sizeof ( LensConfigStored_CatmullRom10Version1 );
   1.538 +}
   1.539 +
   1.540 +// Returns true on success.
   1.541 +bool SaveLensConfig ( uint8_t *pbuffer, int bufferSizeInBytes, LensConfig const &config )
   1.542 +{
   1.543 +    if ( bufferSizeInBytes < (int)sizeof ( LensConfigStored_CatmullRom10Version1 ) )
   1.544 +    {
   1.545 +        return false;
   1.546 +    }
   1.547 +
   1.548 +    // Construct the values.
   1.549 +    LensConfigStored_CatmullRom10Version1 lcs;
   1.550 +    lcs.VersionNumber = LCSV_CatmullRom10Version1;
   1.551 +    for ( int i = 0; i < 11; i++ )
   1.552 +    {
   1.553 +        // K[] are mostly 1.something. They may get significantly bigger, but they never hit 0.0.
   1.554 +        lcs.K[i] = EncodeFixedPointUInt16 ( config.K[i], 0, 14 );
   1.555 +    }
   1.556 +    // MaxR is tan(angle), so always >0, typically just over 1.0 (45 degrees half-fov),
   1.557 +    // but may get arbitrarily high. tan(76)=4 is a very reasonable limit!
   1.558 +    lcs.MaxR = EncodeFixedPointUInt16 ( config.MaxR, 0, 14 );
   1.559 +    // MetersPerTanAngleAtCenter is also known as focal length!
   1.560 +    // Typically around 0.04 for our current screens, minimum of 0, sensible maximum of 0.125 (i.e. 3 "extra" bits of fraction)
   1.561 +    lcs.MetersPerTanAngleAtCenter = EncodeFixedPointUInt16 ( config.MetersPerTanAngleAtCenter, 0, 16+3 );
   1.562 +    for ( int i = 0; i < 4; i++ )
   1.563 +    {
   1.564 +        // ChromaticAberration[] are mostly 0.0something, centered on 0.0. Largest seen is 0.04, so set max to 0.125 (i.e. 3 "extra" bits of fraction)
   1.565 +        lcs.ChromaticAberration[i] = EncodeFixedPointUInt16 ( config.ChromaticAberration[i], 0x8000, 16+3 );
   1.566 +    }
   1.567 +
   1.568 +
   1.569 +    // Now store them out, sensitive to endianness.
   1.570 +    EncodeUInt16 (      pbuffer + 0,        lcs.VersionNumber );
   1.571 +    for ( int i = 0; i < 11; i++ )
   1.572 +    {
   1.573 +        EncodeUInt16 (  pbuffer + 2 + 2*i,  lcs.K[i] );
   1.574 +    }
   1.575 +    EncodeUInt16 (      pbuffer + 24,       lcs.MaxR );
   1.576 +    EncodeUInt16 (      pbuffer + 26,       lcs.MetersPerTanAngleAtCenter );
   1.577 +    for ( int i = 0; i < 4; i++ )
   1.578 +    {
   1.579 +        EncodeUInt16 (  pbuffer + 28 + 2*i, lcs.ChromaticAberration[i] );
   1.580 +    }
   1.581 +    OVR_COMPILER_ASSERT (         36        == sizeof(lcs) );
   1.582 +
   1.583 +    return true;
   1.584 +}
   1.585 +
   1.586 +#ifdef OVR_BUILD_DEBUG
   1.587 +void TestSaveLoadLensConfig ( LensConfig const &config )
   1.588 +{
   1.589 +    OVR_ASSERT ( config.Eqn == Distortion_CatmullRom10 );
   1.590 +    // As a test, make sure this can be encoded and decoded correctly.
   1.591 +    const int bufferSize = 256;
   1.592 +    uint8_t buffer[bufferSize];
   1.593 +    OVR_ASSERT ( SaveLensConfigSizeInBytes ( config ) < bufferSize );
   1.594 +    bool success;
   1.595 +    success = SaveLensConfig ( buffer, bufferSize, config );
   1.596 +    OVR_ASSERT ( success );
   1.597 +    LensConfig testConfig;
   1.598 +    success = LoadLensConfig ( &testConfig, buffer, bufferSize );
   1.599 +    OVR_ASSERT ( success );
   1.600 +    OVR_ASSERT ( testConfig.Eqn == config.Eqn );
   1.601 +    for ( int i = 0; i < 11; i++ )
   1.602 +    {
   1.603 +        OVR_ASSERT ( fabs ( testConfig.K[i] - config.K[i] ) < 0.0001f );
   1.604 +    }
   1.605 +    OVR_ASSERT ( fabsf ( testConfig.MaxR - config.MaxR ) < 0.0001f );
   1.606 +    OVR_ASSERT ( fabsf ( testConfig.MetersPerTanAngleAtCenter - config.MetersPerTanAngleAtCenter ) < 0.00001f );
   1.607 +    for ( int i = 0; i < 4; i++ )
   1.608 +    {
   1.609 +        OVR_ASSERT ( fabsf ( testConfig.ChromaticAberration[i] - config.ChromaticAberration[i] ) < 0.00001f );
   1.610 +    }
   1.611 +}
   1.612 +#endif
   1.613 +
   1.614 +
   1.615 +
   1.616 +//-----------------------------------------------------------------------------------
   1.617 +
   1.618 +// TBD: There is a question of whether this is the best file for CreateDebugHMDInfo. As long as there are many
   1.619 +// constants for HmdRenderInfo here as well it is ok. The alternative would be OVR_Common_HMDDevice.cpp, but
   1.620 +// that's specialized per platform... should probably move it there onces the code is in the common base class.
   1.621 +
   1.622 +HMDInfo CreateDebugHMDInfo(HmdTypeEnum hmdType)
   1.623 +{
   1.624 +    HMDInfo info;    
   1.625 +
   1.626 +    if ((hmdType != HmdType_DK1) &&
   1.627 +        (hmdType != HmdType_CrystalCoveProto) &&
   1.628 +        (hmdType != HmdType_DK2))
   1.629 +    {
   1.630 +        LogText("Debug HMDInfo - HmdType not supported. Defaulting to DK1.\n");
   1.631 +        hmdType = HmdType_DK1;
   1.632 +    }
   1.633 +
   1.634 +    // The alternative would be to initialize info.HmdType to HmdType_None instead. If we did that,
   1.635 +    // code wouldn't be "maximally compatible" and devs wouldn't know what device we are
   1.636 +    // simulating... so if differentiation becomes necessary we better add Debug flag in the future.
   1.637 +    info.HmdType      = hmdType;
   1.638 +    info.Manufacturer = "Oculus VR";    
   1.639 +
   1.640 +    switch(hmdType)
   1.641 +    {
   1.642 +    case HmdType_DK1:
   1.643 +        info.ProductName                            = "Oculus Rift DK1";
   1.644 +        info.ResolutionInPixels                     = Sizei ( 1280, 800 );
   1.645 +        info.ScreenSizeInMeters                     = Sizef ( 0.1498f, 0.0936f );
   1.646 +        info.ScreenGapSizeInMeters                  = 0.0f;
   1.647 +        info.CenterFromTopInMeters                  = 0.0468f;
   1.648 +        info.LensSeparationInMeters                 = 0.0635f;
   1.649 +        info.PelOffsetR                             = Vector2f ( 0.0f, 0.0f );
   1.650 +        info.PelOffsetB                             = Vector2f ( 0.0f, 0.0f );
   1.651 +        info.Shutter.Type                           = HmdShutter_RollingTopToBottom;
   1.652 +        info.Shutter.VsyncToNextVsync               = ( 1.0f / 60.0f );
   1.653 +        info.Shutter.VsyncToFirstScanline           = 0.000052f;
   1.654 +        info.Shutter.FirstScanlineToLastScanline    = 0.016580f;
   1.655 +        info.Shutter.PixelSettleTime                = 0.015f;
   1.656 +        info.Shutter.PixelPersistence               = ( 1.0f / 60.0f );
   1.657 +        break;
   1.658 +
   1.659 +    case HmdType_CrystalCoveProto:
   1.660 +        info.ProductName                            = "Oculus Rift Crystal Cove";        
   1.661 +        info.ResolutionInPixels                     = Sizei ( 1920, 1080 );
   1.662 +        info.ScreenSizeInMeters                     = Sizef ( 0.12576f, 0.07074f );
   1.663 +        info.ScreenGapSizeInMeters                  = 0.0f;
   1.664 +        info.CenterFromTopInMeters                  = info.ScreenSizeInMeters.h * 0.5f;
   1.665 +        info.LensSeparationInMeters                 = 0.0635f;
   1.666 +        info.PelOffsetR                             = Vector2f ( 0.0f, 0.0f );
   1.667 +        info.PelOffsetB                             = Vector2f ( 0.0f, 0.0f );
   1.668 +        info.Shutter.Type                           = HmdShutter_RollingRightToLeft;
   1.669 +        info.Shutter.VsyncToNextVsync               = ( 1.0f / 76.0f );
   1.670 +        info.Shutter.VsyncToFirstScanline           = 0.0000273f;
   1.671 +        info.Shutter.FirstScanlineToLastScanline    = 0.0131033f;
   1.672 +        info.Shutter.PixelSettleTime                = 0.0f;
   1.673 +        info.Shutter.PixelPersistence               = 0.18f * info.Shutter.VsyncToNextVsync;
   1.674 +        break;
   1.675 +
   1.676 +    case HmdType_DK2:
   1.677 +        info.ProductName                            = "Oculus Rift DK2";        
   1.678 +        info.ResolutionInPixels                     = Sizei ( 1920, 1080 );
   1.679 +        info.ScreenSizeInMeters                     = Sizef ( 0.12576f, 0.07074f );
   1.680 +        info.ScreenGapSizeInMeters                  = 0.0f;
   1.681 +        info.CenterFromTopInMeters                  = info.ScreenSizeInMeters.h * 0.5f;
   1.682 +        info.LensSeparationInMeters                 = 0.0635f;
   1.683 +        info.PelOffsetR                             = Vector2f ( 0.5f, 0.5f );
   1.684 +        info.PelOffsetB                             = Vector2f ( 0.5f, 0.5f );
   1.685 +        info.Shutter.Type                           = HmdShutter_RollingRightToLeft;
   1.686 +        info.Shutter.VsyncToNextVsync               = ( 1.0f / 76.0f );
   1.687 +        info.Shutter.VsyncToFirstScanline           = 0.0000273f;
   1.688 +        info.Shutter.FirstScanlineToLastScanline    = 0.0131033f;
   1.689 +        info.Shutter.PixelSettleTime                = 0.0f;
   1.690 +        info.Shutter.PixelPersistence               = 0.18f * info.Shutter.VsyncToNextVsync;
   1.691 +        break;
   1.692 +
   1.693 +    default:
   1.694 +        break;
   1.695 +    }
   1.696 +
   1.697 +    return info;
   1.698 +}
   1.699 +
   1.700 +
   1.701 +HmdRenderInfo GenerateHmdRenderInfoFromHmdInfo ( HMDInfo const &hmdInfo,
   1.702 +                                                 Profile const *profile,
   1.703 +                                                 DistortionEqnType distortionType /*= Distortion_CatmullRom10*/,
   1.704 +                                                 EyeCupType eyeCupOverride /*= EyeCup_LAST*/ )
   1.705 +{
   1.706 +    HmdRenderInfo renderInfo;
   1.707 +    
   1.708 +    OVR_ASSERT(profile);  // profiles are required
   1.709 +    if(!profile)
   1.710 +        return renderInfo;
   1.711 +
   1.712 +    renderInfo.HmdType                              = hmdInfo.HmdType;
   1.713 +    renderInfo.ResolutionInPixels                   = hmdInfo.ResolutionInPixels;
   1.714 +    renderInfo.ScreenSizeInMeters                   = hmdInfo.ScreenSizeInMeters;
   1.715 +    renderInfo.CenterFromTopInMeters                = hmdInfo.CenterFromTopInMeters;
   1.716 +    renderInfo.ScreenGapSizeInMeters                = hmdInfo.ScreenGapSizeInMeters;
   1.717 +    renderInfo.LensSeparationInMeters               = hmdInfo.LensSeparationInMeters;
   1.718 +    renderInfo.PelOffsetR                           = hmdInfo.PelOffsetR;
   1.719 +    renderInfo.PelOffsetB                           = hmdInfo.PelOffsetB;
   1.720 +
   1.721 +    OVR_ASSERT ( sizeof(renderInfo.Shutter) == sizeof(hmdInfo.Shutter) );   // Try to keep the files in sync!
   1.722 +    renderInfo.Shutter.Type                         = hmdInfo.Shutter.Type;
   1.723 +    renderInfo.Shutter.VsyncToNextVsync             = hmdInfo.Shutter.VsyncToNextVsync;
   1.724 +    renderInfo.Shutter.VsyncToFirstScanline         = hmdInfo.Shutter.VsyncToFirstScanline;
   1.725 +    renderInfo.Shutter.FirstScanlineToLastScanline  = hmdInfo.Shutter.FirstScanlineToLastScanline;
   1.726 +    renderInfo.Shutter.PixelSettleTime              = hmdInfo.Shutter.PixelSettleTime;
   1.727 +    renderInfo.Shutter.PixelPersistence             = hmdInfo.Shutter.PixelPersistence;
   1.728 +
   1.729 +    renderInfo.LensDiameterInMeters                 = 0.035f;
   1.730 +    renderInfo.LensSurfaceToMidplateInMeters        = 0.025f;
   1.731 +    renderInfo.EyeCups                              = EyeCup_DK1A;
   1.732 +
   1.733 +#if 0       // Device settings are out of date - don't use them.
   1.734 +    if (Contents & Contents_Distortion)
   1.735 +    {
   1.736 +        memcpy(renderInfo.DistortionK, DistortionK, sizeof(float)*4);
   1.737 +        renderInfo.DistortionEqn = Distortion_RecipPoly4;
   1.738 +    }
   1.739 +#endif
   1.740 +
   1.741 +    // Defaults in case of no user profile.
   1.742 +    renderInfo.EyeLeft.NoseToPupilInMeters   = 0.032f;
   1.743 +    renderInfo.EyeLeft.ReliefInMeters        = 0.012f;
   1.744 +
   1.745 +    // 10mm eye-relief laser numbers for DK1 lenses.
   1.746 +    // These are a decent seed for finding eye-relief and IPD.
   1.747 +    // These are NOT used for rendering!
   1.748 +    // Rendering distortions are now in GenerateLensConfigFromEyeRelief()
   1.749 +    // So, if you're hacking in new distortions, don't do it here!
   1.750 +    renderInfo.EyeLeft.Distortion.SetToIdentity();
   1.751 +    renderInfo.EyeLeft.Distortion.MetersPerTanAngleAtCenter = 0.0449f;
   1.752 +    renderInfo.EyeLeft.Distortion.Eqn       = Distortion_RecipPoly4;
   1.753 +    renderInfo.EyeLeft.Distortion.K[0]      =  1.0f;
   1.754 +    renderInfo.EyeLeft.Distortion.K[1]      = -0.494165344f;
   1.755 +    renderInfo.EyeLeft.Distortion.K[2]      = 0.587046423f;
   1.756 +    renderInfo.EyeLeft.Distortion.K[3]      = -0.841887126f;
   1.757 +    renderInfo.EyeLeft.Distortion.MaxR      = 1.0f;
   1.758 +
   1.759 +    renderInfo.EyeLeft.Distortion.ChromaticAberration[0] = -0.006f;
   1.760 +    renderInfo.EyeLeft.Distortion.ChromaticAberration[1] =  0.0f;
   1.761 +    renderInfo.EyeLeft.Distortion.ChromaticAberration[2] =  0.014f;
   1.762 +    renderInfo.EyeLeft.Distortion.ChromaticAberration[3] =  0.0f;
   1.763 +
   1.764 +    renderInfo.EyeRight = renderInfo.EyeLeft;
   1.765 +
   1.766 +    // Obtain data from profile.
   1.767 +    char eyecup[16];
   1.768 +    if (profile->GetValue(OVR_KEY_EYE_CUP, eyecup, 16))
   1.769 +    {
   1.770 +        SetEyeCup(&renderInfo, eyecup);
   1.771 +    }
   1.772 +    
   1.773 +    switch ( hmdInfo.HmdType )
   1.774 +    {
   1.775 +    case HmdType_None:
   1.776 +    case HmdType_DKProto:
   1.777 +    case HmdType_DK1:
   1.778 +        // Slight hack to improve usability.
   1.779 +        // If you have a DKHD-style lens profile enabled,
   1.780 +        // but you plug in DK1 and forget to change the profile,
   1.781 +        // obviously you don't want those lens numbers.
   1.782 +        if ( ( renderInfo.EyeCups != EyeCup_DK1A ) &&
   1.783 +             ( renderInfo.EyeCups != EyeCup_DK1B ) &&
   1.784 +             ( renderInfo.EyeCups != EyeCup_DK1C ) )
   1.785 +        {
   1.786 +            renderInfo.EyeCups = EyeCup_DK1A;
   1.787 +        }
   1.788 +        break;
   1.789 +
   1.790 +    case HmdType_DKHD2Proto:
   1.791 +        renderInfo.EyeCups = EyeCup_DKHD2A;
   1.792 +        break;
   1.793 +    case HmdType_CrystalCoveProto:
   1.794 +        renderInfo.EyeCups = EyeCup_PinkA;
   1.795 +        break;
   1.796 +    case HmdType_DK2:
   1.797 +        renderInfo.EyeCups = EyeCup_DK2A;
   1.798 +        break;
   1.799 +    default:
   1.800 +        break;
   1.801 +    }
   1.802 +
   1.803 +    if ( eyeCupOverride != EyeCup_LAST )
   1.804 +    {
   1.805 +        renderInfo.EyeCups = eyeCupOverride;
   1.806 +    }
   1.807 +
   1.808 +    switch ( renderInfo.EyeCups )
   1.809 +    {
   1.810 +    case EyeCup_DK1A:
   1.811 +    case EyeCup_DK1B:
   1.812 +    case EyeCup_DK1C:
   1.813 +        renderInfo.LensDiameterInMeters                   = 0.035f;
   1.814 +        renderInfo.LensSurfaceToMidplateInMeters          = 0.02357f;
   1.815 +        // Not strictly lens-specific, but still wise to set a reasonable default for relief.
   1.816 +        renderInfo.EyeLeft.ReliefInMeters                 = 0.010f; 
   1.817 +        renderInfo.EyeRight.ReliefInMeters                = 0.010f; 
   1.818 +        break;
   1.819 +    case EyeCup_DKHD2A:
   1.820 +        renderInfo.LensDiameterInMeters                   = 0.035f;
   1.821 +        renderInfo.LensSurfaceToMidplateInMeters          = 0.02357f;
   1.822 +        // Not strictly lens-specific, but still wise to set a reasonable default for relief.
   1.823 +        renderInfo.EyeLeft.ReliefInMeters                 = 0.010f; 
   1.824 +        renderInfo.EyeRight.ReliefInMeters                = 0.010f; 
   1.825 +        break;
   1.826 +    case EyeCup_PinkA:
   1.827 +    case EyeCup_DK2A:
   1.828 +        renderInfo.LensDiameterInMeters                   = 0.04f;      // approximate
   1.829 +        renderInfo.LensSurfaceToMidplateInMeters          = 0.01965f;
   1.830 +        // Not strictly lens-specific, but still wise to set a reasonable default for relief.
   1.831 +        renderInfo.EyeLeft.ReliefInMeters                 = 0.012f;
   1.832 +        renderInfo.EyeRight.ReliefInMeters                = 0.012f;
   1.833 +        break;
   1.834 +    default: OVR_ASSERT ( false ); break;
   1.835 +    }
   1.836 +
   1.837 +    Profile* def = ProfileManager::GetInstance()->GetDefaultProfile(hmdInfo.HmdType);
   1.838 +
   1.839 +    // Set the eye position
   1.840 +    // Use the user profile value unless they have elected to use the defaults
   1.841 +    if (!profile->GetBoolValue(OVR_KEY_CUSTOM_EYE_RENDER, true))
   1.842 +        profile = def;  // use the default
   1.843 +
   1.844 +    char user[32];
   1.845 +    profile->GetValue(OVR_KEY_USER, user, 32);   // for debugging purposes
   1.846 +
   1.847 +    // TBD: Maybe we should separate custom camera positioning from custom distortion rendering ??
   1.848 +    float eye2nose[2] = { OVR_DEFAULT_IPD / 2, OVR_DEFAULT_IPD / 2 };
   1.849 +    if (profile->GetFloatValues(OVR_KEY_EYE_TO_NOSE_DISTANCE, eye2nose, 2) == 2)
   1.850 +    {   
   1.851 +        renderInfo.EyeLeft.NoseToPupilInMeters = eye2nose[0];
   1.852 +        renderInfo.EyeRight.NoseToPupilInMeters = eye2nose[1];
   1.853 +    }
   1.854 +    else
   1.855 +    {   // Legacy profiles may not include half-ipd, so use the regular IPD value instead
   1.856 +        float ipd = profile->GetFloatValue(OVR_KEY_IPD, OVR_DEFAULT_IPD);
   1.857 +        renderInfo.EyeLeft.NoseToPupilInMeters = 0.5f * ipd;
   1.858 +        renderInfo.EyeRight.NoseToPupilInMeters = 0.5f * ipd;
   1.859 +    }
   1.860 +        
   1.861 +    float eye2plate[2];
   1.862 +    if ((profile->GetFloatValues(OVR_KEY_MAX_EYE_TO_PLATE_DISTANCE, eye2plate, 2) == 2) ||
   1.863 +        (def->GetFloatValues(OVR_KEY_MAX_EYE_TO_PLATE_DISTANCE, eye2plate, 2) == 2))
   1.864 +    {   // Subtract the eye-cup height from the plate distance to get the eye-to-lens distance
   1.865 +        // This measurement should be the the distance at maximum dial setting
   1.866 +        // We still need to adjust with the dial offset
   1.867 +        renderInfo.EyeLeft.ReliefInMeters = eye2plate[0] - renderInfo.LensSurfaceToMidplateInMeters;
   1.868 +        renderInfo.EyeRight.ReliefInMeters = eye2plate[1] - renderInfo.LensSurfaceToMidplateInMeters;
   1.869 +
   1.870 +        // Adjust the eye relief with the dial setting (from the assumed max eye relief)
   1.871 +        int dial = profile->GetIntValue(OVR_KEY_EYE_RELIEF_DIAL, OVR_DEFAULT_EYE_RELIEF_DIAL);
   1.872 +        renderInfo.EyeLeft.ReliefInMeters -= ((10 - dial) * 0.001f);
   1.873 +        renderInfo.EyeRight.ReliefInMeters -= ((10 - dial) * 0.001f);
   1.874 +    }
   1.875 +    else
   1.876 +    {
   1.877 +        // We shouldn't be here.  The user or default profile should have the eye relief
   1.878 +        OVR_ASSERT(false);
   1.879 +
   1.880 +        // Set the eye relief with the user configured dial setting
   1.881 +		//int dial = profile->GetIntValue(OVR_KEY_EYE_RELIEF_DIAL, OVR_DEFAULT_EYE_RELIEF_DIAL);
   1.882 +
   1.883 +        // Assume a default of 7 to 17 mm eye relief based on the dial.  This corresponds
   1.884 +        // to the sampled and tuned distortion range on the DK1.
   1.885 +        //renderInfo.EyeLeft.ReliefInMeters = 0.007f + (dial * 0.001f);
   1.886 +        //renderInfo.EyeRight.ReliefInMeters = 0.007f + (dial * 0.001f);
   1.887 +    }
   1.888 +
   1.889 +    def->Release();
   1.890 +
   1.891 +
   1.892 +    // Now we know where the eyes are relative to the lenses, we can compute a distortion for each.
   1.893 +    // TODO: incorporate lateral offset in distortion generation.
   1.894 +    // TODO: we used a distortion to calculate eye-relief, and now we're making a distortion from that eye-relief. Close the loop!
   1.895 +
   1.896 +    for ( int eyeNum = 0; eyeNum < 2; eyeNum++ )
   1.897 +    {
   1.898 +        HmdRenderInfo::EyeConfig *pHmdEyeConfig = ( eyeNum == 0 ) ? &(renderInfo.EyeLeft) : &(renderInfo.EyeRight);
   1.899 +
   1.900 +        float eye_relief = pHmdEyeConfig->ReliefInMeters;
   1.901 +        LensConfig distortionConfig = GenerateLensConfigFromEyeRelief ( eye_relief, renderInfo, distortionType );
   1.902 +        pHmdEyeConfig->Distortion = distortionConfig;
   1.903 +    }
   1.904 +
   1.905 +    return renderInfo;
   1.906 +}
   1.907 +
   1.908 +
   1.909 +LensConfig GenerateLensConfigFromEyeRelief ( float eyeReliefInMeters, HmdRenderInfo const &hmd, DistortionEqnType distortionType /*= Distortion_CatmullRom10*/ )
   1.910 +{
   1.911 +    struct DistortionDescriptor
   1.912 +    {
   1.913 +        float EyeRelief;
   1.914 +        // The three places we're going to sample & lerp the curve at.
   1.915 +        // One sample is always at 0.0, and the distortion scale should be 1.0 or else!
   1.916 +        // Only use for poly4 numbers - CR has an implicit scale.
   1.917 +        float SampleRadius[3];
   1.918 +        // Where the distortion has actually been measured/calibrated out to.
   1.919 +        // Don't try to hallucinate data out beyond here.
   1.920 +        float MaxRadius;
   1.921 +        // The config itself.
   1.922 +        LensConfig Config;
   1.923 +    };
   1.924 +
   1.925 +	static const int MaxDistortions = 10;
   1.926 +	DistortionDescriptor distortions[MaxDistortions];
   1.927 +	for (int i = 0; i < MaxDistortions; i++)
   1.928 +    {
   1.929 +        distortions[i].EyeRelief = 0.0f;
   1.930 +        memset(distortions[i].SampleRadius, 0, sizeof(distortions[i].SampleRadius));
   1.931 +        distortions[i].MaxRadius = 1.0f;
   1.932 +        distortions[i].Config.SetToIdentity(); // Note: This line causes a false Microsoft static analysis error -cat
   1.933 +    }
   1.934 +    int numDistortions = 0;
   1.935 +    int defaultDistortion = 0;     // index of the default distortion curve to use if zero eye relief supplied
   1.936 +
   1.937 +    if ( ( hmd.EyeCups == EyeCup_DK1A ) ||
   1.938 +         ( hmd.EyeCups == EyeCup_DK1B ) ||
   1.939 +         ( hmd.EyeCups == EyeCup_DK1C ) )
   1.940 +    {
   1.941 +
   1.942 +        numDistortions = 0;
   1.943 +                
   1.944 +        // Tuned at minimum dial setting - extended to r^2 == 1.8
   1.945 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
   1.946 +        distortions[numDistortions].EyeRelief                            = 0.012760465f - 0.005f;
   1.947 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.0425f;
   1.948 +        distortions[numDistortions].Config.K[0]                          = 1.0000f;
   1.949 +        distortions[numDistortions].Config.K[1]                          = 1.06505f;
   1.950 +        distortions[numDistortions].Config.K[2]                          = 1.14725f;
   1.951 +        distortions[numDistortions].Config.K[3]                          = 1.2705f;
   1.952 +        distortions[numDistortions].Config.K[4]                          = 1.48f;
   1.953 +        distortions[numDistortions].Config.K[5]                          = 1.87f;
   1.954 +        distortions[numDistortions].Config.K[6]                          = 2.534f;
   1.955 +        distortions[numDistortions].Config.K[7]                          = 3.6f;
   1.956 +        distortions[numDistortions].Config.K[8]                          = 5.1f;
   1.957 +        distortions[numDistortions].Config.K[9]                          = 7.4f;
   1.958 +        distortions[numDistortions].Config.K[10]                         = 11.0f;
   1.959 +        distortions[numDistortions].MaxRadius                            = sqrt(1.8f);
   1.960 +        defaultDistortion = numDistortions;                      // this is the default
   1.961 +        numDistortions++;
   1.962 +        
   1.963 +        // Tuned at middle dial setting
   1.964 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
   1.965 +        distortions[numDistortions].EyeRelief                            = 0.012760465f;  // my average eye-relief
   1.966 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.0425f;
   1.967 +        distortions[numDistortions].Config.K[0]                          = 1.0f;
   1.968 +        distortions[numDistortions].Config.K[1]                          = 1.032407264f;
   1.969 +        distortions[numDistortions].Config.K[2]                          = 1.07160462f;
   1.970 +        distortions[numDistortions].Config.K[3]                          = 1.11998388f;
   1.971 +        distortions[numDistortions].Config.K[4]                          = 1.1808606f;
   1.972 +        distortions[numDistortions].Config.K[5]                          = 1.2590494f;
   1.973 +        distortions[numDistortions].Config.K[6]                          = 1.361915f;
   1.974 +        distortions[numDistortions].Config.K[7]                          = 1.5014339f;
   1.975 +        distortions[numDistortions].Config.K[8]                          = 1.6986004f;
   1.976 +        distortions[numDistortions].Config.K[9]                          = 1.9940577f;
   1.977 +        distortions[numDistortions].Config.K[10]                         = 2.4783147f;
   1.978 +        distortions[numDistortions].MaxRadius                            = 1.0f;
   1.979 +        numDistortions++;
   1.980 +
   1.981 +        // Tuned at maximum dial setting
   1.982 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
   1.983 +        distortions[numDistortions].EyeRelief                            = 0.012760465f + 0.005f;
   1.984 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.0425f;
   1.985 +        distortions[numDistortions].Config.K[0]                          = 1.0102f;
   1.986 +        distortions[numDistortions].Config.K[1]                          = 1.0371f;
   1.987 +        distortions[numDistortions].Config.K[2]                          = 1.0831f;
   1.988 +        distortions[numDistortions].Config.K[3]                          = 1.1353f;
   1.989 +        distortions[numDistortions].Config.K[4]                          = 1.2f;
   1.990 +        distortions[numDistortions].Config.K[5]                          = 1.2851f;
   1.991 +        distortions[numDistortions].Config.K[6]                          = 1.3979f;
   1.992 +        distortions[numDistortions].Config.K[7]                          = 1.56f;
   1.993 +        distortions[numDistortions].Config.K[8]                          = 1.8f;
   1.994 +        distortions[numDistortions].Config.K[9]                          = 2.25f;
   1.995 +        distortions[numDistortions].Config.K[10]                         = 3.0f;
   1.996 +        distortions[numDistortions].MaxRadius                            = 1.0f;
   1.997 +        numDistortions++;
   1.998 +        
   1.999 +
  1.1000 +        
  1.1001 +        // Chromatic aberration doesn't seem to change with eye relief.
  1.1002 +        for ( int i = 0; i < numDistortions; i++ )
  1.1003 +        {
  1.1004 +            distortions[i].Config.ChromaticAberration[0]        = -0.006f;
  1.1005 +            distortions[i].Config.ChromaticAberration[1]        =  0.0f;
  1.1006 +            distortions[i].Config.ChromaticAberration[2]        =  0.014f;
  1.1007 +            distortions[i].Config.ChromaticAberration[3]        =  0.0f;
  1.1008 +        }
  1.1009 +    }
  1.1010 +    else if ( hmd.EyeCups == EyeCup_DKHD2A )
  1.1011 +    {
  1.1012 +        // Tuned DKHD2 lens
  1.1013 +        numDistortions = 0;
  1.1014 +       
  1.1015 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
  1.1016 +        distortions[numDistortions].EyeRelief                            = 0.010f;
  1.1017 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.0425f;
  1.1018 +        distortions[numDistortions].Config.K[0]                          = 1.0f;
  1.1019 +        distortions[numDistortions].Config.K[1]                          = 1.0425f;
  1.1020 +        distortions[numDistortions].Config.K[2]                          = 1.0826f;
  1.1021 +        distortions[numDistortions].Config.K[3]                          = 1.130f;
  1.1022 +        distortions[numDistortions].Config.K[4]                          = 1.185f;
  1.1023 +        distortions[numDistortions].Config.K[5]                          = 1.250f;
  1.1024 +        distortions[numDistortions].Config.K[6]                          = 1.338f;
  1.1025 +        distortions[numDistortions].Config.K[7]                          = 1.455f;
  1.1026 +        distortions[numDistortions].Config.K[8]                          = 1.620f;
  1.1027 +        distortions[numDistortions].Config.K[9]                          = 1.840f;
  1.1028 +        distortions[numDistortions].Config.K[10]                         = 2.200f;
  1.1029 +        distortions[numDistortions].MaxRadius                            = 1.0f;
  1.1030 +        
  1.1031 +        defaultDistortion = numDistortions;   // this is the default
  1.1032 +        numDistortions++;
  1.1033 +
  1.1034 +        distortions[numDistortions] = distortions[0];
  1.1035 +        distortions[numDistortions].EyeRelief = 0.020f;
  1.1036 +        numDistortions++;
  1.1037 +
  1.1038 +        // Chromatic aberration doesn't seem to change with eye relief.
  1.1039 +        for ( int i = 0; i < numDistortions; i++ )
  1.1040 +        {
  1.1041 +            distortions[i].Config.ChromaticAberration[0]        = -0.006f;
  1.1042 +            distortions[i].Config.ChromaticAberration[1]        =  0.0f;
  1.1043 +            distortions[i].Config.ChromaticAberration[2]        =  0.014f;
  1.1044 +            distortions[i].Config.ChromaticAberration[3]        =  0.0f;
  1.1045 +        }
  1.1046 +    }
  1.1047 +    else if ( hmd.EyeCups == EyeCup_PinkA || hmd.EyeCups == EyeCup_DK2A )
  1.1048 +    {
  1.1049 +        // Tuned Crystal Cove & DK2 Lens (CES & GDC)
  1.1050 +        numDistortions = 0;
  1.1051 +       
  1.1052 +        
  1.1053 +        distortions[numDistortions].EyeRelief                            = 0.008f;
  1.1054 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.036f;
  1.1055 +        // TODO: Need to retune this distortion for minimum eye relief
  1.1056 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
  1.1057 +        distortions[numDistortions].Config.K[0]                          = 1.003f;
  1.1058 +        distortions[numDistortions].Config.K[1]                          = 1.02f;
  1.1059 +        distortions[numDistortions].Config.K[2]                          = 1.042f;
  1.1060 +        distortions[numDistortions].Config.K[3]                          = 1.066f;
  1.1061 +        distortions[numDistortions].Config.K[4]                          = 1.094f;
  1.1062 +        distortions[numDistortions].Config.K[5]                          = 1.126f;
  1.1063 +        distortions[numDistortions].Config.K[6]                          = 1.162f;
  1.1064 +        distortions[numDistortions].Config.K[7]                          = 1.203f;
  1.1065 +        distortions[numDistortions].Config.K[8]                          = 1.25f;
  1.1066 +        distortions[numDistortions].Config.K[9]                          = 1.31f;
  1.1067 +        distortions[numDistortions].Config.K[10]                         = 1.38f;
  1.1068 +        distortions[numDistortions].MaxRadius                            = 1.0f;
  1.1069 +        
  1.1070 +        distortions[numDistortions].Config.ChromaticAberration[0]        = -0.0112f;
  1.1071 +        distortions[numDistortions].Config.ChromaticAberration[1]        = -0.015f;
  1.1072 +        distortions[numDistortions].Config.ChromaticAberration[2]        =  0.0187f;
  1.1073 +        distortions[numDistortions].Config.ChromaticAberration[3]        =  0.015f;
  1.1074 +        
  1.1075 +        numDistortions++;
  1.1076 +
  1.1077 +
  1.1078 +
  1.1079 +
  1.1080 +
  1.1081 +        distortions[numDistortions].EyeRelief                            = 0.018f;
  1.1082 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.036f;
  1.1083 +
  1.1084 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
  1.1085 +        distortions[numDistortions].Config.K[0]                          = 1.003f;
  1.1086 +        distortions[numDistortions].Config.K[1]                          = 1.02f;
  1.1087 +        distortions[numDistortions].Config.K[2]                          = 1.042f;
  1.1088 +        distortions[numDistortions].Config.K[3]                          = 1.066f;
  1.1089 +        distortions[numDistortions].Config.K[4]                          = 1.094f;
  1.1090 +        distortions[numDistortions].Config.K[5]                          = 1.126f;
  1.1091 +        distortions[numDistortions].Config.K[6]                          = 1.162f;
  1.1092 +        distortions[numDistortions].Config.K[7]                          = 1.203f;
  1.1093 +        distortions[numDistortions].Config.K[8]                          = 1.25f;
  1.1094 +        distortions[numDistortions].Config.K[9]                          = 1.31f;
  1.1095 +        distortions[numDistortions].Config.K[10]                         = 1.38f;
  1.1096 +        distortions[numDistortions].MaxRadius                            = 1.0f;
  1.1097 +
  1.1098 +        distortions[numDistortions].Config.ChromaticAberration[0]        = -0.015f;
  1.1099 +        distortions[numDistortions].Config.ChromaticAberration[1]        = -0.02f;
  1.1100 +        distortions[numDistortions].Config.ChromaticAberration[2]        =  0.025f;
  1.1101 +        distortions[numDistortions].Config.ChromaticAberration[3]        =  0.02f;
  1.1102 +        
  1.1103 +        defaultDistortion = numDistortions;   // this is the default
  1.1104 +        numDistortions++;
  1.1105 +        
  1.1106 +        /*
  1.1107 +        // Orange Lens on DK2
  1.1108 +        distortions[numDistortions].EyeRelief                            = 0.010f;
  1.1109 +        distortions[numDistortions].Config.MetersPerTanAngleAtCenter     = 0.031f;
  1.1110 +
  1.1111 +        distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
  1.1112 +        distortions[numDistortions].Config.K[0]                          = 1.00f;
  1.1113 +        distortions[numDistortions].Config.K[1]                          = 1.0169f;
  1.1114 +        distortions[numDistortions].Config.K[2]                          = 1.0378f;
  1.1115 +        distortions[numDistortions].Config.K[3]                          = 1.0648f;
  1.1116 +        distortions[numDistortions].Config.K[4]                          = 1.0990f;
  1.1117 +        distortions[numDistortions].Config.K[5]                          = 1.141f;
  1.1118 +        distortions[numDistortions].Config.K[6]                          = 1.192f;
  1.1119 +        distortions[numDistortions].Config.K[7]                          = 1.255f;
  1.1120 +        distortions[numDistortions].Config.K[8]                          = 1.335f;
  1.1121 +        distortions[numDistortions].Config.K[9]                          = 1.435f;
  1.1122 +        distortions[numDistortions].Config.K[10]                         = 1.56f;
  1.1123 +        distortions[numDistortions].MaxRadius                            = 1.0f;
  1.1124 +        */
  1.1125 +    }
  1.1126 +    else
  1.1127 +    {
  1.1128 +        // Unknown lens.
  1.1129 +        // Use DK1 black lens settings, just so we can continue to run with something.
  1.1130 +        distortions[0].EyeRelief = 0.005f;
  1.1131 +        distortions[0].Config.MetersPerTanAngleAtCenter = 0.043875f;
  1.1132 +        distortions[0].Config.Eqn = Distortion_RecipPoly4;
  1.1133 +        distortions[0].Config.K[0] = 1.0f;
  1.1134 +        distortions[0].Config.K[1] = -0.3999f;
  1.1135 +        distortions[0].Config.K[2] =  0.2408f;
  1.1136 +        distortions[0].Config.K[3] = -0.4589f;
  1.1137 +        distortions[0].SampleRadius[0] = 0.2f;
  1.1138 +        distortions[0].SampleRadius[1] = 0.4f;
  1.1139 +        distortions[0].SampleRadius[2] = 0.6f;
  1.1140 +
  1.1141 +        distortions[1] = distortions[0];
  1.1142 +        distortions[1].EyeRelief = 0.010f;
  1.1143 +        numDistortions = 2;
  1.1144 +
  1.1145 +        // Chromatic aberration doesn't seem to change with eye relief.
  1.1146 +        for ( int i = 0; i < numDistortions; i++ )
  1.1147 +        {
  1.1148 +            // These are placeholder, they have not been tuned!
  1.1149 +            distortions[i].Config.ChromaticAberration[0]        =  0.0f;
  1.1150 +            distortions[i].Config.ChromaticAberration[1]        =  0.0f;
  1.1151 +            distortions[i].Config.ChromaticAberration[2]        =  0.0f;
  1.1152 +            distortions[i].Config.ChromaticAberration[3]        =  0.0f;
  1.1153 +        }
  1.1154 +    }
  1.1155 +
  1.1156 +	OVR_ASSERT(numDistortions < MaxDistortions);
  1.1157 +
  1.1158 +    DistortionDescriptor *pUpper = NULL;
  1.1159 +    DistortionDescriptor *pLower = NULL;
  1.1160 +    float lerpVal = 0.0f;
  1.1161 +    if (eyeReliefInMeters == 0)
  1.1162 +    {   // Use a constant default distortion if an invalid eye-relief is supplied
  1.1163 +        pLower = &(distortions[defaultDistortion]);
  1.1164 +        pUpper = &(distortions[defaultDistortion]);
  1.1165 +        lerpVal = 0.0f;
  1.1166 +    }
  1.1167 +    else
  1.1168 +    {
  1.1169 +        for ( int i = 0; i < numDistortions-1; i++ )
  1.1170 +        {
  1.1171 +            OVR_ASSERT ( distortions[i].EyeRelief < distortions[i+1].EyeRelief );
  1.1172 +            if ( ( distortions[i].EyeRelief <= eyeReliefInMeters ) && ( distortions[i+1].EyeRelief > eyeReliefInMeters ) )
  1.1173 +            {
  1.1174 +                pLower = &(distortions[i]);
  1.1175 +                pUpper = &(distortions[i+1]);
  1.1176 +                lerpVal = ( eyeReliefInMeters - pLower->EyeRelief ) / ( pUpper->EyeRelief - pLower->EyeRelief );
  1.1177 +                // No break here - I want the ASSERT to check everything every time!
  1.1178 +            }
  1.1179 +        }
  1.1180 +    }
  1.1181 +
  1.1182 +    if ( pUpper == NULL )
  1.1183 +    {
  1.1184 +#if 0
  1.1185 +        // Outside the range, so extrapolate rather than interpolate.
  1.1186 +        if ( distortions[0].EyeRelief > eyeReliefInMeters )
  1.1187 +        { 
  1.1188 +            pLower = &(distortions[0]);
  1.1189 +            pUpper = &(distortions[1]);
  1.1190 +        }
  1.1191 +        else
  1.1192 +        {
  1.1193 +            OVR_ASSERT ( distortions[numDistortions-1].EyeRelief <= eyeReliefInMeters );
  1.1194 +            pLower = &(distortions[numDistortions-2]);
  1.1195 +            pUpper = &(distortions[numDistortions-1]);
  1.1196 +        }
  1.1197 +        lerpVal = ( eyeReliefInMeters - pLower->EyeRelief ) / ( pUpper->EyeRelief - pLower->EyeRelief );
  1.1198 +#else
  1.1199 +        // Do not extrapolate, just clamp - slightly worried about people putting in bogus settings.
  1.1200 +        if ( distortions[0].EyeRelief > eyeReliefInMeters )
  1.1201 +        {
  1.1202 +            pLower = &(distortions[0]);
  1.1203 +            pUpper = &(distortions[0]);
  1.1204 +        }
  1.1205 +        else
  1.1206 +        {
  1.1207 +            OVR_ASSERT ( distortions[numDistortions-1].EyeRelief <= eyeReliefInMeters );
  1.1208 +            pLower = &(distortions[numDistortions-1]);
  1.1209 +            pUpper = &(distortions[numDistortions-1]);
  1.1210 +        }
  1.1211 +        lerpVal = 0.0f;
  1.1212 +#endif
  1.1213 +    }
  1.1214 +    float invLerpVal = 1.0f - lerpVal;
  1.1215 +
  1.1216 +    pLower->Config.MaxR = pLower->MaxRadius;
  1.1217 +    pUpper->Config.MaxR = pUpper->MaxRadius;
  1.1218 +
  1.1219 +    LensConfig result;
  1.1220 +    // Where is the edge of the lens - no point modelling further than this.
  1.1221 +    float maxValidRadius = invLerpVal * pLower->MaxRadius + lerpVal * pUpper->MaxRadius;
  1.1222 +    result.MaxR = maxValidRadius;
  1.1223 +
  1.1224 +    switch ( distortionType )
  1.1225 +    {
  1.1226 +    case Distortion_Poly4:
  1.1227 +        // Deprecated
  1.1228 +        OVR_ASSERT ( false );
  1.1229 +        break;
  1.1230 +    case Distortion_RecipPoly4:{
  1.1231 +        // Lerp control points and fit an equation to them.
  1.1232 +        float fitX[4];
  1.1233 +        float fitY[4];
  1.1234 +        fitX[0] = 0.0f;
  1.1235 +        fitY[0] = 1.0f;
  1.1236 +        for ( int ctrlPt = 1; ctrlPt < 4; ctrlPt ++ )
  1.1237 +        {
  1.1238 +            // SampleRadius is not valid for Distortion_RecipPoly4 types.
  1.1239 +            float radiusLerp = ( invLerpVal * pLower->MaxRadius + lerpVal * pUpper->MaxRadius ) * ( (float)ctrlPt / 4.0f );
  1.1240 +            float radiusLerpSq = radiusLerp * radiusLerp;
  1.1241 +            float fitYLower = pLower->Config.DistortionFnScaleRadiusSquared ( radiusLerpSq );
  1.1242 +            float fitYUpper = pUpper->Config.DistortionFnScaleRadiusSquared ( radiusLerpSq );
  1.1243 +            fitX[ctrlPt] = radiusLerpSq;
  1.1244 +            fitY[ctrlPt] = 1.0f / ( invLerpVal * fitYLower + lerpVal * fitYUpper );
  1.1245 +        }
  1.1246 +
  1.1247 +        result.Eqn = Distortion_RecipPoly4;
  1.1248 +        bool bSuccess = FitCubicPolynomial ( result.K, fitX, fitY );
  1.1249 +        OVR_ASSERT ( bSuccess );
  1.1250 +        OVR_UNUSED ( bSuccess );
  1.1251 +
  1.1252 +        // Set up the fast inverse.
  1.1253 +        float maxRDist = result.DistortionFn ( maxValidRadius );
  1.1254 +        result.MaxInvR = maxRDist;
  1.1255 +        result.SetUpInverseApprox();
  1.1256 +
  1.1257 +        }break;
  1.1258 +
  1.1259 +    case Distortion_CatmullRom10:{
  1.1260 +
  1.1261 +        // Evenly sample & lerp points on the curve.
  1.1262 +        const int NumSegments = LensConfig::NumCoefficients;
  1.1263 +        result.MaxR = maxValidRadius;
  1.1264 +        // Directly interpolate the K0 values
  1.1265 +        result.K[0] = invLerpVal * pLower->Config.K[0] + lerpVal * pUpper->Config.K[0];
  1.1266 +
  1.1267 +        // Sample and interpolate the distortion curves to derive K[1] ... K[n]
  1.1268 +        for ( int ctrlPt = 1; ctrlPt < NumSegments; ctrlPt++ )
  1.1269 +        {
  1.1270 +            float radiusSq = ( (float)ctrlPt / (float)(NumSegments-1) ) * maxValidRadius * maxValidRadius;
  1.1271 +            float fitYLower = pLower->Config.DistortionFnScaleRadiusSquared ( radiusSq );
  1.1272 +            float fitYUpper = pUpper->Config.DistortionFnScaleRadiusSquared ( radiusSq );
  1.1273 +            float fitLerp = invLerpVal * fitYLower + lerpVal * fitYUpper;
  1.1274 +            result.K[ctrlPt] = fitLerp;
  1.1275 +        }
  1.1276 +
  1.1277 +        result.Eqn = Distortion_CatmullRom10;
  1.1278 +
  1.1279 +        for ( int ctrlPt = 1; ctrlPt < NumSegments; ctrlPt++ )
  1.1280 +        {
  1.1281 +            float radiusSq = ( (float)ctrlPt / (float)(NumSegments-1) ) * maxValidRadius * maxValidRadius;
  1.1282 +            float val = result.DistortionFnScaleRadiusSquared ( radiusSq );            
  1.1283 +            OVR_ASSERT ( Alg::Abs ( val - result.K[ctrlPt] ) < 0.0001f );
  1.1284 +            OVR_UNUSED1(val); // For release build.
  1.1285 +        }
  1.1286 +
  1.1287 +        // Set up the fast inverse.
  1.1288 +        float maxRDist = result.DistortionFn ( maxValidRadius );
  1.1289 +        result.MaxInvR = maxRDist;
  1.1290 +        result.SetUpInverseApprox();
  1.1291 +
  1.1292 +        }break;
  1.1293 +
  1.1294 +    default: OVR_ASSERT ( false ); break;
  1.1295 +    }
  1.1296 +
  1.1297 +
  1.1298 +    // Chromatic aberration.
  1.1299 +    result.ChromaticAberration[0] = invLerpVal * pLower->Config.ChromaticAberration[0] + lerpVal * pUpper->Config.ChromaticAberration[0];
  1.1300 +    result.ChromaticAberration[1] = invLerpVal * pLower->Config.ChromaticAberration[1] + lerpVal * pUpper->Config.ChromaticAberration[1];
  1.1301 +    result.ChromaticAberration[2] = invLerpVal * pLower->Config.ChromaticAberration[2] + lerpVal * pUpper->Config.ChromaticAberration[2];
  1.1302 +    result.ChromaticAberration[3] = invLerpVal * pLower->Config.ChromaticAberration[3] + lerpVal * pUpper->Config.ChromaticAberration[3];
  1.1303 +
  1.1304 +    // Scale.
  1.1305 +    result.MetersPerTanAngleAtCenter =  pLower->Config.MetersPerTanAngleAtCenter * invLerpVal +
  1.1306 +                                        pUpper->Config.MetersPerTanAngleAtCenter * lerpVal;
  1.1307 +    /*
  1.1308 +    // Commented out - Causes ASSERT with no HMD plugged in
  1.1309 +#ifdef OVR_BUILD_DEBUG
  1.1310 +    if ( distortionType == Distortion_CatmullRom10 )
  1.1311 +    {
  1.1312 +        TestSaveLoadLensConfig ( result );
  1.1313 +    }
  1.1314 +#endif
  1.1315 +    */
  1.1316 +    return result;
  1.1317 +}
  1.1318 +
  1.1319 +
  1.1320 +DistortionRenderDesc CalculateDistortionRenderDesc ( StereoEye eyeType, HmdRenderInfo const &hmd,
  1.1321 +                                                     const LensConfig *pLensOverride /*= NULL */ )
  1.1322 +{
  1.1323 +    // From eye relief, IPD and device characteristics, we get the distortion mapping.
  1.1324 +    // This distortion does the following things:
  1.1325 +    // 1. It undoes the distortion that happens at the edges of the lens.
  1.1326 +    // 2. It maps the undistorted field into "retina" space.
  1.1327 +    // So the input is a pixel coordinate - the physical pixel on the display itself.
  1.1328 +    // The output is the real-world direction of the ray from this pixel as it comes out of the lens and hits the eye.
  1.1329 +    // However we typically think of rays "coming from" the eye, so the direction (TanAngleX,TanAngleY,1) is the direction
  1.1330 +    //      that the pixel appears to be in real-world space, where AngleX and AngleY are relative to the straight-ahead vector.
  1.1331 +    // If your renderer is a raytracer, you can use this vector directly (normalize as appropriate).
  1.1332 +    // However in standard rasterisers, we have rendered a 2D image and are putting it in front of the eye,
  1.1333 +    //      so we then need a mapping from this space to the [-1,1] UV coordinate space, which depends on exactly
  1.1334 +    //      where "in space" the app wants to put that rendertarget.
  1.1335 +    //      Where in space, and how large this rendertarget is, is completely up to the app and/or user,
  1.1336 +    //      though of course we can provide some useful hints.
  1.1337 +
  1.1338 +    // TODO: Use IPD and eye relief to modify distortion (i.e. non-radial component)
  1.1339 +    // TODO: cope with lenses that don't produce collimated light.
  1.1340 +    //       This means that IPD relative to the lens separation changes the light vergence,
  1.1341 +    //       and so we actually need to change where the image is displayed.
  1.1342 +
  1.1343 +    const HmdRenderInfo::EyeConfig &hmdEyeConfig = ( eyeType == StereoEye_Left ) ? hmd.EyeLeft : hmd.EyeRight;
  1.1344 +
  1.1345 +    DistortionRenderDesc localDistortion;
  1.1346 +    localDistortion.Lens = hmdEyeConfig.Distortion;
  1.1347 +
  1.1348 +    if ( pLensOverride != NULL )
  1.1349 +    {
  1.1350 +        localDistortion.Lens = *pLensOverride;
  1.1351 +    }
  1.1352 +
  1.1353 +    Sizef pixelsPerMeter(hmd.ResolutionInPixels.w / ( hmd.ScreenSizeInMeters.w - hmd.ScreenGapSizeInMeters ),
  1.1354 +                         hmd.ResolutionInPixels.h / hmd.ScreenSizeInMeters.h);
  1.1355 +
  1.1356 +    localDistortion.PixelsPerTanAngleAtCenter = (pixelsPerMeter * localDistortion.Lens.MetersPerTanAngleAtCenter).ToVector();
  1.1357 +    // Same thing, scaled to [-1,1] for each eye, rather than pixels.
  1.1358 +
  1.1359 +    localDistortion.TanEyeAngleScale = Vector2f(0.25f, 0.5f).EntrywiseMultiply(
  1.1360 +                                       (hmd.ScreenSizeInMeters / localDistortion.Lens.MetersPerTanAngleAtCenter).ToVector());
  1.1361 +    
  1.1362 +    // <--------------left eye------------------><-ScreenGapSizeInMeters-><--------------right eye----------------->
  1.1363 +    // <------------------------------------------ScreenSizeInMeters.Width----------------------------------------->
  1.1364 +    //                            <----------------LensSeparationInMeters--------------->
  1.1365 +    // <--centerFromLeftInMeters->
  1.1366 +    //                            ^
  1.1367 +    //                      Center of lens
  1.1368 +
  1.1369 +    // Find the lens centers in scale of [-1,+1] (NDC) in left eye.
  1.1370 +    float visibleWidthOfOneEye = 0.5f * ( hmd.ScreenSizeInMeters.w - hmd.ScreenGapSizeInMeters );
  1.1371 +    float centerFromLeftInMeters = ( hmd.ScreenSizeInMeters.w - hmd.LensSeparationInMeters ) * 0.5f;
  1.1372 +    localDistortion.LensCenter.x = (     centerFromLeftInMeters / visibleWidthOfOneEye          ) * 2.0f - 1.0f;
  1.1373 +    localDistortion.LensCenter.y = ( hmd.CenterFromTopInMeters  / hmd.ScreenSizeInMeters.h ) * 2.0f - 1.0f;
  1.1374 +    if ( eyeType == StereoEye_Right )
  1.1375 +    {
  1.1376 +        localDistortion.LensCenter.x = -localDistortion.LensCenter.x;
  1.1377 +    }
  1.1378 +
  1.1379 +    return localDistortion;
  1.1380 +}
  1.1381 +
  1.1382 +FovPort CalculateFovFromEyePosition ( float eyeReliefInMeters,
  1.1383 +                                      float offsetToRightInMeters,
  1.1384 +                                      float offsetDownwardsInMeters,
  1.1385 +                                      float lensDiameterInMeters,
  1.1386 +                                      float extraEyeRotationInRadians /*= 0.0f*/ )
  1.1387 +{
  1.1388 +    // 2D view of things:
  1.1389 +    //       |-|            <--- offsetToRightInMeters (in this case, it is negative)
  1.1390 +    // |=======C=======|    <--- lens surface (C=center)
  1.1391 +    //  \    |       _/
  1.1392 +    //   \   R     _/
  1.1393 +    //    \  |   _/
  1.1394 +    //     \ | _/
  1.1395 +    //      \|/
  1.1396 +    //       O  <--- center of pupil
  1.1397 +
  1.1398 +    // (technically the lens is round rather than square, so it's not correct to
  1.1399 +    // separate vertical and horizontal like this, but it's close enough)
  1.1400 +    float halfLensDiameter = lensDiameterInMeters * 0.5f;
  1.1401 +    FovPort fovPort;
  1.1402 +    fovPort.UpTan    = ( halfLensDiameter + offsetDownwardsInMeters ) / eyeReliefInMeters;
  1.1403 +    fovPort.DownTan  = ( halfLensDiameter - offsetDownwardsInMeters ) / eyeReliefInMeters;
  1.1404 +    fovPort.LeftTan  = ( halfLensDiameter + offsetToRightInMeters   ) / eyeReliefInMeters;
  1.1405 +    fovPort.RightTan = ( halfLensDiameter - offsetToRightInMeters   ) / eyeReliefInMeters;
  1.1406 +
  1.1407 +    if ( extraEyeRotationInRadians > 0.0f )
  1.1408 +    {
  1.1409 +        // That's the basic looking-straight-ahead eye position relative to the lens.
  1.1410 +        // But if you look left, the pupil moves left as the eyeball rotates, which
  1.1411 +        // means you can see more to the right than this geometry suggests.
  1.1412 +        // So add in the bounds for the extra movement of the pupil.
  1.1413 +
  1.1414 +        // Beyond 30 degrees does not increase FOV because the pupil starts moving backwards more than sideways.
  1.1415 +        extraEyeRotationInRadians = Alg::Min ( DegreeToRad ( 30.0f ), Alg::Max ( 0.0f, extraEyeRotationInRadians ) );
  1.1416 +        
  1.1417 +        // The rotation of the eye is a bit more complex than a simple circle.  The center of rotation
  1.1418 +        // at 13.5mm from cornea is slightly further back than the actual center of the eye.
  1.1419 +        // Additionally the rotation contains a small lateral component as the muscles pull the eye
  1.1420 +        const float eyeballCenterToPupil = 0.0135f;  // center of eye rotation
  1.1421 +        const float eyeballLateralPull = 0.001f * (extraEyeRotationInRadians / DegreeToRad ( 30.0f));  // lateral motion as linear function 
  1.1422 +        float extraTranslation = eyeballCenterToPupil * sinf ( extraEyeRotationInRadians ) + eyeballLateralPull;
  1.1423 +        float extraRelief = eyeballCenterToPupil * ( 1.0f - cosf ( extraEyeRotationInRadians ) );
  1.1424 +
  1.1425 +        fovPort.UpTan    = Alg::Max ( fovPort.UpTan   , ( halfLensDiameter + offsetDownwardsInMeters + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
  1.1426 +        fovPort.DownTan  = Alg::Max ( fovPort.DownTan , ( halfLensDiameter - offsetDownwardsInMeters + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
  1.1427 +        fovPort.LeftTan  = Alg::Max ( fovPort.LeftTan , ( halfLensDiameter + offsetToRightInMeters   + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
  1.1428 +        fovPort.RightTan = Alg::Max ( fovPort.RightTan, ( halfLensDiameter - offsetToRightInMeters   + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
  1.1429 +    }
  1.1430 +
  1.1431 +    return fovPort;
  1.1432 +}
  1.1433 +
  1.1434 +
  1.1435 +
  1.1436 +FovPort CalculateFovFromHmdInfo ( StereoEye eyeType,
  1.1437 +                                  DistortionRenderDesc const &distortion,
  1.1438 +                                  HmdRenderInfo const &hmd,
  1.1439 +                                  float extraEyeRotationInRadians /*= 0.0f*/ )
  1.1440 +{
  1.1441 +    FovPort fovPort;
  1.1442 +    float eyeReliefInMeters;
  1.1443 +    float offsetToRightInMeters;
  1.1444 +    if ( eyeType == StereoEye_Right )
  1.1445 +    {
  1.1446 +        eyeReliefInMeters     = hmd.EyeRight.ReliefInMeters;
  1.1447 +        offsetToRightInMeters = hmd.EyeRight.NoseToPupilInMeters - 0.5f * hmd.LensSeparationInMeters;
  1.1448 +    }
  1.1449 +    else
  1.1450 +    {
  1.1451 +        eyeReliefInMeters     = hmd.EyeLeft.ReliefInMeters;
  1.1452 +        offsetToRightInMeters = -(hmd.EyeLeft.NoseToPupilInMeters - 0.5f * hmd.LensSeparationInMeters);
  1.1453 +    }
  1.1454 +
  1.1455 +    // Limit the eye-relief to 6 mm for FOV calculations since this just tends to spread off-screen
  1.1456 +    // and get clamped anyways on DK1 (but in Unity it continues to spreads and causes 
  1.1457 +    // unnecessarily large render targets)
  1.1458 +    eyeReliefInMeters = Alg::Max(eyeReliefInMeters, 0.006f);
  1.1459 +
  1.1460 +    // Central view.
  1.1461 +    fovPort = CalculateFovFromEyePosition ( eyeReliefInMeters,
  1.1462 +                                            offsetToRightInMeters,
  1.1463 +                                            0.0f,
  1.1464 +                                            hmd.LensDiameterInMeters,
  1.1465 +                                            extraEyeRotationInRadians );
  1.1466 +
  1.1467 +    // clamp to the screen
  1.1468 +    fovPort = ClampToPhysicalScreenFov ( eyeType, distortion, fovPort );
  1.1469 +       
  1.1470 +    return fovPort;
  1.1471 +}
  1.1472 +
  1.1473 +
  1.1474 +
  1.1475 +FovPort GetPhysicalScreenFov ( StereoEye eyeType, DistortionRenderDesc const &distortion )
  1.1476 +{
  1.1477 +    OVR_UNUSED1 ( eyeType );
  1.1478 +
  1.1479 +    FovPort resultFovPort;
  1.1480 +
  1.1481 +    // Figure out the boundaries of the screen. We take the middle pixel of the screen,
  1.1482 +    // move to each of the four screen edges, and transform those back into TanAngle space.
  1.1483 +    Vector2f dmiddle = distortion.LensCenter;
  1.1484 +
  1.1485 +    // The gotcha is that for some distortion functions, the map will "wrap around"
  1.1486 +    // for screen pixels that are not actually visible to the user (especially on DK1,
  1.1487 +    // which has a lot of invisible pixels), and map to pixels that are close to the middle.
  1.1488 +    // This means the edges of the screen will actually be
  1.1489 +    // "closer" than the visible bounds, so we'll clip too aggressively.
  1.1490 +
  1.1491 +    // Solution - step gradually towards the boundary, noting the maximum distance.
  1.1492 +    struct FunctionHider
  1.1493 +    {
  1.1494 +        static FovPort FindRange ( Vector2f from, Vector2f to, int numSteps,
  1.1495 +                                          DistortionRenderDesc const &distortionL )
  1.1496 +        {
  1.1497 +            FovPort result;
  1.1498 +            result.UpTan    = 0.0f;
  1.1499 +            result.DownTan  = 0.0f;
  1.1500 +            result.LeftTan  = 0.0f;
  1.1501 +            result.RightTan = 0.0f;
  1.1502 +
  1.1503 +            float stepScale = 1.0f / ( numSteps - 1 );
  1.1504 +            for ( int step = 0; step < numSteps; step++ )
  1.1505 +            {
  1.1506 +                float    lerpFactor  = stepScale * (float)step;
  1.1507 +                Vector2f sample      = from + (to - from) * lerpFactor;
  1.1508 +                Vector2f tanEyeAngle = TransformScreenNDCToTanFovSpace ( distortionL, sample );
  1.1509 +
  1.1510 +                result.LeftTan  = Alg::Max ( result.LeftTan,  -tanEyeAngle.x );
  1.1511 +                result.RightTan = Alg::Max ( result.RightTan,  tanEyeAngle.x );
  1.1512 +                result.UpTan    = Alg::Max ( result.UpTan,    -tanEyeAngle.y );
  1.1513 +                result.DownTan  = Alg::Max ( result.DownTan,   tanEyeAngle.y );
  1.1514 +            }
  1.1515 +            return result;
  1.1516 +        }
  1.1517 +    };
  1.1518 +
  1.1519 +    FovPort leftFovPort  = FunctionHider::FindRange( dmiddle, Vector2f( -1.0f, dmiddle.y ), 10, distortion );
  1.1520 +    FovPort rightFovPort = FunctionHider::FindRange( dmiddle, Vector2f( 1.0f, dmiddle.y ),  10, distortion );
  1.1521 +    FovPort upFovPort    = FunctionHider::FindRange( dmiddle, Vector2f( dmiddle.x, -1.0f ), 10, distortion );
  1.1522 +    FovPort downFovPort  = FunctionHider::FindRange( dmiddle, Vector2f( dmiddle.x, 1.0f ),  10, distortion );
  1.1523 +    
  1.1524 +    resultFovPort.LeftTan  = leftFovPort.LeftTan;
  1.1525 +    resultFovPort.RightTan = rightFovPort.RightTan;
  1.1526 +    resultFovPort.UpTan    = upFovPort.UpTan;
  1.1527 +    resultFovPort.DownTan  = downFovPort.DownTan;
  1.1528 +
  1.1529 +    return resultFovPort;
  1.1530 +}
  1.1531 +
  1.1532 +FovPort ClampToPhysicalScreenFov( StereoEye eyeType, DistortionRenderDesc const &distortion,
  1.1533 +                                         FovPort inputFovPort )
  1.1534 +{
  1.1535 +    FovPort resultFovPort;
  1.1536 +    FovPort phsyicalFovPort = GetPhysicalScreenFov ( eyeType, distortion );
  1.1537 +    resultFovPort.LeftTan  = Alg::Min ( inputFovPort.LeftTan,  phsyicalFovPort.LeftTan );
  1.1538 +    resultFovPort.RightTan = Alg::Min ( inputFovPort.RightTan, phsyicalFovPort.RightTan );
  1.1539 +    resultFovPort.UpTan    = Alg::Min ( inputFovPort.UpTan,    phsyicalFovPort.UpTan );
  1.1540 +    resultFovPort.DownTan  = Alg::Min ( inputFovPort.DownTan,  phsyicalFovPort.DownTan );
  1.1541 +
  1.1542 +    return resultFovPort;
  1.1543 +}
  1.1544 +
  1.1545 +Sizei CalculateIdealPixelSize ( StereoEye eyeType, DistortionRenderDesc const &distortion,
  1.1546 +                                FovPort tanHalfFov, float pixelsPerDisplayPixel )
  1.1547 +{
  1.1548 +    OVR_UNUSED(eyeType);   // might be useful in the future if we do overlapping fovs
  1.1549 +
  1.1550 +    Sizei result;    
  1.1551 +    // TODO: if the app passes in a FOV that doesn't cover the centre, use the distortion values for the nearest edge/corner to match pixel size.
  1.1552 +    result.w  = (int)(0.5f + pixelsPerDisplayPixel * distortion.PixelsPerTanAngleAtCenter.x * ( tanHalfFov.LeftTan + tanHalfFov.RightTan ) );
  1.1553 +    result.h = (int)(0.5f + pixelsPerDisplayPixel * distortion.PixelsPerTanAngleAtCenter.y * ( tanHalfFov.UpTan   + tanHalfFov.DownTan  ) );
  1.1554 +    return result;
  1.1555 +}
  1.1556 +
  1.1557 +Recti GetFramebufferViewport ( StereoEye eyeType, HmdRenderInfo const &hmd )
  1.1558 +{
  1.1559 +    Recti result;
  1.1560 +    result.w = hmd.ResolutionInPixels.w/2;
  1.1561 +    result.h = hmd.ResolutionInPixels.h;
  1.1562 +    result.x = 0;
  1.1563 +    result.y = 0;
  1.1564 +    if ( eyeType == StereoEye_Right )
  1.1565 +    {
  1.1566 +        result.x = (hmd.ResolutionInPixels.w+1)/2;      // Round up, not down.
  1.1567 +    }
  1.1568 +    return result;
  1.1569 +}
  1.1570 +
  1.1571 +
  1.1572 +ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort tanHalfFov )
  1.1573 +{
  1.1574 +    float projXScale = 2.0f / ( tanHalfFov.LeftTan + tanHalfFov.RightTan );
  1.1575 +    float projXOffset = ( tanHalfFov.LeftTan - tanHalfFov.RightTan ) * projXScale * 0.5f;
  1.1576 +    float projYScale = 2.0f / ( tanHalfFov.UpTan + tanHalfFov.DownTan );
  1.1577 +    float projYOffset = ( tanHalfFov.UpTan - tanHalfFov.DownTan ) * projYScale * 0.5f;
  1.1578 +
  1.1579 +    ScaleAndOffset2D result;
  1.1580 +    result.Scale    = Vector2f(projXScale, projYScale);
  1.1581 +    result.Offset   = Vector2f(projXOffset, projYOffset);
  1.1582 +    // Hey - why is that Y.Offset negated?
  1.1583 +    // It's because a projection matrix transforms from world coords with Y=up,
  1.1584 +    // whereas this is from NDC which is Y=down.
  1.1585 +
  1.1586 +    return result;
  1.1587 +}
  1.1588 +
  1.1589 +
  1.1590 +ScaleAndOffset2D CreateUVScaleAndOffsetfromNDCScaleandOffset ( ScaleAndOffset2D scaleAndOffsetNDC,
  1.1591 +                                                               Recti renderedViewport,
  1.1592 +                                                               Sizei renderTargetSize )
  1.1593 +{
  1.1594 +    // scaleAndOffsetNDC takes you to NDC space [-1,+1] within the given viewport on the rendertarget.
  1.1595 +    // We want a scale to instead go to actual UV coordinates you can sample with,
  1.1596 +    // which need [0,1] and ignore the viewport.
  1.1597 +    ScaleAndOffset2D result;
  1.1598 +    // Scale [-1,1] to [0,1]
  1.1599 +    result.Scale  = scaleAndOffsetNDC.Scale * 0.5f;
  1.1600 +    result.Offset = scaleAndOffsetNDC.Offset * 0.5f + Vector2f(0.5f);
  1.1601 +    
  1.1602 +    // ...but we will have rendered to a subsection of the RT, so scale for that.
  1.1603 +    Vector2f scale(  (float)renderedViewport.w / (float)renderTargetSize.w,
  1.1604 +                     (float)renderedViewport.h / (float)renderTargetSize.h );
  1.1605 +    Vector2f offset( (float)renderedViewport.x / (float)renderTargetSize.w,
  1.1606 +                     (float)renderedViewport.y / (float)renderTargetSize.h );
  1.1607 +
  1.1608 +	result.Scale  = result.Scale.EntrywiseMultiply(scale);
  1.1609 +    result.Offset  = result.Offset.EntrywiseMultiply(scale) + offset;
  1.1610 +    return result;
  1.1611 +}
  1.1612 +
  1.1613 +
  1.1614 +
  1.1615 +Matrix4f CreateProjection( bool rightHanded, FovPort tanHalfFov,
  1.1616 +                           float zNear /*= 0.01f*/, float zFar /*= 10000.0f*/ )
  1.1617 +{
  1.1618 +    // A projection matrix is very like a scaling from NDC, so we can start with that.
  1.1619 +    ScaleAndOffset2D scaleAndOffset = CreateNDCScaleAndOffsetFromFov ( tanHalfFov );
  1.1620 +
  1.1621 +    float handednessScale = 1.0f;
  1.1622 +    if ( rightHanded )
  1.1623 +    {
  1.1624 +        handednessScale = -1.0f;
  1.1625 +    }
  1.1626 +
  1.1627 +    Matrix4f projection;
  1.1628 +    // Produces X result, mapping clip edges to [-w,+w]
  1.1629 +    projection.M[0][0] = scaleAndOffset.Scale.x;
  1.1630 +    projection.M[0][1] = 0.0f;
  1.1631 +    projection.M[0][2] = handednessScale * scaleAndOffset.Offset.x;
  1.1632 +    projection.M[0][3] = 0.0f;
  1.1633 +
  1.1634 +    // Produces Y result, mapping clip edges to [-w,+w]
  1.1635 +    // Hey - why is that YOffset negated?
  1.1636 +    // It's because a projection matrix transforms from world coords with Y=up,
  1.1637 +    // whereas this is derived from an NDC scaling, which is Y=down.
  1.1638 +    projection.M[1][0] = 0.0f;
  1.1639 +    projection.M[1][1] = scaleAndOffset.Scale.y;
  1.1640 +    projection.M[1][2] = handednessScale * -scaleAndOffset.Offset.y;
  1.1641 +    projection.M[1][3] = 0.0f;
  1.1642 +
  1.1643 +    // Produces Z-buffer result - app needs to fill this in with whatever Z range it wants.
  1.1644 +    // We'll just use some defaults for now.
  1.1645 +    projection.M[2][0] = 0.0f;
  1.1646 +    projection.M[2][1] = 0.0f;
  1.1647 +    projection.M[2][2] = -handednessScale * zFar / (zNear - zFar);
  1.1648 +    projection.M[2][3] = (zFar * zNear) / (zNear - zFar);
  1.1649 +
  1.1650 +    // Produces W result (= Z in)
  1.1651 +    projection.M[3][0] = 0.0f;
  1.1652 +    projection.M[3][1] = 0.0f;
  1.1653 +    projection.M[3][2] = handednessScale;
  1.1654 +    projection.M[3][3] = 0.0f;
  1.1655 +
  1.1656 +    return projection;
  1.1657 +}
  1.1658 +
  1.1659 +
  1.1660 +Matrix4f CreateOrthoSubProjection ( bool rightHanded, StereoEye eyeType,
  1.1661 +                                    float tanHalfFovX, float tanHalfFovY,
  1.1662 +                                    float unitsX, float unitsY,
  1.1663 +                                    float distanceFromCamera, float interpupillaryDistance,
  1.1664 +                                    Matrix4f const &projection,
  1.1665 +                                    float zNear /*= 0.0f*/, float zFar /*= 0.0f*/ )
  1.1666 +{
  1.1667 +    OVR_UNUSED1 ( rightHanded );
  1.1668 +
  1.1669 +    float orthoHorizontalOffset = interpupillaryDistance * 0.5f / distanceFromCamera;
  1.1670 +    switch ( eyeType )
  1.1671 +    {
  1.1672 +    case StereoEye_Center:
  1.1673 +        orthoHorizontalOffset = 0.0f;
  1.1674 +        break;
  1.1675 +    case StereoEye_Left:
  1.1676 +        break;
  1.1677 +    case StereoEye_Right:
  1.1678 +        orthoHorizontalOffset = -orthoHorizontalOffset;
  1.1679 +        break;
  1.1680 +    default: OVR_ASSERT ( false ); break;
  1.1681 +    }
  1.1682 +
  1.1683 +    // Current projection maps real-world vector (x,y,1) to the RT.
  1.1684 +    // We want to find the projection that maps the range [-FovPixels/2,FovPixels/2] to
  1.1685 +    // the physical [-orthoHalfFov,orthoHalfFov]
  1.1686 +    // Note moving the offset from M[0][2]+M[1][2] to M[0][3]+M[1][3] - this means
  1.1687 +    // we don't have to feed in Z=1 all the time.
  1.1688 +    // The horizontal offset math is a little hinky because the destination is
  1.1689 +    // actually [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]
  1.1690 +    // So we need to first map [-FovPixels/2,FovPixels/2] to
  1.1691 +    //                         [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]:
  1.1692 +    // x1 = x0 * orthoHalfFov/(FovPixels/2) + orthoHorizontalOffset;
  1.1693 +    //    = x0 * 2*orthoHalfFov/FovPixels + orthoHorizontalOffset;
  1.1694 +    // But then we need the sam mapping as the existing projection matrix, i.e.
  1.1695 +    // x2 = x1 * Projection.M[0][0] + Projection.M[0][2];
  1.1696 +    //    = x0 * (2*orthoHalfFov/FovPixels + orthoHorizontalOffset) * Projection.M[0][0] + Projection.M[0][2];
  1.1697 +    //    = x0 * Projection.M[0][0]*2*orthoHalfFov/FovPixels +
  1.1698 +    //      orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2];
  1.1699 +    // So in the new projection matrix we need to scale by Projection.M[0][0]*2*orthoHalfFov/FovPixels and
  1.1700 +    // offset by orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2].
  1.1701 +
  1.1702 +    float orthoScaleX = 2.0f * tanHalfFovX / unitsX;
  1.1703 +    float orthoScaleY = 2.0f * tanHalfFovY / unitsY;
  1.1704 +    Matrix4f ortho;
  1.1705 +    ortho.M[0][0] = projection.M[0][0] * orthoScaleX;
  1.1706 +    ortho.M[0][1] = 0.0f;
  1.1707 +    ortho.M[0][2] = 0.0f;
  1.1708 +    ortho.M[0][3] = -projection.M[0][2] + ( orthoHorizontalOffset * projection.M[0][0] );
  1.1709 +
  1.1710 +    ortho.M[1][0] = 0.0f;
  1.1711 +    ortho.M[1][1] = -projection.M[1][1] * orthoScaleY;       // Note sign flip (text rendering uses Y=down).
  1.1712 +    ortho.M[1][2] = 0.0f;
  1.1713 +    ortho.M[1][3] = -projection.M[1][2];
  1.1714 +
  1.1715 +    if ( fabsf ( zNear - zFar ) < 0.001f )
  1.1716 +    {
  1.1717 +        ortho.M[2][0] = 0.0f;
  1.1718 +        ortho.M[2][1] = 0.0f;
  1.1719 +        ortho.M[2][2] = 0.0f;
  1.1720 +        ortho.M[2][3] = zFar;
  1.1721 +    }
  1.1722 +    else
  1.1723 +    {
  1.1724 +        ortho.M[2][0] = 0.0f;
  1.1725 +        ortho.M[2][1] = 0.0f;
  1.1726 +        ortho.M[2][2] = zFar / (zNear - zFar);
  1.1727 +        ortho.M[2][3] = (zFar * zNear) / (zNear - zFar);
  1.1728 +    }
  1.1729 +
  1.1730 +    // No perspective correction for ortho.
  1.1731 +    ortho.M[3][0] = 0.0f;
  1.1732 +    ortho.M[3][1] = 0.0f;
  1.1733 +    ortho.M[3][2] = 0.0f;
  1.1734 +    ortho.M[3][3] = 1.0f;
  1.1735 +
  1.1736 +    return ortho;
  1.1737 +}
  1.1738 +
  1.1739 +
  1.1740 +//-----------------------------------------------------------------------------------
  1.1741 +// A set of "forward-mapping" functions, mapping from framebuffer space to real-world and/or texture space.
  1.1742 +
  1.1743 +// This mimics the first half of the distortion shader's function.
  1.1744 +Vector2f TransformScreenNDCToTanFovSpace( DistortionRenderDesc const &distortion,
  1.1745 +                                          const Vector2f &framebufferNDC )
  1.1746 +{
  1.1747 +    // Scale to TanHalfFov space, but still distorted.
  1.1748 +    Vector2f tanEyeAngleDistorted;
  1.1749 +    tanEyeAngleDistorted.x = ( framebufferNDC.x - distortion.LensCenter.x ) * distortion.TanEyeAngleScale.x;
  1.1750 +    tanEyeAngleDistorted.y = ( framebufferNDC.y - distortion.LensCenter.y ) * distortion.TanEyeAngleScale.y;
  1.1751 +    // Distort.
  1.1752 +    float radiusSquared = ( tanEyeAngleDistorted.x * tanEyeAngleDistorted.x )
  1.1753 +                        + ( tanEyeAngleDistorted.y * tanEyeAngleDistorted.y );
  1.1754 +    float distortionScale = distortion.Lens.DistortionFnScaleRadiusSquared ( radiusSquared );
  1.1755 +    Vector2f tanEyeAngle;
  1.1756 +    tanEyeAngle.x = tanEyeAngleDistorted.x * distortionScale;
  1.1757 +    tanEyeAngle.y = tanEyeAngleDistorted.y * distortionScale;
  1.1758 +
  1.1759 +    return tanEyeAngle;
  1.1760 +}
  1.1761 +
  1.1762 +// Same, with chromatic aberration correction.
  1.1763 +void TransformScreenNDCToTanFovSpaceChroma ( Vector2f *resultR, Vector2f *resultG, Vector2f *resultB, 
  1.1764 +                                             DistortionRenderDesc const &distortion,
  1.1765 +                                             const Vector2f &framebufferNDC )
  1.1766 +{
  1.1767 +    // Scale to TanHalfFov space, but still distorted.
  1.1768 +    Vector2f tanEyeAngleDistorted;
  1.1769 +    tanEyeAngleDistorted.x = ( framebufferNDC.x - distortion.LensCenter.x ) * distortion.TanEyeAngleScale.x;
  1.1770 +    tanEyeAngleDistorted.y = ( framebufferNDC.y - distortion.LensCenter.y ) * distortion.TanEyeAngleScale.y;
  1.1771 +    // Distort.
  1.1772 +    float radiusSquared = ( tanEyeAngleDistorted.x * tanEyeAngleDistorted.x )
  1.1773 +                        + ( tanEyeAngleDistorted.y * tanEyeAngleDistorted.y );
  1.1774 +    Vector3f distortionScales = distortion.Lens.DistortionFnScaleRadiusSquaredChroma ( radiusSquared );
  1.1775 +    *resultR = tanEyeAngleDistorted * distortionScales.x;
  1.1776 +    *resultG = tanEyeAngleDistorted * distortionScales.y;
  1.1777 +    *resultB = tanEyeAngleDistorted * distortionScales.z;
  1.1778 +}
  1.1779 +
  1.1780 +// This mimics the second half of the distortion shader's function.
  1.1781 +Vector2f TransformTanFovSpaceToRendertargetTexUV( ScaleAndOffset2D const &eyeToSourceUV,
  1.1782 +                                                  Vector2f const &tanEyeAngle )
  1.1783 +{
  1.1784 +    Vector2f textureUV;
  1.1785 +    textureUV.x = tanEyeAngle.x * eyeToSourceUV.Scale.x + eyeToSourceUV.Offset.x;
  1.1786 +    textureUV.y = tanEyeAngle.y * eyeToSourceUV.Scale.y + eyeToSourceUV.Offset.y;
  1.1787 +    return textureUV;
  1.1788 +}
  1.1789 +
  1.1790 +Vector2f TransformTanFovSpaceToRendertargetNDC( ScaleAndOffset2D const &eyeToSourceNDC,
  1.1791 +                                                Vector2f const &tanEyeAngle )
  1.1792 +{
  1.1793 +    Vector2f textureNDC;
  1.1794 +    textureNDC.x = tanEyeAngle.x * eyeToSourceNDC.Scale.x + eyeToSourceNDC.Offset.x;
  1.1795 +    textureNDC.y = tanEyeAngle.y * eyeToSourceNDC.Scale.y + eyeToSourceNDC.Offset.y;
  1.1796 +    return textureNDC;
  1.1797 +}
  1.1798 +
  1.1799 +Vector2f TransformScreenPixelToScreenNDC( Recti const &distortionViewport,
  1.1800 +                                          Vector2f const &pixel )
  1.1801 +{
  1.1802 +    // Move to [-1,1] NDC coords.
  1.1803 +    Vector2f framebufferNDC;
  1.1804 +    framebufferNDC.x = -1.0f + 2.0f * ( ( pixel.x - (float)distortionViewport.x ) / (float)distortionViewport.w );
  1.1805 +    framebufferNDC.y = -1.0f + 2.0f * ( ( pixel.y - (float)distortionViewport.y ) / (float)distortionViewport.h );
  1.1806 +    return framebufferNDC;
  1.1807 +}
  1.1808 +
  1.1809 +Vector2f TransformScreenPixelToTanFovSpace( Recti const &distortionViewport,
  1.1810 +                                            DistortionRenderDesc const &distortion,
  1.1811 +                                            Vector2f const &pixel )
  1.1812 +{
  1.1813 +    return TransformScreenNDCToTanFovSpace( distortion,
  1.1814 +                TransformScreenPixelToScreenNDC( distortionViewport, pixel ) );
  1.1815 +}
  1.1816 +
  1.1817 +Vector2f TransformScreenNDCToRendertargetTexUV( DistortionRenderDesc const &distortion,
  1.1818 +                                                StereoEyeParams const &eyeParams,
  1.1819 +                                                Vector2f const &pixel )
  1.1820 +{
  1.1821 +    return TransformTanFovSpaceToRendertargetTexUV ( eyeParams,
  1.1822 +                TransformScreenNDCToTanFovSpace ( distortion, pixel ) );
  1.1823 +}
  1.1824 +
  1.1825 +Vector2f TransformScreenPixelToRendertargetTexUV( Recti const &distortionViewport,
  1.1826 +                                                  DistortionRenderDesc const &distortion,
  1.1827 +                                                  StereoEyeParams const &eyeParams,
  1.1828 +                                                  Vector2f const &pixel )
  1.1829 +{
  1.1830 +    return TransformTanFovSpaceToRendertargetTexUV ( eyeParams,
  1.1831 +                TransformScreenPixelToTanFovSpace ( distortionViewport, distortion, pixel ) );
  1.1832 +}
  1.1833 +
  1.1834 +
  1.1835 +//-----------------------------------------------------------------------------------
  1.1836 +// A set of "reverse-mapping" functions, mapping from real-world and/or texture space back to the framebuffer.
  1.1837 +
  1.1838 +Vector2f TransformTanFovSpaceToScreenNDC( DistortionRenderDesc const &distortion,
  1.1839 +                                          const Vector2f &tanEyeAngle, bool usePolyApprox /*= false*/ )
  1.1840 +{
  1.1841 +    float tanEyeAngleRadius = tanEyeAngle.Length();
  1.1842 +    float tanEyeAngleDistortedRadius = distortion.Lens.DistortionFnInverseApprox ( tanEyeAngleRadius );
  1.1843 +    if ( !usePolyApprox )
  1.1844 +    {
  1.1845 +        tanEyeAngleDistortedRadius = distortion.Lens.DistortionFnInverse ( tanEyeAngleRadius );
  1.1846 +    }
  1.1847 +    Vector2f tanEyeAngleDistorted = tanEyeAngle;
  1.1848 +    if ( tanEyeAngleRadius > 0.0f )
  1.1849 +    {   
  1.1850 +        tanEyeAngleDistorted = tanEyeAngle * ( tanEyeAngleDistortedRadius / tanEyeAngleRadius );
  1.1851 +    }
  1.1852 +
  1.1853 +    Vector2f framebufferNDC;
  1.1854 +    framebufferNDC.x = ( tanEyeAngleDistorted.x / distortion.TanEyeAngleScale.x ) + distortion.LensCenter.x;
  1.1855 +    framebufferNDC.y = ( tanEyeAngleDistorted.y / distortion.TanEyeAngleScale.y ) + distortion.LensCenter.y;
  1.1856 +
  1.1857 +    return framebufferNDC;
  1.1858 +}
  1.1859 +
  1.1860 +Vector2f TransformRendertargetNDCToTanFovSpace( const ScaleAndOffset2D &eyeToSourceNDC,
  1.1861 +                                                const Vector2f &textureNDC )
  1.1862 +{
  1.1863 +    Vector2f tanEyeAngle = (textureNDC - eyeToSourceNDC.Offset) / eyeToSourceNDC.Scale;
  1.1864 +    return tanEyeAngle;
  1.1865 +}
  1.1866 +
  1.1867 +
  1.1868 +
  1.1869 +} //namespace OVR
  1.1870 +
  1.1871 +//Just want to make a copy disentangled from all these namespaces!
  1.1872 +float ExtEvalCatmullRom10Spline ( float const *K, float scaledVal )
  1.1873 +{
  1.1874 +	return(OVR::EvalCatmullRom10Spline ( K, scaledVal ));
  1.1875 +}
  1.1876 +
  1.1877 +