rev |
line source |
nuclear@0
|
1 /************************************************************************************
|
nuclear@0
|
2
|
nuclear@0
|
3 Filename : OVR_Stereo.cpp
|
nuclear@0
|
4 Content : Stereo rendering functions
|
nuclear@0
|
5 Created : November 30, 2013
|
nuclear@0
|
6 Authors : Tom Fosyth
|
nuclear@0
|
7
|
nuclear@0
|
8 Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved.
|
nuclear@0
|
9
|
nuclear@0
|
10 Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License");
|
nuclear@0
|
11 you may not use the Oculus VR Rift SDK except in compliance with the License,
|
nuclear@0
|
12 which is provided at the time of installation or download, or which
|
nuclear@0
|
13 otherwise accompanies this software in either electronic or hard copy form.
|
nuclear@0
|
14
|
nuclear@0
|
15 You may obtain a copy of the License at
|
nuclear@0
|
16
|
nuclear@0
|
17 http://www.oculusvr.com/licenses/LICENSE-3.2
|
nuclear@0
|
18
|
nuclear@0
|
19 Unless required by applicable law or agreed to in writing, the Oculus VR SDK
|
nuclear@0
|
20 distributed under the License is distributed on an "AS IS" BASIS,
|
nuclear@0
|
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
nuclear@0
|
22 See the License for the specific language governing permissions and
|
nuclear@0
|
23 limitations under the License.
|
nuclear@0
|
24
|
nuclear@0
|
25 *************************************************************************************/
|
nuclear@0
|
26
|
nuclear@0
|
27 #include "OVR_Stereo.h"
|
nuclear@0
|
28 #include "OVR_Profile.h"
|
nuclear@0
|
29 #include "Kernel/OVR_Log.h"
|
nuclear@0
|
30 #include "Kernel/OVR_Alg.h"
|
nuclear@0
|
31
|
nuclear@0
|
32 //To allow custom distortion to be introduced to CatMulSpline.
|
nuclear@0
|
33 float (*CustomDistortion)(float) = NULL;
|
nuclear@0
|
34 float (*CustomDistortionInv)(float) = NULL;
|
nuclear@0
|
35
|
nuclear@0
|
36
|
nuclear@0
|
37 namespace OVR {
|
nuclear@0
|
38
|
nuclear@0
|
39
|
nuclear@0
|
40 using namespace Alg;
|
nuclear@0
|
41
|
nuclear@0
|
42 //-----------------------------------------------------------------------------------
|
nuclear@0
|
43
|
nuclear@0
|
44 // Inputs are 4 points (pFitX[0],pFitY[0]) through (pFitX[3],pFitY[3])
|
nuclear@0
|
45 // Result is four coefficients in pResults[0] through pResults[3] such that
|
nuclear@0
|
46 // y = pResult[0] + x * ( pResult[1] + x * ( pResult[2] + x * ( pResult[3] ) ) );
|
nuclear@0
|
47 // passes through all four input points.
|
nuclear@0
|
48 // Return is true if it succeeded, false if it failed (because two control points
|
nuclear@0
|
49 // have the same pFitX value).
|
nuclear@0
|
50 bool FitCubicPolynomial ( float *pResult, const float *pFitX, const float *pFitY )
|
nuclear@0
|
51 {
|
nuclear@0
|
52 float d0 = ( ( pFitX[0]-pFitX[1] ) * ( pFitX[0]-pFitX[2] ) * ( pFitX[0]-pFitX[3] ) );
|
nuclear@0
|
53 float d1 = ( ( pFitX[1]-pFitX[2] ) * ( pFitX[1]-pFitX[3] ) * ( pFitX[1]-pFitX[0] ) );
|
nuclear@0
|
54 float d2 = ( ( pFitX[2]-pFitX[3] ) * ( pFitX[2]-pFitX[0] ) * ( pFitX[2]-pFitX[1] ) );
|
nuclear@0
|
55 float d3 = ( ( pFitX[3]-pFitX[0] ) * ( pFitX[3]-pFitX[1] ) * ( pFitX[3]-pFitX[2] ) );
|
nuclear@0
|
56
|
nuclear@0
|
57 if ( ( d0 == 0.0f ) || ( d1 == 0.0f ) || ( d2 == 0.0f ) || ( d3 == 0.0f ) )
|
nuclear@0
|
58 {
|
nuclear@0
|
59 return false;
|
nuclear@0
|
60 }
|
nuclear@0
|
61
|
nuclear@0
|
62 float f0 = pFitY[0] / d0;
|
nuclear@0
|
63 float f1 = pFitY[1] / d1;
|
nuclear@0
|
64 float f2 = pFitY[2] / d2;
|
nuclear@0
|
65 float f3 = pFitY[3] / d3;
|
nuclear@0
|
66
|
nuclear@0
|
67 pResult[0] = -( f0*pFitX[1]*pFitX[2]*pFitX[3]
|
nuclear@0
|
68 + f1*pFitX[0]*pFitX[2]*pFitX[3]
|
nuclear@0
|
69 + f2*pFitX[0]*pFitX[1]*pFitX[3]
|
nuclear@0
|
70 + f3*pFitX[0]*pFitX[1]*pFitX[2] );
|
nuclear@0
|
71 pResult[1] = f0*(pFitX[1]*pFitX[2] + pFitX[2]*pFitX[3] + pFitX[3]*pFitX[1])
|
nuclear@0
|
72 + f1*(pFitX[0]*pFitX[2] + pFitX[2]*pFitX[3] + pFitX[3]*pFitX[0])
|
nuclear@0
|
73 + f2*(pFitX[0]*pFitX[1] + pFitX[1]*pFitX[3] + pFitX[3]*pFitX[0])
|
nuclear@0
|
74 + f3*(pFitX[0]*pFitX[1] + pFitX[1]*pFitX[2] + pFitX[2]*pFitX[0]);
|
nuclear@0
|
75 pResult[2] = -( f0*(pFitX[1]+pFitX[2]+pFitX[3])
|
nuclear@0
|
76 + f1*(pFitX[0]+pFitX[2]+pFitX[3])
|
nuclear@0
|
77 + f2*(pFitX[0]+pFitX[1]+pFitX[3])
|
nuclear@0
|
78 + f3*(pFitX[0]+pFitX[1]+pFitX[2]) );
|
nuclear@0
|
79 pResult[3] = f0 + f1 + f2 + f3;
|
nuclear@0
|
80
|
nuclear@0
|
81 return true;
|
nuclear@0
|
82 }
|
nuclear@0
|
83
|
nuclear@0
|
84 #define TPH_SPLINE_STATISTICS 0
|
nuclear@0
|
85 #if TPH_SPLINE_STATISTICS
|
nuclear@0
|
86 static float max_scaledVal = 0;
|
nuclear@0
|
87 static float average_total_out_of_range = 0;
|
nuclear@0
|
88 static float average_out_of_range;
|
nuclear@0
|
89 static int num_total = 0;
|
nuclear@0
|
90 static int num_out_of_range = 0;
|
nuclear@0
|
91 static int num_out_of_range_over_1 = 0;
|
nuclear@0
|
92 static int num_out_of_range_over_2 = 0;
|
nuclear@0
|
93 static int num_out_of_range_over_3 = 0;
|
nuclear@0
|
94 static float percent_out_of_range;
|
nuclear@0
|
95 #endif
|
nuclear@0
|
96
|
nuclear@0
|
97 float EvalCatmullRom10Spline ( float const *K, float scaledVal )
|
nuclear@0
|
98 {
|
nuclear@0
|
99 int const NumSegments = LensConfig::NumCoefficients;
|
nuclear@0
|
100
|
nuclear@0
|
101 #if TPH_SPLINE_STATISTICS
|
nuclear@0
|
102 //Value should be in range of 0 to (NumSegments-1) (typically 10) if spline is valid. Right?
|
nuclear@0
|
103 if (scaledVal > (NumSegments-1))
|
nuclear@0
|
104 {
|
nuclear@0
|
105 num_out_of_range++;
|
nuclear@0
|
106 average_total_out_of_range+=scaledVal;
|
nuclear@0
|
107 average_out_of_range = average_total_out_of_range / ((float) num_out_of_range);
|
nuclear@0
|
108 percent_out_of_range = 100.0f*(num_out_of_range)/num_total;
|
nuclear@0
|
109 }
|
nuclear@0
|
110 if (scaledVal > (NumSegments-1+1)) num_out_of_range_over_1++;
|
nuclear@0
|
111 if (scaledVal > (NumSegments-1+2)) num_out_of_range_over_2++;
|
nuclear@0
|
112 if (scaledVal > (NumSegments-1+3)) num_out_of_range_over_3++;
|
nuclear@0
|
113 num_total++;
|
nuclear@0
|
114 if (scaledVal > max_scaledVal)
|
nuclear@0
|
115 {
|
nuclear@0
|
116 max_scaledVal = scaledVal;
|
nuclear@0
|
117 max_scaledVal = scaledVal;
|
nuclear@0
|
118 }
|
nuclear@0
|
119 #endif
|
nuclear@0
|
120
|
nuclear@0
|
121 float scaledValFloor = floorf ( scaledVal );
|
nuclear@0
|
122 scaledValFloor = Alg::Max ( 0.0f, Alg::Min ( (float)(NumSegments-1), scaledValFloor ) );
|
nuclear@0
|
123 float t = scaledVal - scaledValFloor;
|
nuclear@0
|
124 int k = (int)scaledValFloor;
|
nuclear@0
|
125
|
nuclear@0
|
126 float p0, p1;
|
nuclear@0
|
127 float m0, m1;
|
nuclear@0
|
128 switch ( k )
|
nuclear@0
|
129 {
|
nuclear@0
|
130 case 0:
|
nuclear@0
|
131 // Curve starts at 1.0 with gradient K[1]-K[0]
|
nuclear@0
|
132 p0 = 1.0f;
|
nuclear@0
|
133 m0 = ( K[1] - K[0] ); // general case would have been (K[1]-K[-1])/2
|
nuclear@0
|
134 p1 = K[1];
|
nuclear@0
|
135 m1 = 0.5f * ( K[2] - K[0] );
|
nuclear@0
|
136 break;
|
nuclear@0
|
137 default:
|
nuclear@0
|
138 // General case
|
nuclear@0
|
139 p0 = K[k ];
|
nuclear@0
|
140 m0 = 0.5f * ( K[k+1] - K[k-1] );
|
nuclear@0
|
141 p1 = K[k+1];
|
nuclear@0
|
142 m1 = 0.5f * ( K[k+2] - K[k ] );
|
nuclear@0
|
143 break;
|
nuclear@0
|
144 case NumSegments-2:
|
nuclear@0
|
145 // Last tangent is just the slope of the last two points.
|
nuclear@0
|
146 p0 = K[NumSegments-2];
|
nuclear@0
|
147 m0 = 0.5f * ( K[NumSegments-1] - K[NumSegments-2] );
|
nuclear@0
|
148 p1 = K[NumSegments-1];
|
nuclear@0
|
149 m1 = K[NumSegments-1] - K[NumSegments-2];
|
nuclear@0
|
150 break;
|
nuclear@0
|
151 case NumSegments-1:
|
nuclear@0
|
152 // Beyond the last segment it's just a straight line
|
nuclear@0
|
153 p0 = K[NumSegments-1];
|
nuclear@0
|
154 m0 = K[NumSegments-1] - K[NumSegments-2];
|
nuclear@0
|
155 p1 = p0 + m0;
|
nuclear@0
|
156 m1 = m0;
|
nuclear@0
|
157 break;
|
nuclear@0
|
158 }
|
nuclear@0
|
159
|
nuclear@0
|
160 float omt = 1.0f - t;
|
nuclear@0
|
161 float res = ( p0 * ( 1.0f + 2.0f * t ) + m0 * t ) * omt * omt
|
nuclear@0
|
162 + ( p1 * ( 1.0f + 2.0f * omt ) - m1 * omt ) * t * t;
|
nuclear@0
|
163
|
nuclear@0
|
164 return res;
|
nuclear@0
|
165 }
|
nuclear@0
|
166
|
nuclear@0
|
167
|
nuclear@0
|
168
|
nuclear@0
|
169
|
nuclear@0
|
170 // Converts a Profile eyecup string into an eyecup enumeration
|
nuclear@0
|
171 void SetEyeCup(HmdRenderInfo* renderInfo, const char* cup)
|
nuclear@0
|
172 {
|
nuclear@0
|
173 if (OVR_strcmp(cup, "A") == 0)
|
nuclear@0
|
174 renderInfo->EyeCups = EyeCup_DK1A;
|
nuclear@0
|
175 else if (OVR_strcmp(cup, "B") == 0)
|
nuclear@0
|
176 renderInfo->EyeCups = EyeCup_DK1B;
|
nuclear@0
|
177 else if (OVR_strcmp(cup, "C") == 0)
|
nuclear@0
|
178 renderInfo->EyeCups = EyeCup_DK1C;
|
nuclear@0
|
179 else if (OVR_strcmp(cup, "Orange A") == 0)
|
nuclear@0
|
180 renderInfo->EyeCups = EyeCup_OrangeA;
|
nuclear@0
|
181 else if (OVR_strcmp(cup, "Red A") == 0)
|
nuclear@0
|
182 renderInfo->EyeCups = EyeCup_RedA;
|
nuclear@0
|
183 else if (OVR_strcmp(cup, "Pink A") == 0)
|
nuclear@0
|
184 renderInfo->EyeCups = EyeCup_PinkA;
|
nuclear@0
|
185 else if (OVR_strcmp(cup, "Blue A") == 0)
|
nuclear@0
|
186 renderInfo->EyeCups = EyeCup_BlueA;
|
nuclear@0
|
187 else
|
nuclear@0
|
188 renderInfo->EyeCups = EyeCup_DK1A;
|
nuclear@0
|
189 }
|
nuclear@0
|
190
|
nuclear@0
|
191
|
nuclear@0
|
192
|
nuclear@0
|
193 //-----------------------------------------------------------------------------------
|
nuclear@0
|
194
|
nuclear@0
|
195
|
nuclear@0
|
196 // The result is a scaling applied to the distance.
|
nuclear@0
|
197 float LensConfig::DistortionFnScaleRadiusSquared (float rsq) const
|
nuclear@0
|
198 {
|
nuclear@0
|
199 float scale = 1.0f;
|
nuclear@0
|
200 switch ( Eqn )
|
nuclear@0
|
201 {
|
nuclear@0
|
202 case Distortion_Poly4:
|
nuclear@0
|
203 // This version is deprecated! Prefer one of the other two.
|
nuclear@0
|
204 scale = ( K[0] + rsq * ( K[1] + rsq * ( K[2] + rsq * K[3] ) ) );
|
nuclear@0
|
205 break;
|
nuclear@0
|
206 case Distortion_RecipPoly4:
|
nuclear@0
|
207 scale = 1.0f / ( K[0] + rsq * ( K[1] + rsq * ( K[2] + rsq * K[3] ) ) );
|
nuclear@0
|
208 break;
|
nuclear@0
|
209 case Distortion_CatmullRom10:{
|
nuclear@0
|
210 // A Catmull-Rom spline through the values 1.0, K[1], K[2] ... K[10]
|
nuclear@0
|
211 // evenly spaced in R^2 from 0.0 to MaxR^2
|
nuclear@0
|
212 // K[0] controls the slope at radius=0.0, rather than the actual value.
|
nuclear@0
|
213 const int NumSegments = LensConfig::NumCoefficients;
|
nuclear@0
|
214 OVR_ASSERT ( NumSegments <= NumCoefficients );
|
nuclear@0
|
215 float scaledRsq = (float)(NumSegments-1) * rsq / ( MaxR * MaxR );
|
nuclear@0
|
216 scale = EvalCatmullRom10Spline ( K, scaledRsq );
|
nuclear@0
|
217
|
nuclear@0
|
218
|
nuclear@0
|
219 //Intercept, and overrule if needed
|
nuclear@0
|
220 if (CustomDistortion)
|
nuclear@0
|
221 {
|
nuclear@0
|
222 scale = CustomDistortion(rsq);
|
nuclear@0
|
223 }
|
nuclear@0
|
224
|
nuclear@0
|
225 }break;
|
nuclear@0
|
226 default:
|
nuclear@0
|
227 OVR_ASSERT ( false );
|
nuclear@0
|
228 break;
|
nuclear@0
|
229 }
|
nuclear@0
|
230 return scale;
|
nuclear@0
|
231 }
|
nuclear@0
|
232
|
nuclear@0
|
233 // x,y,z components map to r,g,b
|
nuclear@0
|
234 Vector3f LensConfig::DistortionFnScaleRadiusSquaredChroma (float rsq) const
|
nuclear@0
|
235 {
|
nuclear@0
|
236 float scale = DistortionFnScaleRadiusSquared ( rsq );
|
nuclear@0
|
237 Vector3f scaleRGB;
|
nuclear@0
|
238 scaleRGB.x = scale * ( 1.0f + ChromaticAberration[0] + rsq * ChromaticAberration[1] ); // Red
|
nuclear@0
|
239 scaleRGB.y = scale; // Green
|
nuclear@0
|
240 scaleRGB.z = scale * ( 1.0f + ChromaticAberration[2] + rsq * ChromaticAberration[3] ); // Blue
|
nuclear@0
|
241 return scaleRGB;
|
nuclear@0
|
242 }
|
nuclear@0
|
243
|
nuclear@0
|
244 // DistortionFnInverse computes the inverse of the distortion function on an argument.
|
nuclear@0
|
245 float LensConfig::DistortionFnInverse(float r) const
|
nuclear@0
|
246 {
|
nuclear@0
|
247 OVR_ASSERT((r <= 20.0f));
|
nuclear@0
|
248
|
nuclear@0
|
249 float s, d;
|
nuclear@0
|
250 float delta = r * 0.25f;
|
nuclear@0
|
251
|
nuclear@0
|
252 // Better to start guessing too low & take longer to converge than too high
|
nuclear@0
|
253 // and hit singularities. Empirically, r * 0.5f is too high in some cases.
|
nuclear@0
|
254 s = r * 0.25f;
|
nuclear@0
|
255 d = fabs(r - DistortionFn(s));
|
nuclear@0
|
256
|
nuclear@0
|
257 for (int i = 0; i < 20; i++)
|
nuclear@0
|
258 {
|
nuclear@0
|
259 float sUp = s + delta;
|
nuclear@0
|
260 float sDown = s - delta;
|
nuclear@0
|
261 float dUp = fabs(r - DistortionFn(sUp));
|
nuclear@0
|
262 float dDown = fabs(r - DistortionFn(sDown));
|
nuclear@0
|
263
|
nuclear@0
|
264 if (dUp < d)
|
nuclear@0
|
265 {
|
nuclear@0
|
266 s = sUp;
|
nuclear@0
|
267 d = dUp;
|
nuclear@0
|
268 }
|
nuclear@0
|
269 else if (dDown < d)
|
nuclear@0
|
270 {
|
nuclear@0
|
271 s = sDown;
|
nuclear@0
|
272 d = dDown;
|
nuclear@0
|
273 }
|
nuclear@0
|
274 else
|
nuclear@0
|
275 {
|
nuclear@0
|
276 delta *= 0.5f;
|
nuclear@0
|
277 }
|
nuclear@0
|
278 }
|
nuclear@0
|
279
|
nuclear@0
|
280 return s;
|
nuclear@0
|
281 }
|
nuclear@0
|
282
|
nuclear@0
|
283
|
nuclear@0
|
284
|
nuclear@0
|
285 float LensConfig::DistortionFnInverseApprox(float r) const
|
nuclear@0
|
286 {
|
nuclear@0
|
287 float rsq = r * r;
|
nuclear@0
|
288 float scale = 1.0f;
|
nuclear@0
|
289 switch ( Eqn )
|
nuclear@0
|
290 {
|
nuclear@0
|
291 case Distortion_Poly4:
|
nuclear@0
|
292 // Deprecated
|
nuclear@0
|
293 OVR_ASSERT ( false );
|
nuclear@0
|
294 break;
|
nuclear@0
|
295 case Distortion_RecipPoly4:
|
nuclear@0
|
296 scale = 1.0f / ( InvK[0] + rsq * ( InvK[1] + rsq * ( InvK[2] + rsq * InvK[3] ) ) );
|
nuclear@0
|
297 break;
|
nuclear@0
|
298 case Distortion_CatmullRom10:{
|
nuclear@0
|
299 // A Catmull-Rom spline through the values 1.0, K[1], K[2] ... K[9]
|
nuclear@0
|
300 // evenly spaced in R^2 from 0.0 to MaxR^2
|
nuclear@0
|
301 // K[0] controls the slope at radius=0.0, rather than the actual value.
|
nuclear@0
|
302 const int NumSegments = LensConfig::NumCoefficients;
|
nuclear@0
|
303 OVR_ASSERT ( NumSegments <= NumCoefficients );
|
nuclear@0
|
304 float scaledRsq = (float)(NumSegments-1) * rsq / ( MaxInvR * MaxInvR );
|
nuclear@0
|
305 scale = EvalCatmullRom10Spline ( InvK, scaledRsq );
|
nuclear@0
|
306
|
nuclear@0
|
307 //Intercept, and overrule if needed
|
nuclear@0
|
308 if (CustomDistortionInv)
|
nuclear@0
|
309 {
|
nuclear@0
|
310 scale = CustomDistortionInv(rsq);
|
nuclear@0
|
311 }
|
nuclear@0
|
312
|
nuclear@0
|
313 }break;
|
nuclear@0
|
314 default:
|
nuclear@0
|
315 OVR_ASSERT ( false );
|
nuclear@0
|
316 break;
|
nuclear@0
|
317 }
|
nuclear@0
|
318 return r * scale;
|
nuclear@0
|
319 }
|
nuclear@0
|
320
|
nuclear@0
|
321 void LensConfig::SetUpInverseApprox()
|
nuclear@0
|
322 {
|
nuclear@0
|
323 float maxR = MaxInvR;
|
nuclear@0
|
324
|
nuclear@0
|
325 switch ( Eqn )
|
nuclear@0
|
326 {
|
nuclear@0
|
327 case Distortion_Poly4:
|
nuclear@0
|
328 // Deprecated
|
nuclear@0
|
329 OVR_ASSERT ( false );
|
nuclear@0
|
330 break;
|
nuclear@0
|
331 case Distortion_RecipPoly4:{
|
nuclear@0
|
332
|
nuclear@0
|
333 float sampleR[4];
|
nuclear@0
|
334 float sampleRSq[4];
|
nuclear@0
|
335 float sampleInv[4];
|
nuclear@0
|
336 float sampleFit[4];
|
nuclear@0
|
337
|
nuclear@0
|
338 // Found heuristically...
|
nuclear@0
|
339 sampleR[0] = 0.0f;
|
nuclear@0
|
340 sampleR[1] = maxR * 0.4f;
|
nuclear@0
|
341 sampleR[2] = maxR * 0.8f;
|
nuclear@0
|
342 sampleR[3] = maxR * 1.5f;
|
nuclear@0
|
343 for ( int i = 0; i < 4; i++ )
|
nuclear@0
|
344 {
|
nuclear@0
|
345 sampleRSq[i] = sampleR[i] * sampleR[i];
|
nuclear@0
|
346 sampleInv[i] = DistortionFnInverse ( sampleR[i] );
|
nuclear@0
|
347 sampleFit[i] = sampleR[i] / sampleInv[i];
|
nuclear@0
|
348 }
|
nuclear@0
|
349 sampleFit[0] = 1.0f;
|
nuclear@0
|
350 FitCubicPolynomial ( InvK, sampleRSq, sampleFit );
|
nuclear@0
|
351
|
nuclear@0
|
352 #if 0
|
nuclear@0
|
353 // Should be a nearly exact match on the chosen points.
|
nuclear@0
|
354 OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[0] ) - DistortionFnInverseApprox ( sampleR[0] ) ) / maxR < 0.0001f );
|
nuclear@0
|
355 OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[1] ) - DistortionFnInverseApprox ( sampleR[1] ) ) / maxR < 0.0001f );
|
nuclear@0
|
356 OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[2] ) - DistortionFnInverseApprox ( sampleR[2] ) ) / maxR < 0.0001f );
|
nuclear@0
|
357 OVR_ASSERT ( fabs ( DistortionFnInverse ( sampleR[3] ) - DistortionFnInverseApprox ( sampleR[3] ) ) / maxR < 0.0001f );
|
nuclear@0
|
358 // Should be a decent match on the rest of the range.
|
nuclear@0
|
359 const int maxCheck = 20;
|
nuclear@0
|
360 for ( int i = 0; i < maxCheck; i++ )
|
nuclear@0
|
361 {
|
nuclear@0
|
362 float checkR = (float)i * maxR / (float)maxCheck;
|
nuclear@0
|
363 float realInv = DistortionFnInverse ( checkR );
|
nuclear@0
|
364 float testInv = DistortionFnInverseApprox ( checkR );
|
nuclear@0
|
365 float error = fabsf ( realInv - testInv ) / maxR;
|
nuclear@0
|
366 OVR_ASSERT ( error < 0.1f );
|
nuclear@0
|
367 }
|
nuclear@0
|
368 #endif
|
nuclear@0
|
369
|
nuclear@0
|
370 }break;
|
nuclear@0
|
371 case Distortion_CatmullRom10:{
|
nuclear@0
|
372
|
nuclear@0
|
373 const int NumSegments = LensConfig::NumCoefficients;
|
nuclear@0
|
374 OVR_ASSERT ( NumSegments <= NumCoefficients );
|
nuclear@0
|
375 for ( int i = 1; i < NumSegments; i++ )
|
nuclear@0
|
376 {
|
nuclear@0
|
377 float scaledRsq = (float)i;
|
nuclear@0
|
378 float rsq = scaledRsq * MaxInvR * MaxInvR / (float)( NumSegments - 1);
|
nuclear@0
|
379 float r = sqrtf ( rsq );
|
nuclear@0
|
380 float inv = DistortionFnInverse ( r );
|
nuclear@0
|
381 InvK[i] = inv / r;
|
nuclear@0
|
382 InvK[0] = 1.0f; // TODO: fix this.
|
nuclear@0
|
383 }
|
nuclear@0
|
384
|
nuclear@0
|
385 #if 0
|
nuclear@0
|
386 const int maxCheck = 20;
|
nuclear@0
|
387 for ( int i = 0; i <= maxCheck; i++ )
|
nuclear@0
|
388 {
|
nuclear@0
|
389 float checkR = (float)i * MaxInvR / (float)maxCheck;
|
nuclear@0
|
390 float realInv = DistortionFnInverse ( checkR );
|
nuclear@0
|
391 float testInv = DistortionFnInverseApprox ( checkR );
|
nuclear@0
|
392 float error = fabsf ( realInv - testInv ) / MaxR;
|
nuclear@0
|
393 OVR_ASSERT ( error < 0.01f );
|
nuclear@0
|
394 }
|
nuclear@0
|
395 #endif
|
nuclear@0
|
396
|
nuclear@0
|
397 }break;
|
nuclear@0
|
398
|
nuclear@0
|
399 default:
|
nuclear@0
|
400 break;
|
nuclear@0
|
401 }
|
nuclear@0
|
402 }
|
nuclear@0
|
403
|
nuclear@0
|
404
|
nuclear@0
|
405 void LensConfig::SetToIdentity()
|
nuclear@0
|
406 {
|
nuclear@0
|
407 for ( int i = 0; i < NumCoefficients; i++ )
|
nuclear@0
|
408 {
|
nuclear@0
|
409 K[i] = 0.0f;
|
nuclear@0
|
410 InvK[i] = 0.0f;
|
nuclear@0
|
411 }
|
nuclear@0
|
412 Eqn = Distortion_RecipPoly4;
|
nuclear@0
|
413 K[0] = 1.0f;
|
nuclear@0
|
414 InvK[0] = 1.0f;
|
nuclear@0
|
415 MaxR = 1.0f;
|
nuclear@0
|
416 MaxInvR = 1.0f;
|
nuclear@0
|
417 ChromaticAberration[0] = 0.0f;
|
nuclear@0
|
418 ChromaticAberration[1] = 0.0f;
|
nuclear@0
|
419 ChromaticAberration[2] = 0.0f;
|
nuclear@0
|
420 ChromaticAberration[3] = 0.0f;
|
nuclear@0
|
421 MetersPerTanAngleAtCenter = 0.05f;
|
nuclear@0
|
422 }
|
nuclear@0
|
423
|
nuclear@0
|
424
|
nuclear@0
|
425 enum LensConfigStoredVersion
|
nuclear@0
|
426 {
|
nuclear@0
|
427 LCSV_CatmullRom10Version1 = 1
|
nuclear@0
|
428 };
|
nuclear@0
|
429
|
nuclear@0
|
430 // DO NOT CHANGE THESE ONCE THEY HAVE BEEN BAKED INTO FIRMWARE.
|
nuclear@0
|
431 // If something needs to change, add a new one!
|
nuclear@0
|
432 struct LensConfigStored_CatmullRom10Version1
|
nuclear@0
|
433 {
|
nuclear@0
|
434 // All these items must be fixed-length integers - no "float", no "int", etc.
|
nuclear@0
|
435 uint16_t VersionNumber; // Must be LCSV_CatmullRom10Version1
|
nuclear@0
|
436
|
nuclear@0
|
437 uint16_t K[11];
|
nuclear@0
|
438 uint16_t MaxR;
|
nuclear@0
|
439 uint16_t MetersPerTanAngleAtCenter;
|
nuclear@0
|
440 uint16_t ChromaticAberration[4];
|
nuclear@0
|
441 // InvK and MaxInvR are calculated on load.
|
nuclear@0
|
442 };
|
nuclear@0
|
443
|
nuclear@0
|
444 uint16_t EncodeFixedPointUInt16 ( float val, uint16_t zeroVal, int fractionalBits )
|
nuclear@0
|
445 {
|
nuclear@0
|
446 OVR_ASSERT ( ( fractionalBits >= 0 ) && ( fractionalBits < 31 ) );
|
nuclear@0
|
447 float valWhole = val * (float)( 1 << fractionalBits );
|
nuclear@0
|
448 valWhole += (float)zeroVal + 0.5f;
|
nuclear@0
|
449 valWhole = floorf ( valWhole );
|
nuclear@0
|
450 OVR_ASSERT ( ( valWhole >= 0.0f ) && ( valWhole < (float)( 1 << 16 ) ) );
|
nuclear@0
|
451 return (uint16_t)valWhole;
|
nuclear@0
|
452 }
|
nuclear@0
|
453
|
nuclear@0
|
454 float DecodeFixedPointUInt16 ( uint16_t val, uint16_t zeroVal, int fractionalBits )
|
nuclear@0
|
455 {
|
nuclear@0
|
456 OVR_ASSERT ( ( fractionalBits >= 0 ) && ( fractionalBits < 31 ) );
|
nuclear@0
|
457 float valFloat = (float)val;
|
nuclear@0
|
458 valFloat -= (float)zeroVal;
|
nuclear@0
|
459 valFloat *= 1.0f / (float)( 1 << fractionalBits );
|
nuclear@0
|
460 return valFloat;
|
nuclear@0
|
461 }
|
nuclear@0
|
462
|
nuclear@0
|
463
|
nuclear@0
|
464 // Returns true on success.
|
nuclear@0
|
465 bool LoadLensConfig ( LensConfig *presult, uint8_t const *pbuffer, int bufferSizeInBytes )
|
nuclear@0
|
466 {
|
nuclear@0
|
467 if ( bufferSizeInBytes < 2 )
|
nuclear@0
|
468 {
|
nuclear@0
|
469 // Can't even tell the version number!
|
nuclear@0
|
470 return false;
|
nuclear@0
|
471 }
|
nuclear@0
|
472 uint16_t version = DecodeUInt16 ( pbuffer + 0 );
|
nuclear@0
|
473 switch ( version )
|
nuclear@0
|
474 {
|
nuclear@0
|
475 case LCSV_CatmullRom10Version1:
|
nuclear@0
|
476 {
|
nuclear@0
|
477 if ( bufferSizeInBytes < (int)sizeof(LensConfigStored_CatmullRom10Version1) )
|
nuclear@0
|
478 {
|
nuclear@0
|
479 return false;
|
nuclear@0
|
480 }
|
nuclear@0
|
481 LensConfigStored_CatmullRom10Version1 lcs;
|
nuclear@0
|
482 lcs.VersionNumber = DecodeUInt16 ( pbuffer + 0 );
|
nuclear@0
|
483 for ( int i = 0; i < 11; i++ )
|
nuclear@0
|
484 {
|
nuclear@0
|
485 lcs.K[i] = DecodeUInt16 ( pbuffer + 2 + 2*i );
|
nuclear@0
|
486 }
|
nuclear@0
|
487 lcs.MaxR = DecodeUInt16 ( pbuffer + 24 );
|
nuclear@0
|
488 lcs.MetersPerTanAngleAtCenter = DecodeUInt16 ( pbuffer + 26 );
|
nuclear@0
|
489 for ( int i = 0; i < 4; i++ )
|
nuclear@0
|
490 {
|
nuclear@0
|
491 lcs.ChromaticAberration[i] = DecodeUInt16 ( pbuffer + 28 + 2*i );
|
nuclear@0
|
492 }
|
nuclear@0
|
493 OVR_COMPILER_ASSERT ( sizeof(lcs) == 36 );
|
nuclear@0
|
494
|
nuclear@0
|
495 // Convert to the real thing.
|
nuclear@0
|
496 LensConfig result;
|
nuclear@0
|
497 result.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
498 for ( int i = 0; i < 11; i++ )
|
nuclear@0
|
499 {
|
nuclear@0
|
500 // K[] are mostly 1.something. They may get significantly bigger, but they never hit 0.0.
|
nuclear@0
|
501 result.K[i] = DecodeFixedPointUInt16 ( lcs.K[i], 0, 14 );
|
nuclear@0
|
502 }
|
nuclear@0
|
503 // MaxR is tan(angle), so always >0, typically just over 1.0 (45 degrees half-fov),
|
nuclear@0
|
504 // but may get arbitrarily high. tan(76)=4 is a very reasonable limit!
|
nuclear@0
|
505 result.MaxR = DecodeFixedPointUInt16 ( lcs.MaxR, 0, 14 );
|
nuclear@0
|
506 // MetersPerTanAngleAtCenter is also known as focal length!
|
nuclear@0
|
507 // Typically around 0.04 for our current screens, minimum of 0, sensible maximum of 0.125 (i.e. 3 "extra" bits of fraction)
|
nuclear@0
|
508 result.MetersPerTanAngleAtCenter = DecodeFixedPointUInt16 ( lcs.MetersPerTanAngleAtCenter, 0, 16+3 );
|
nuclear@0
|
509 for ( int i = 0; i < 4; i++ )
|
nuclear@0
|
510 {
|
nuclear@0
|
511 // ChromaticAberration[] are mostly 0.0something, centered on 0.0. Largest seen is 0.04, so set max to 0.125 (i.e. 3 "extra" bits of fraction)
|
nuclear@0
|
512 result.ChromaticAberration[i] = DecodeFixedPointUInt16 ( lcs.ChromaticAberration[i], 0x8000, 16+3 );
|
nuclear@0
|
513 }
|
nuclear@0
|
514 result.MaxInvR = result.DistortionFn ( result.MaxR );
|
nuclear@0
|
515 result.SetUpInverseApprox();
|
nuclear@0
|
516
|
nuclear@0
|
517 OVR_ASSERT ( version == lcs.VersionNumber );
|
nuclear@0
|
518
|
nuclear@0
|
519 *presult = result;
|
nuclear@0
|
520 }
|
nuclear@0
|
521 break;
|
nuclear@0
|
522 default:
|
nuclear@0
|
523 // Unknown format.
|
nuclear@0
|
524 return false;
|
nuclear@0
|
525 break;
|
nuclear@0
|
526 }
|
nuclear@0
|
527 return true;
|
nuclear@0
|
528 }
|
nuclear@0
|
529
|
nuclear@0
|
530 // Returns number of bytes needed.
|
nuclear@0
|
531 int SaveLensConfigSizeInBytes ( LensConfig const &config )
|
nuclear@0
|
532 {
|
nuclear@0
|
533 OVR_UNUSED ( config );
|
nuclear@0
|
534 return sizeof ( LensConfigStored_CatmullRom10Version1 );
|
nuclear@0
|
535 }
|
nuclear@0
|
536
|
nuclear@0
|
537 // Returns true on success.
|
nuclear@0
|
538 bool SaveLensConfig ( uint8_t *pbuffer, int bufferSizeInBytes, LensConfig const &config )
|
nuclear@0
|
539 {
|
nuclear@0
|
540 if ( bufferSizeInBytes < (int)sizeof ( LensConfigStored_CatmullRom10Version1 ) )
|
nuclear@0
|
541 {
|
nuclear@0
|
542 return false;
|
nuclear@0
|
543 }
|
nuclear@0
|
544
|
nuclear@0
|
545 // Construct the values.
|
nuclear@0
|
546 LensConfigStored_CatmullRom10Version1 lcs;
|
nuclear@0
|
547 lcs.VersionNumber = LCSV_CatmullRom10Version1;
|
nuclear@0
|
548 for ( int i = 0; i < 11; i++ )
|
nuclear@0
|
549 {
|
nuclear@0
|
550 // K[] are mostly 1.something. They may get significantly bigger, but they never hit 0.0.
|
nuclear@0
|
551 lcs.K[i] = EncodeFixedPointUInt16 ( config.K[i], 0, 14 );
|
nuclear@0
|
552 }
|
nuclear@0
|
553 // MaxR is tan(angle), so always >0, typically just over 1.0 (45 degrees half-fov),
|
nuclear@0
|
554 // but may get arbitrarily high. tan(76)=4 is a very reasonable limit!
|
nuclear@0
|
555 lcs.MaxR = EncodeFixedPointUInt16 ( config.MaxR, 0, 14 );
|
nuclear@0
|
556 // MetersPerTanAngleAtCenter is also known as focal length!
|
nuclear@0
|
557 // Typically around 0.04 for our current screens, minimum of 0, sensible maximum of 0.125 (i.e. 3 "extra" bits of fraction)
|
nuclear@0
|
558 lcs.MetersPerTanAngleAtCenter = EncodeFixedPointUInt16 ( config.MetersPerTanAngleAtCenter, 0, 16+3 );
|
nuclear@0
|
559 for ( int i = 0; i < 4; i++ )
|
nuclear@0
|
560 {
|
nuclear@0
|
561 // ChromaticAberration[] are mostly 0.0something, centered on 0.0. Largest seen is 0.04, so set max to 0.125 (i.e. 3 "extra" bits of fraction)
|
nuclear@0
|
562 lcs.ChromaticAberration[i] = EncodeFixedPointUInt16 ( config.ChromaticAberration[i], 0x8000, 16+3 );
|
nuclear@0
|
563 }
|
nuclear@0
|
564
|
nuclear@0
|
565
|
nuclear@0
|
566 // Now store them out, sensitive to endianness.
|
nuclear@0
|
567 EncodeUInt16 ( pbuffer + 0, lcs.VersionNumber );
|
nuclear@0
|
568 for ( int i = 0; i < 11; i++ )
|
nuclear@0
|
569 {
|
nuclear@0
|
570 EncodeUInt16 ( pbuffer + 2 + 2*i, lcs.K[i] );
|
nuclear@0
|
571 }
|
nuclear@0
|
572 EncodeUInt16 ( pbuffer + 24, lcs.MaxR );
|
nuclear@0
|
573 EncodeUInt16 ( pbuffer + 26, lcs.MetersPerTanAngleAtCenter );
|
nuclear@0
|
574 for ( int i = 0; i < 4; i++ )
|
nuclear@0
|
575 {
|
nuclear@0
|
576 EncodeUInt16 ( pbuffer + 28 + 2*i, lcs.ChromaticAberration[i] );
|
nuclear@0
|
577 }
|
nuclear@0
|
578 OVR_COMPILER_ASSERT ( 36 == sizeof(lcs) );
|
nuclear@0
|
579
|
nuclear@0
|
580 return true;
|
nuclear@0
|
581 }
|
nuclear@0
|
582
|
nuclear@0
|
583 #ifdef OVR_BUILD_DEBUG
|
nuclear@0
|
584 void TestSaveLoadLensConfig ( LensConfig const &config )
|
nuclear@0
|
585 {
|
nuclear@0
|
586 OVR_ASSERT ( config.Eqn == Distortion_CatmullRom10 );
|
nuclear@0
|
587 // As a test, make sure this can be encoded and decoded correctly.
|
nuclear@0
|
588 const int bufferSize = 256;
|
nuclear@0
|
589 uint8_t buffer[bufferSize];
|
nuclear@0
|
590 OVR_ASSERT ( SaveLensConfigSizeInBytes ( config ) < bufferSize );
|
nuclear@0
|
591 bool success;
|
nuclear@0
|
592 success = SaveLensConfig ( buffer, bufferSize, config );
|
nuclear@0
|
593 OVR_ASSERT ( success );
|
nuclear@0
|
594 LensConfig testConfig;
|
nuclear@0
|
595 success = LoadLensConfig ( &testConfig, buffer, bufferSize );
|
nuclear@0
|
596 OVR_ASSERT ( success );
|
nuclear@0
|
597 OVR_ASSERT ( testConfig.Eqn == config.Eqn );
|
nuclear@0
|
598 for ( int i = 0; i < 11; i++ )
|
nuclear@0
|
599 {
|
nuclear@0
|
600 OVR_ASSERT ( fabs ( testConfig.K[i] - config.K[i] ) < 0.0001f );
|
nuclear@0
|
601 }
|
nuclear@0
|
602 OVR_ASSERT ( fabsf ( testConfig.MaxR - config.MaxR ) < 0.0001f );
|
nuclear@0
|
603 OVR_ASSERT ( fabsf ( testConfig.MetersPerTanAngleAtCenter - config.MetersPerTanAngleAtCenter ) < 0.00001f );
|
nuclear@0
|
604 for ( int i = 0; i < 4; i++ )
|
nuclear@0
|
605 {
|
nuclear@0
|
606 OVR_ASSERT ( fabsf ( testConfig.ChromaticAberration[i] - config.ChromaticAberration[i] ) < 0.00001f );
|
nuclear@0
|
607 }
|
nuclear@0
|
608 }
|
nuclear@0
|
609 #endif
|
nuclear@0
|
610
|
nuclear@0
|
611
|
nuclear@0
|
612
|
nuclear@0
|
613 //-----------------------------------------------------------------------------------
|
nuclear@0
|
614
|
nuclear@0
|
615 // TBD: There is a question of whether this is the best file for CreateDebugHMDInfo. As long as there are many
|
nuclear@0
|
616 // constants for HmdRenderInfo here as well it is ok. The alternative would be OVR_Common_HMDDevice.cpp, but
|
nuclear@0
|
617 // that's specialized per platform... should probably move it there onces the code is in the common base class.
|
nuclear@0
|
618
|
nuclear@0
|
619 HMDInfo CreateDebugHMDInfo(HmdTypeEnum hmdType)
|
nuclear@0
|
620 {
|
nuclear@0
|
621 HMDInfo info;
|
nuclear@0
|
622
|
nuclear@0
|
623 if ((hmdType != HmdType_DK1) &&
|
nuclear@0
|
624 (hmdType != HmdType_CrystalCoveProto) &&
|
nuclear@0
|
625 (hmdType != HmdType_DK2))
|
nuclear@0
|
626 {
|
nuclear@0
|
627 LogText("Debug HMDInfo - HmdType not supported. Defaulting to DK1.\n");
|
nuclear@0
|
628 hmdType = HmdType_DK1;
|
nuclear@0
|
629 }
|
nuclear@0
|
630
|
nuclear@0
|
631 // The alternative would be to initialize info.HmdType to HmdType_None instead. If we did that,
|
nuclear@0
|
632 // code wouldn't be "maximally compatible" and devs wouldn't know what device we are
|
nuclear@0
|
633 // simulating... so if differentiation becomes necessary we better add Debug flag in the future.
|
nuclear@0
|
634 info.HmdType = hmdType;
|
nuclear@0
|
635 info.Manufacturer = "Oculus VR";
|
nuclear@0
|
636
|
nuclear@0
|
637 switch(hmdType)
|
nuclear@0
|
638 {
|
nuclear@0
|
639 case HmdType_DK1:
|
nuclear@0
|
640 info.ProductName = "Oculus Rift DK1";
|
nuclear@0
|
641 info.ResolutionInPixels = Sizei ( 1280, 800 );
|
nuclear@0
|
642 info.ScreenSizeInMeters = Sizef ( 0.1498f, 0.0936f );
|
nuclear@0
|
643 info.ScreenGapSizeInMeters = 0.0f;
|
nuclear@0
|
644 info.CenterFromTopInMeters = 0.0468f;
|
nuclear@0
|
645 info.LensSeparationInMeters = 0.0635f;
|
nuclear@0
|
646 info.PelOffsetR = Vector2f ( 0.0f, 0.0f );
|
nuclear@0
|
647 info.PelOffsetB = Vector2f ( 0.0f, 0.0f );
|
nuclear@0
|
648 info.Shutter.Type = HmdShutter_RollingTopToBottom;
|
nuclear@0
|
649 info.Shutter.VsyncToNextVsync = ( 1.0f / 60.0f );
|
nuclear@0
|
650 info.Shutter.VsyncToFirstScanline = 0.000052f;
|
nuclear@0
|
651 info.Shutter.FirstScanlineToLastScanline = 0.016580f;
|
nuclear@0
|
652 info.Shutter.PixelSettleTime = 0.015f;
|
nuclear@0
|
653 info.Shutter.PixelPersistence = ( 1.0f / 60.0f );
|
nuclear@0
|
654 break;
|
nuclear@0
|
655
|
nuclear@0
|
656 case HmdType_CrystalCoveProto:
|
nuclear@0
|
657 info.ProductName = "Oculus Rift Crystal Cove";
|
nuclear@0
|
658 info.ResolutionInPixels = Sizei ( 1920, 1080 );
|
nuclear@0
|
659 info.ScreenSizeInMeters = Sizef ( 0.12576f, 0.07074f );
|
nuclear@0
|
660 info.ScreenGapSizeInMeters = 0.0f;
|
nuclear@0
|
661 info.CenterFromTopInMeters = info.ScreenSizeInMeters.h * 0.5f;
|
nuclear@0
|
662 info.LensSeparationInMeters = 0.0635f;
|
nuclear@0
|
663 info.PelOffsetR = Vector2f ( 0.0f, 0.0f );
|
nuclear@0
|
664 info.PelOffsetB = Vector2f ( 0.0f, 0.0f );
|
nuclear@0
|
665 info.Shutter.Type = HmdShutter_RollingRightToLeft;
|
nuclear@0
|
666 info.Shutter.VsyncToNextVsync = ( 1.0f / 76.0f );
|
nuclear@0
|
667 info.Shutter.VsyncToFirstScanline = 0.0000273f;
|
nuclear@0
|
668 info.Shutter.FirstScanlineToLastScanline = 0.0131033f;
|
nuclear@0
|
669 info.Shutter.PixelSettleTime = 0.0f;
|
nuclear@0
|
670 info.Shutter.PixelPersistence = 0.18f * info.Shutter.VsyncToNextVsync;
|
nuclear@0
|
671 break;
|
nuclear@0
|
672
|
nuclear@0
|
673 case HmdType_DK2:
|
nuclear@0
|
674 info.ProductName = "Oculus Rift DK2";
|
nuclear@0
|
675 info.ResolutionInPixels = Sizei ( 1920, 1080 );
|
nuclear@0
|
676 info.ScreenSizeInMeters = Sizef ( 0.12576f, 0.07074f );
|
nuclear@0
|
677 info.ScreenGapSizeInMeters = 0.0f;
|
nuclear@0
|
678 info.CenterFromTopInMeters = info.ScreenSizeInMeters.h * 0.5f;
|
nuclear@0
|
679 info.LensSeparationInMeters = 0.0635f;
|
nuclear@0
|
680 info.PelOffsetR = Vector2f ( 0.5f, 0.5f );
|
nuclear@0
|
681 info.PelOffsetB = Vector2f ( 0.5f, 0.5f );
|
nuclear@0
|
682 info.Shutter.Type = HmdShutter_RollingRightToLeft;
|
nuclear@0
|
683 info.Shutter.VsyncToNextVsync = ( 1.0f / 76.0f );
|
nuclear@0
|
684 info.Shutter.VsyncToFirstScanline = 0.0000273f;
|
nuclear@0
|
685 info.Shutter.FirstScanlineToLastScanline = 0.0131033f;
|
nuclear@0
|
686 info.Shutter.PixelSettleTime = 0.0f;
|
nuclear@0
|
687 info.Shutter.PixelPersistence = 0.18f * info.Shutter.VsyncToNextVsync;
|
nuclear@0
|
688 break;
|
nuclear@0
|
689
|
nuclear@0
|
690 default:
|
nuclear@0
|
691 break;
|
nuclear@0
|
692 }
|
nuclear@0
|
693
|
nuclear@0
|
694 return info;
|
nuclear@0
|
695 }
|
nuclear@0
|
696
|
nuclear@0
|
697
|
nuclear@0
|
698 HmdRenderInfo GenerateHmdRenderInfoFromHmdInfo ( HMDInfo const &hmdInfo,
|
nuclear@0
|
699 Profile const *profile,
|
nuclear@0
|
700 DistortionEqnType distortionType /*= Distortion_CatmullRom10*/,
|
nuclear@0
|
701 EyeCupType eyeCupOverride /*= EyeCup_LAST*/ )
|
nuclear@0
|
702 {
|
nuclear@0
|
703 HmdRenderInfo renderInfo;
|
nuclear@0
|
704
|
nuclear@0
|
705 OVR_ASSERT(profile); // profiles are required
|
nuclear@0
|
706 if(!profile)
|
nuclear@0
|
707 return renderInfo;
|
nuclear@0
|
708
|
nuclear@0
|
709 renderInfo.HmdType = hmdInfo.HmdType;
|
nuclear@0
|
710 renderInfo.ResolutionInPixels = hmdInfo.ResolutionInPixels;
|
nuclear@0
|
711 renderInfo.ScreenSizeInMeters = hmdInfo.ScreenSizeInMeters;
|
nuclear@0
|
712 renderInfo.CenterFromTopInMeters = hmdInfo.CenterFromTopInMeters;
|
nuclear@0
|
713 renderInfo.ScreenGapSizeInMeters = hmdInfo.ScreenGapSizeInMeters;
|
nuclear@0
|
714 renderInfo.LensSeparationInMeters = hmdInfo.LensSeparationInMeters;
|
nuclear@0
|
715 renderInfo.PelOffsetR = hmdInfo.PelOffsetR;
|
nuclear@0
|
716 renderInfo.PelOffsetB = hmdInfo.PelOffsetB;
|
nuclear@0
|
717
|
nuclear@0
|
718 OVR_ASSERT ( sizeof(renderInfo.Shutter) == sizeof(hmdInfo.Shutter) ); // Try to keep the files in sync!
|
nuclear@0
|
719 renderInfo.Shutter.Type = hmdInfo.Shutter.Type;
|
nuclear@0
|
720 renderInfo.Shutter.VsyncToNextVsync = hmdInfo.Shutter.VsyncToNextVsync;
|
nuclear@0
|
721 renderInfo.Shutter.VsyncToFirstScanline = hmdInfo.Shutter.VsyncToFirstScanline;
|
nuclear@0
|
722 renderInfo.Shutter.FirstScanlineToLastScanline = hmdInfo.Shutter.FirstScanlineToLastScanline;
|
nuclear@0
|
723 renderInfo.Shutter.PixelSettleTime = hmdInfo.Shutter.PixelSettleTime;
|
nuclear@0
|
724 renderInfo.Shutter.PixelPersistence = hmdInfo.Shutter.PixelPersistence;
|
nuclear@0
|
725
|
nuclear@0
|
726 renderInfo.LensDiameterInMeters = 0.035f;
|
nuclear@0
|
727 renderInfo.LensSurfaceToMidplateInMeters = 0.025f;
|
nuclear@0
|
728 renderInfo.EyeCups = EyeCup_DK1A;
|
nuclear@0
|
729
|
nuclear@0
|
730 #if 0 // Device settings are out of date - don't use them.
|
nuclear@0
|
731 if (Contents & Contents_Distortion)
|
nuclear@0
|
732 {
|
nuclear@0
|
733 memcpy(renderInfo.DistortionK, DistortionK, sizeof(float)*4);
|
nuclear@0
|
734 renderInfo.DistortionEqn = Distortion_RecipPoly4;
|
nuclear@0
|
735 }
|
nuclear@0
|
736 #endif
|
nuclear@0
|
737
|
nuclear@0
|
738 // Defaults in case of no user profile.
|
nuclear@0
|
739 renderInfo.EyeLeft.NoseToPupilInMeters = 0.032f;
|
nuclear@0
|
740 renderInfo.EyeLeft.ReliefInMeters = 0.012f;
|
nuclear@0
|
741
|
nuclear@0
|
742 // 10mm eye-relief laser numbers for DK1 lenses.
|
nuclear@0
|
743 // These are a decent seed for finding eye-relief and IPD.
|
nuclear@0
|
744 // These are NOT used for rendering!
|
nuclear@0
|
745 // Rendering distortions are now in GenerateLensConfigFromEyeRelief()
|
nuclear@0
|
746 // So, if you're hacking in new distortions, don't do it here!
|
nuclear@0
|
747 renderInfo.EyeLeft.Distortion.SetToIdentity();
|
nuclear@0
|
748 renderInfo.EyeLeft.Distortion.MetersPerTanAngleAtCenter = 0.0449f;
|
nuclear@0
|
749 renderInfo.EyeLeft.Distortion.Eqn = Distortion_RecipPoly4;
|
nuclear@0
|
750 renderInfo.EyeLeft.Distortion.K[0] = 1.0f;
|
nuclear@0
|
751 renderInfo.EyeLeft.Distortion.K[1] = -0.494165344f;
|
nuclear@0
|
752 renderInfo.EyeLeft.Distortion.K[2] = 0.587046423f;
|
nuclear@0
|
753 renderInfo.EyeLeft.Distortion.K[3] = -0.841887126f;
|
nuclear@0
|
754 renderInfo.EyeLeft.Distortion.MaxR = 1.0f;
|
nuclear@0
|
755
|
nuclear@0
|
756 renderInfo.EyeLeft.Distortion.ChromaticAberration[0] = -0.006f;
|
nuclear@0
|
757 renderInfo.EyeLeft.Distortion.ChromaticAberration[1] = 0.0f;
|
nuclear@0
|
758 renderInfo.EyeLeft.Distortion.ChromaticAberration[2] = 0.014f;
|
nuclear@0
|
759 renderInfo.EyeLeft.Distortion.ChromaticAberration[3] = 0.0f;
|
nuclear@0
|
760
|
nuclear@0
|
761 renderInfo.EyeRight = renderInfo.EyeLeft;
|
nuclear@0
|
762
|
nuclear@0
|
763 // Obtain data from profile.
|
nuclear@0
|
764 char eyecup[16];
|
nuclear@0
|
765 if (profile->GetValue(OVR_KEY_EYE_CUP, eyecup, 16))
|
nuclear@0
|
766 {
|
nuclear@0
|
767 SetEyeCup(&renderInfo, eyecup);
|
nuclear@0
|
768 }
|
nuclear@0
|
769
|
nuclear@0
|
770 switch ( hmdInfo.HmdType )
|
nuclear@0
|
771 {
|
nuclear@0
|
772 case HmdType_None:
|
nuclear@0
|
773 case HmdType_DKProto:
|
nuclear@0
|
774 case HmdType_DK1:
|
nuclear@0
|
775 // Slight hack to improve usability.
|
nuclear@0
|
776 // If you have a DKHD-style lens profile enabled,
|
nuclear@0
|
777 // but you plug in DK1 and forget to change the profile,
|
nuclear@0
|
778 // obviously you don't want those lens numbers.
|
nuclear@0
|
779 if ( ( renderInfo.EyeCups != EyeCup_DK1A ) &&
|
nuclear@0
|
780 ( renderInfo.EyeCups != EyeCup_DK1B ) &&
|
nuclear@0
|
781 ( renderInfo.EyeCups != EyeCup_DK1C ) )
|
nuclear@0
|
782 {
|
nuclear@0
|
783 renderInfo.EyeCups = EyeCup_DK1A;
|
nuclear@0
|
784 }
|
nuclear@0
|
785 break;
|
nuclear@0
|
786
|
nuclear@0
|
787 case HmdType_DKHD2Proto:
|
nuclear@0
|
788 renderInfo.EyeCups = EyeCup_DKHD2A;
|
nuclear@0
|
789 break;
|
nuclear@0
|
790 case HmdType_CrystalCoveProto:
|
nuclear@0
|
791 renderInfo.EyeCups = EyeCup_PinkA;
|
nuclear@0
|
792 break;
|
nuclear@0
|
793 case HmdType_DK2:
|
nuclear@0
|
794 renderInfo.EyeCups = EyeCup_DK2A;
|
nuclear@0
|
795 break;
|
nuclear@0
|
796 default:
|
nuclear@0
|
797 break;
|
nuclear@0
|
798 }
|
nuclear@0
|
799
|
nuclear@0
|
800 if ( eyeCupOverride != EyeCup_LAST )
|
nuclear@0
|
801 {
|
nuclear@0
|
802 renderInfo.EyeCups = eyeCupOverride;
|
nuclear@0
|
803 }
|
nuclear@0
|
804
|
nuclear@0
|
805 switch ( renderInfo.EyeCups )
|
nuclear@0
|
806 {
|
nuclear@0
|
807 case EyeCup_DK1A:
|
nuclear@0
|
808 case EyeCup_DK1B:
|
nuclear@0
|
809 case EyeCup_DK1C:
|
nuclear@0
|
810 renderInfo.LensDiameterInMeters = 0.035f;
|
nuclear@0
|
811 renderInfo.LensSurfaceToMidplateInMeters = 0.02357f;
|
nuclear@0
|
812 // Not strictly lens-specific, but still wise to set a reasonable default for relief.
|
nuclear@0
|
813 renderInfo.EyeLeft.ReliefInMeters = 0.010f;
|
nuclear@0
|
814 renderInfo.EyeRight.ReliefInMeters = 0.010f;
|
nuclear@0
|
815 break;
|
nuclear@0
|
816 case EyeCup_DKHD2A:
|
nuclear@0
|
817 renderInfo.LensDiameterInMeters = 0.035f;
|
nuclear@0
|
818 renderInfo.LensSurfaceToMidplateInMeters = 0.02357f;
|
nuclear@0
|
819 // Not strictly lens-specific, but still wise to set a reasonable default for relief.
|
nuclear@0
|
820 renderInfo.EyeLeft.ReliefInMeters = 0.010f;
|
nuclear@0
|
821 renderInfo.EyeRight.ReliefInMeters = 0.010f;
|
nuclear@0
|
822 break;
|
nuclear@0
|
823 case EyeCup_PinkA:
|
nuclear@0
|
824 case EyeCup_DK2A:
|
nuclear@0
|
825 renderInfo.LensDiameterInMeters = 0.04f; // approximate
|
nuclear@0
|
826 renderInfo.LensSurfaceToMidplateInMeters = 0.01965f;
|
nuclear@0
|
827 // Not strictly lens-specific, but still wise to set a reasonable default for relief.
|
nuclear@0
|
828 renderInfo.EyeLeft.ReliefInMeters = 0.012f;
|
nuclear@0
|
829 renderInfo.EyeRight.ReliefInMeters = 0.012f;
|
nuclear@0
|
830 break;
|
nuclear@0
|
831 default: OVR_ASSERT ( false ); break;
|
nuclear@0
|
832 }
|
nuclear@0
|
833
|
nuclear@0
|
834 Profile* def = ProfileManager::GetInstance()->GetDefaultProfile(hmdInfo.HmdType);
|
nuclear@0
|
835
|
nuclear@0
|
836 // Set the eye position
|
nuclear@0
|
837 // Use the user profile value unless they have elected to use the defaults
|
nuclear@0
|
838 if (!profile->GetBoolValue(OVR_KEY_CUSTOM_EYE_RENDER, true))
|
nuclear@0
|
839 profile = def; // use the default
|
nuclear@0
|
840
|
nuclear@0
|
841 char user[32];
|
nuclear@0
|
842 profile->GetValue(OVR_KEY_USER, user, 32); // for debugging purposes
|
nuclear@0
|
843
|
nuclear@0
|
844 // TBD: Maybe we should separate custom camera positioning from custom distortion rendering ??
|
nuclear@0
|
845 float eye2nose[2] = { OVR_DEFAULT_IPD / 2, OVR_DEFAULT_IPD / 2 };
|
nuclear@0
|
846 if (profile->GetFloatValues(OVR_KEY_EYE_TO_NOSE_DISTANCE, eye2nose, 2) == 2)
|
nuclear@0
|
847 {
|
nuclear@0
|
848 renderInfo.EyeLeft.NoseToPupilInMeters = eye2nose[0];
|
nuclear@0
|
849 renderInfo.EyeRight.NoseToPupilInMeters = eye2nose[1];
|
nuclear@0
|
850 }
|
nuclear@0
|
851 else
|
nuclear@0
|
852 { // Legacy profiles may not include half-ipd, so use the regular IPD value instead
|
nuclear@0
|
853 float ipd = profile->GetFloatValue(OVR_KEY_IPD, OVR_DEFAULT_IPD);
|
nuclear@0
|
854 renderInfo.EyeLeft.NoseToPupilInMeters = 0.5f * ipd;
|
nuclear@0
|
855 renderInfo.EyeRight.NoseToPupilInMeters = 0.5f * ipd;
|
nuclear@0
|
856 }
|
nuclear@0
|
857
|
nuclear@0
|
858 float eye2plate[2];
|
nuclear@0
|
859 if ((profile->GetFloatValues(OVR_KEY_MAX_EYE_TO_PLATE_DISTANCE, eye2plate, 2) == 2) ||
|
nuclear@0
|
860 (def->GetFloatValues(OVR_KEY_MAX_EYE_TO_PLATE_DISTANCE, eye2plate, 2) == 2))
|
nuclear@0
|
861 { // Subtract the eye-cup height from the plate distance to get the eye-to-lens distance
|
nuclear@0
|
862 // This measurement should be the the distance at maximum dial setting
|
nuclear@0
|
863 // We still need to adjust with the dial offset
|
nuclear@0
|
864 renderInfo.EyeLeft.ReliefInMeters = eye2plate[0] - renderInfo.LensSurfaceToMidplateInMeters;
|
nuclear@0
|
865 renderInfo.EyeRight.ReliefInMeters = eye2plate[1] - renderInfo.LensSurfaceToMidplateInMeters;
|
nuclear@0
|
866
|
nuclear@0
|
867 // Adjust the eye relief with the dial setting (from the assumed max eye relief)
|
nuclear@0
|
868 int dial = profile->GetIntValue(OVR_KEY_EYE_RELIEF_DIAL, OVR_DEFAULT_EYE_RELIEF_DIAL);
|
nuclear@0
|
869 renderInfo.EyeLeft.ReliefInMeters -= ((10 - dial) * 0.001f);
|
nuclear@0
|
870 renderInfo.EyeRight.ReliefInMeters -= ((10 - dial) * 0.001f);
|
nuclear@0
|
871 }
|
nuclear@0
|
872 else
|
nuclear@0
|
873 {
|
nuclear@0
|
874 // We shouldn't be here. The user or default profile should have the eye relief
|
nuclear@0
|
875 OVR_ASSERT(false);
|
nuclear@0
|
876
|
nuclear@0
|
877 // Set the eye relief with the user configured dial setting
|
nuclear@0
|
878 //int dial = profile->GetIntValue(OVR_KEY_EYE_RELIEF_DIAL, OVR_DEFAULT_EYE_RELIEF_DIAL);
|
nuclear@0
|
879
|
nuclear@0
|
880 // Assume a default of 7 to 17 mm eye relief based on the dial. This corresponds
|
nuclear@0
|
881 // to the sampled and tuned distortion range on the DK1.
|
nuclear@0
|
882 //renderInfo.EyeLeft.ReliefInMeters = 0.007f + (dial * 0.001f);
|
nuclear@0
|
883 //renderInfo.EyeRight.ReliefInMeters = 0.007f + (dial * 0.001f);
|
nuclear@0
|
884 }
|
nuclear@0
|
885
|
nuclear@0
|
886 def->Release();
|
nuclear@0
|
887
|
nuclear@0
|
888
|
nuclear@0
|
889 // Now we know where the eyes are relative to the lenses, we can compute a distortion for each.
|
nuclear@0
|
890 // TODO: incorporate lateral offset in distortion generation.
|
nuclear@0
|
891 // TODO: we used a distortion to calculate eye-relief, and now we're making a distortion from that eye-relief. Close the loop!
|
nuclear@0
|
892
|
nuclear@0
|
893 for ( int eyeNum = 0; eyeNum < 2; eyeNum++ )
|
nuclear@0
|
894 {
|
nuclear@0
|
895 HmdRenderInfo::EyeConfig *pHmdEyeConfig = ( eyeNum == 0 ) ? &(renderInfo.EyeLeft) : &(renderInfo.EyeRight);
|
nuclear@0
|
896
|
nuclear@0
|
897 float eye_relief = pHmdEyeConfig->ReliefInMeters;
|
nuclear@0
|
898 LensConfig distortionConfig = GenerateLensConfigFromEyeRelief ( eye_relief, renderInfo, distortionType );
|
nuclear@0
|
899 pHmdEyeConfig->Distortion = distortionConfig;
|
nuclear@0
|
900 }
|
nuclear@0
|
901
|
nuclear@0
|
902 return renderInfo;
|
nuclear@0
|
903 }
|
nuclear@0
|
904
|
nuclear@0
|
905
|
nuclear@0
|
906 LensConfig GenerateLensConfigFromEyeRelief ( float eyeReliefInMeters, HmdRenderInfo const &hmd, DistortionEqnType distortionType /*= Distortion_CatmullRom10*/ )
|
nuclear@0
|
907 {
|
nuclear@0
|
908 struct DistortionDescriptor
|
nuclear@0
|
909 {
|
nuclear@0
|
910 float EyeRelief;
|
nuclear@0
|
911 // The three places we're going to sample & lerp the curve at.
|
nuclear@0
|
912 // One sample is always at 0.0, and the distortion scale should be 1.0 or else!
|
nuclear@0
|
913 // Only use for poly4 numbers - CR has an implicit scale.
|
nuclear@0
|
914 float SampleRadius[3];
|
nuclear@0
|
915 // Where the distortion has actually been measured/calibrated out to.
|
nuclear@0
|
916 // Don't try to hallucinate data out beyond here.
|
nuclear@0
|
917 float MaxRadius;
|
nuclear@0
|
918 // The config itself.
|
nuclear@0
|
919 LensConfig Config;
|
nuclear@0
|
920 };
|
nuclear@0
|
921
|
nuclear@0
|
922 static const int MaxDistortions = 10;
|
nuclear@0
|
923 DistortionDescriptor distortions[MaxDistortions];
|
nuclear@0
|
924 for (int i = 0; i < MaxDistortions; i++)
|
nuclear@0
|
925 {
|
nuclear@0
|
926 distortions[i].EyeRelief = 0.0f;
|
nuclear@0
|
927 memset(distortions[i].SampleRadius, 0, sizeof(distortions[i].SampleRadius));
|
nuclear@0
|
928 distortions[i].MaxRadius = 1.0f;
|
nuclear@0
|
929 distortions[i].Config.SetToIdentity(); // Note: This line causes a false Microsoft static analysis error -cat
|
nuclear@0
|
930 }
|
nuclear@0
|
931 int numDistortions = 0;
|
nuclear@0
|
932 int defaultDistortion = 0; // index of the default distortion curve to use if zero eye relief supplied
|
nuclear@0
|
933
|
nuclear@0
|
934 if ( ( hmd.EyeCups == EyeCup_DK1A ) ||
|
nuclear@0
|
935 ( hmd.EyeCups == EyeCup_DK1B ) ||
|
nuclear@0
|
936 ( hmd.EyeCups == EyeCup_DK1C ) )
|
nuclear@0
|
937 {
|
nuclear@0
|
938
|
nuclear@0
|
939 numDistortions = 0;
|
nuclear@0
|
940
|
nuclear@0
|
941 // Tuned at minimum dial setting - extended to r^2 == 1.8
|
nuclear@0
|
942 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
943 distortions[numDistortions].EyeRelief = 0.012760465f - 0.005f;
|
nuclear@0
|
944 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.0425f;
|
nuclear@0
|
945 distortions[numDistortions].Config.K[0] = 1.0000f;
|
nuclear@0
|
946 distortions[numDistortions].Config.K[1] = 1.06505f;
|
nuclear@0
|
947 distortions[numDistortions].Config.K[2] = 1.14725f;
|
nuclear@0
|
948 distortions[numDistortions].Config.K[3] = 1.2705f;
|
nuclear@0
|
949 distortions[numDistortions].Config.K[4] = 1.48f;
|
nuclear@0
|
950 distortions[numDistortions].Config.K[5] = 1.87f;
|
nuclear@0
|
951 distortions[numDistortions].Config.K[6] = 2.534f;
|
nuclear@0
|
952 distortions[numDistortions].Config.K[7] = 3.6f;
|
nuclear@0
|
953 distortions[numDistortions].Config.K[8] = 5.1f;
|
nuclear@0
|
954 distortions[numDistortions].Config.K[9] = 7.4f;
|
nuclear@0
|
955 distortions[numDistortions].Config.K[10] = 11.0f;
|
nuclear@0
|
956 distortions[numDistortions].MaxRadius = sqrt(1.8f);
|
nuclear@0
|
957 defaultDistortion = numDistortions; // this is the default
|
nuclear@0
|
958 numDistortions++;
|
nuclear@0
|
959
|
nuclear@0
|
960 // Tuned at middle dial setting
|
nuclear@0
|
961 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
962 distortions[numDistortions].EyeRelief = 0.012760465f; // my average eye-relief
|
nuclear@0
|
963 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.0425f;
|
nuclear@0
|
964 distortions[numDistortions].Config.K[0] = 1.0f;
|
nuclear@0
|
965 distortions[numDistortions].Config.K[1] = 1.032407264f;
|
nuclear@0
|
966 distortions[numDistortions].Config.K[2] = 1.07160462f;
|
nuclear@0
|
967 distortions[numDistortions].Config.K[3] = 1.11998388f;
|
nuclear@0
|
968 distortions[numDistortions].Config.K[4] = 1.1808606f;
|
nuclear@0
|
969 distortions[numDistortions].Config.K[5] = 1.2590494f;
|
nuclear@0
|
970 distortions[numDistortions].Config.K[6] = 1.361915f;
|
nuclear@0
|
971 distortions[numDistortions].Config.K[7] = 1.5014339f;
|
nuclear@0
|
972 distortions[numDistortions].Config.K[8] = 1.6986004f;
|
nuclear@0
|
973 distortions[numDistortions].Config.K[9] = 1.9940577f;
|
nuclear@0
|
974 distortions[numDistortions].Config.K[10] = 2.4783147f;
|
nuclear@0
|
975 distortions[numDistortions].MaxRadius = 1.0f;
|
nuclear@0
|
976 numDistortions++;
|
nuclear@0
|
977
|
nuclear@0
|
978 // Tuned at maximum dial setting
|
nuclear@0
|
979 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
980 distortions[numDistortions].EyeRelief = 0.012760465f + 0.005f;
|
nuclear@0
|
981 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.0425f;
|
nuclear@0
|
982 distortions[numDistortions].Config.K[0] = 1.0102f;
|
nuclear@0
|
983 distortions[numDistortions].Config.K[1] = 1.0371f;
|
nuclear@0
|
984 distortions[numDistortions].Config.K[2] = 1.0831f;
|
nuclear@0
|
985 distortions[numDistortions].Config.K[3] = 1.1353f;
|
nuclear@0
|
986 distortions[numDistortions].Config.K[4] = 1.2f;
|
nuclear@0
|
987 distortions[numDistortions].Config.K[5] = 1.2851f;
|
nuclear@0
|
988 distortions[numDistortions].Config.K[6] = 1.3979f;
|
nuclear@0
|
989 distortions[numDistortions].Config.K[7] = 1.56f;
|
nuclear@0
|
990 distortions[numDistortions].Config.K[8] = 1.8f;
|
nuclear@0
|
991 distortions[numDistortions].Config.K[9] = 2.25f;
|
nuclear@0
|
992 distortions[numDistortions].Config.K[10] = 3.0f;
|
nuclear@0
|
993 distortions[numDistortions].MaxRadius = 1.0f;
|
nuclear@0
|
994 numDistortions++;
|
nuclear@0
|
995
|
nuclear@0
|
996
|
nuclear@0
|
997
|
nuclear@0
|
998 // Chromatic aberration doesn't seem to change with eye relief.
|
nuclear@0
|
999 for ( int i = 0; i < numDistortions; i++ )
|
nuclear@0
|
1000 {
|
nuclear@0
|
1001 distortions[i].Config.ChromaticAberration[0] = -0.006f;
|
nuclear@0
|
1002 distortions[i].Config.ChromaticAberration[1] = 0.0f;
|
nuclear@0
|
1003 distortions[i].Config.ChromaticAberration[2] = 0.014f;
|
nuclear@0
|
1004 distortions[i].Config.ChromaticAberration[3] = 0.0f;
|
nuclear@0
|
1005 }
|
nuclear@0
|
1006 }
|
nuclear@0
|
1007 else if ( hmd.EyeCups == EyeCup_DKHD2A )
|
nuclear@0
|
1008 {
|
nuclear@0
|
1009 // Tuned DKHD2 lens
|
nuclear@0
|
1010 numDistortions = 0;
|
nuclear@0
|
1011
|
nuclear@0
|
1012 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
1013 distortions[numDistortions].EyeRelief = 0.010f;
|
nuclear@0
|
1014 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.0425f;
|
nuclear@0
|
1015 distortions[numDistortions].Config.K[0] = 1.0f;
|
nuclear@0
|
1016 distortions[numDistortions].Config.K[1] = 1.0425f;
|
nuclear@0
|
1017 distortions[numDistortions].Config.K[2] = 1.0826f;
|
nuclear@0
|
1018 distortions[numDistortions].Config.K[3] = 1.130f;
|
nuclear@0
|
1019 distortions[numDistortions].Config.K[4] = 1.185f;
|
nuclear@0
|
1020 distortions[numDistortions].Config.K[5] = 1.250f;
|
nuclear@0
|
1021 distortions[numDistortions].Config.K[6] = 1.338f;
|
nuclear@0
|
1022 distortions[numDistortions].Config.K[7] = 1.455f;
|
nuclear@0
|
1023 distortions[numDistortions].Config.K[8] = 1.620f;
|
nuclear@0
|
1024 distortions[numDistortions].Config.K[9] = 1.840f;
|
nuclear@0
|
1025 distortions[numDistortions].Config.K[10] = 2.200f;
|
nuclear@0
|
1026 distortions[numDistortions].MaxRadius = 1.0f;
|
nuclear@0
|
1027
|
nuclear@0
|
1028 defaultDistortion = numDistortions; // this is the default
|
nuclear@0
|
1029 numDistortions++;
|
nuclear@0
|
1030
|
nuclear@0
|
1031 distortions[numDistortions] = distortions[0];
|
nuclear@0
|
1032 distortions[numDistortions].EyeRelief = 0.020f;
|
nuclear@0
|
1033 numDistortions++;
|
nuclear@0
|
1034
|
nuclear@0
|
1035 // Chromatic aberration doesn't seem to change with eye relief.
|
nuclear@0
|
1036 for ( int i = 0; i < numDistortions; i++ )
|
nuclear@0
|
1037 {
|
nuclear@0
|
1038 distortions[i].Config.ChromaticAberration[0] = -0.006f;
|
nuclear@0
|
1039 distortions[i].Config.ChromaticAberration[1] = 0.0f;
|
nuclear@0
|
1040 distortions[i].Config.ChromaticAberration[2] = 0.014f;
|
nuclear@0
|
1041 distortions[i].Config.ChromaticAberration[3] = 0.0f;
|
nuclear@0
|
1042 }
|
nuclear@0
|
1043 }
|
nuclear@0
|
1044 else if ( hmd.EyeCups == EyeCup_PinkA || hmd.EyeCups == EyeCup_DK2A )
|
nuclear@0
|
1045 {
|
nuclear@0
|
1046 // Tuned Crystal Cove & DK2 Lens (CES & GDC)
|
nuclear@0
|
1047 numDistortions = 0;
|
nuclear@0
|
1048
|
nuclear@0
|
1049
|
nuclear@0
|
1050 distortions[numDistortions].EyeRelief = 0.008f;
|
nuclear@0
|
1051 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.036f;
|
nuclear@0
|
1052 // TODO: Need to retune this distortion for minimum eye relief
|
nuclear@0
|
1053 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
1054 distortions[numDistortions].Config.K[0] = 1.003f;
|
nuclear@0
|
1055 distortions[numDistortions].Config.K[1] = 1.02f;
|
nuclear@0
|
1056 distortions[numDistortions].Config.K[2] = 1.042f;
|
nuclear@0
|
1057 distortions[numDistortions].Config.K[3] = 1.066f;
|
nuclear@0
|
1058 distortions[numDistortions].Config.K[4] = 1.094f;
|
nuclear@0
|
1059 distortions[numDistortions].Config.K[5] = 1.126f;
|
nuclear@0
|
1060 distortions[numDistortions].Config.K[6] = 1.162f;
|
nuclear@0
|
1061 distortions[numDistortions].Config.K[7] = 1.203f;
|
nuclear@0
|
1062 distortions[numDistortions].Config.K[8] = 1.25f;
|
nuclear@0
|
1063 distortions[numDistortions].Config.K[9] = 1.31f;
|
nuclear@0
|
1064 distortions[numDistortions].Config.K[10] = 1.38f;
|
nuclear@0
|
1065 distortions[numDistortions].MaxRadius = 1.0f;
|
nuclear@0
|
1066
|
nuclear@0
|
1067 distortions[numDistortions].Config.ChromaticAberration[0] = -0.0112f;
|
nuclear@0
|
1068 distortions[numDistortions].Config.ChromaticAberration[1] = -0.015f;
|
nuclear@0
|
1069 distortions[numDistortions].Config.ChromaticAberration[2] = 0.0187f;
|
nuclear@0
|
1070 distortions[numDistortions].Config.ChromaticAberration[3] = 0.015f;
|
nuclear@0
|
1071
|
nuclear@0
|
1072 numDistortions++;
|
nuclear@0
|
1073
|
nuclear@0
|
1074
|
nuclear@0
|
1075
|
nuclear@0
|
1076
|
nuclear@0
|
1077
|
nuclear@0
|
1078 distortions[numDistortions].EyeRelief = 0.018f;
|
nuclear@0
|
1079 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.036f;
|
nuclear@0
|
1080
|
nuclear@0
|
1081 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
1082 distortions[numDistortions].Config.K[0] = 1.003f;
|
nuclear@0
|
1083 distortions[numDistortions].Config.K[1] = 1.02f;
|
nuclear@0
|
1084 distortions[numDistortions].Config.K[2] = 1.042f;
|
nuclear@0
|
1085 distortions[numDistortions].Config.K[3] = 1.066f;
|
nuclear@0
|
1086 distortions[numDistortions].Config.K[4] = 1.094f;
|
nuclear@0
|
1087 distortions[numDistortions].Config.K[5] = 1.126f;
|
nuclear@0
|
1088 distortions[numDistortions].Config.K[6] = 1.162f;
|
nuclear@0
|
1089 distortions[numDistortions].Config.K[7] = 1.203f;
|
nuclear@0
|
1090 distortions[numDistortions].Config.K[8] = 1.25f;
|
nuclear@0
|
1091 distortions[numDistortions].Config.K[9] = 1.31f;
|
nuclear@0
|
1092 distortions[numDistortions].Config.K[10] = 1.38f;
|
nuclear@0
|
1093 distortions[numDistortions].MaxRadius = 1.0f;
|
nuclear@0
|
1094
|
nuclear@0
|
1095 distortions[numDistortions].Config.ChromaticAberration[0] = -0.015f;
|
nuclear@0
|
1096 distortions[numDistortions].Config.ChromaticAberration[1] = -0.02f;
|
nuclear@0
|
1097 distortions[numDistortions].Config.ChromaticAberration[2] = 0.025f;
|
nuclear@0
|
1098 distortions[numDistortions].Config.ChromaticAberration[3] = 0.02f;
|
nuclear@0
|
1099
|
nuclear@0
|
1100 defaultDistortion = numDistortions; // this is the default
|
nuclear@0
|
1101 numDistortions++;
|
nuclear@0
|
1102
|
nuclear@0
|
1103 /*
|
nuclear@0
|
1104 // Orange Lens on DK2
|
nuclear@0
|
1105 distortions[numDistortions].EyeRelief = 0.010f;
|
nuclear@0
|
1106 distortions[numDistortions].Config.MetersPerTanAngleAtCenter = 0.031f;
|
nuclear@0
|
1107
|
nuclear@0
|
1108 distortions[numDistortions].Config.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
1109 distortions[numDistortions].Config.K[0] = 1.00f;
|
nuclear@0
|
1110 distortions[numDistortions].Config.K[1] = 1.0169f;
|
nuclear@0
|
1111 distortions[numDistortions].Config.K[2] = 1.0378f;
|
nuclear@0
|
1112 distortions[numDistortions].Config.K[3] = 1.0648f;
|
nuclear@0
|
1113 distortions[numDistortions].Config.K[4] = 1.0990f;
|
nuclear@0
|
1114 distortions[numDistortions].Config.K[5] = 1.141f;
|
nuclear@0
|
1115 distortions[numDistortions].Config.K[6] = 1.192f;
|
nuclear@0
|
1116 distortions[numDistortions].Config.K[7] = 1.255f;
|
nuclear@0
|
1117 distortions[numDistortions].Config.K[8] = 1.335f;
|
nuclear@0
|
1118 distortions[numDistortions].Config.K[9] = 1.435f;
|
nuclear@0
|
1119 distortions[numDistortions].Config.K[10] = 1.56f;
|
nuclear@0
|
1120 distortions[numDistortions].MaxRadius = 1.0f;
|
nuclear@0
|
1121 */
|
nuclear@0
|
1122 }
|
nuclear@0
|
1123 else
|
nuclear@0
|
1124 {
|
nuclear@0
|
1125 // Unknown lens.
|
nuclear@0
|
1126 // Use DK1 black lens settings, just so we can continue to run with something.
|
nuclear@0
|
1127 distortions[0].EyeRelief = 0.005f;
|
nuclear@0
|
1128 distortions[0].Config.MetersPerTanAngleAtCenter = 0.043875f;
|
nuclear@0
|
1129 distortions[0].Config.Eqn = Distortion_RecipPoly4;
|
nuclear@0
|
1130 distortions[0].Config.K[0] = 1.0f;
|
nuclear@0
|
1131 distortions[0].Config.K[1] = -0.3999f;
|
nuclear@0
|
1132 distortions[0].Config.K[2] = 0.2408f;
|
nuclear@0
|
1133 distortions[0].Config.K[3] = -0.4589f;
|
nuclear@0
|
1134 distortions[0].SampleRadius[0] = 0.2f;
|
nuclear@0
|
1135 distortions[0].SampleRadius[1] = 0.4f;
|
nuclear@0
|
1136 distortions[0].SampleRadius[2] = 0.6f;
|
nuclear@0
|
1137
|
nuclear@0
|
1138 distortions[1] = distortions[0];
|
nuclear@0
|
1139 distortions[1].EyeRelief = 0.010f;
|
nuclear@0
|
1140 numDistortions = 2;
|
nuclear@0
|
1141
|
nuclear@0
|
1142 // Chromatic aberration doesn't seem to change with eye relief.
|
nuclear@0
|
1143 for ( int i = 0; i < numDistortions; i++ )
|
nuclear@0
|
1144 {
|
nuclear@0
|
1145 // These are placeholder, they have not been tuned!
|
nuclear@0
|
1146 distortions[i].Config.ChromaticAberration[0] = 0.0f;
|
nuclear@0
|
1147 distortions[i].Config.ChromaticAberration[1] = 0.0f;
|
nuclear@0
|
1148 distortions[i].Config.ChromaticAberration[2] = 0.0f;
|
nuclear@0
|
1149 distortions[i].Config.ChromaticAberration[3] = 0.0f;
|
nuclear@0
|
1150 }
|
nuclear@0
|
1151 }
|
nuclear@0
|
1152
|
nuclear@0
|
1153 OVR_ASSERT(numDistortions < MaxDistortions);
|
nuclear@0
|
1154
|
nuclear@0
|
1155 DistortionDescriptor *pUpper = NULL;
|
nuclear@0
|
1156 DistortionDescriptor *pLower = NULL;
|
nuclear@0
|
1157 float lerpVal = 0.0f;
|
nuclear@0
|
1158 if (eyeReliefInMeters == 0)
|
nuclear@0
|
1159 { // Use a constant default distortion if an invalid eye-relief is supplied
|
nuclear@0
|
1160 pLower = &(distortions[defaultDistortion]);
|
nuclear@0
|
1161 pUpper = &(distortions[defaultDistortion]);
|
nuclear@0
|
1162 lerpVal = 0.0f;
|
nuclear@0
|
1163 }
|
nuclear@0
|
1164 else
|
nuclear@0
|
1165 {
|
nuclear@0
|
1166 for ( int i = 0; i < numDistortions-1; i++ )
|
nuclear@0
|
1167 {
|
nuclear@0
|
1168 OVR_ASSERT ( distortions[i].EyeRelief < distortions[i+1].EyeRelief );
|
nuclear@0
|
1169 if ( ( distortions[i].EyeRelief <= eyeReliefInMeters ) && ( distortions[i+1].EyeRelief > eyeReliefInMeters ) )
|
nuclear@0
|
1170 {
|
nuclear@0
|
1171 pLower = &(distortions[i]);
|
nuclear@0
|
1172 pUpper = &(distortions[i+1]);
|
nuclear@0
|
1173 lerpVal = ( eyeReliefInMeters - pLower->EyeRelief ) / ( pUpper->EyeRelief - pLower->EyeRelief );
|
nuclear@0
|
1174 // No break here - I want the ASSERT to check everything every time!
|
nuclear@0
|
1175 }
|
nuclear@0
|
1176 }
|
nuclear@0
|
1177 }
|
nuclear@0
|
1178
|
nuclear@0
|
1179 if ( pUpper == NULL )
|
nuclear@0
|
1180 {
|
nuclear@0
|
1181 #if 0
|
nuclear@0
|
1182 // Outside the range, so extrapolate rather than interpolate.
|
nuclear@0
|
1183 if ( distortions[0].EyeRelief > eyeReliefInMeters )
|
nuclear@0
|
1184 {
|
nuclear@0
|
1185 pLower = &(distortions[0]);
|
nuclear@0
|
1186 pUpper = &(distortions[1]);
|
nuclear@0
|
1187 }
|
nuclear@0
|
1188 else
|
nuclear@0
|
1189 {
|
nuclear@0
|
1190 OVR_ASSERT ( distortions[numDistortions-1].EyeRelief <= eyeReliefInMeters );
|
nuclear@0
|
1191 pLower = &(distortions[numDistortions-2]);
|
nuclear@0
|
1192 pUpper = &(distortions[numDistortions-1]);
|
nuclear@0
|
1193 }
|
nuclear@0
|
1194 lerpVal = ( eyeReliefInMeters - pLower->EyeRelief ) / ( pUpper->EyeRelief - pLower->EyeRelief );
|
nuclear@0
|
1195 #else
|
nuclear@0
|
1196 // Do not extrapolate, just clamp - slightly worried about people putting in bogus settings.
|
nuclear@0
|
1197 if ( distortions[0].EyeRelief > eyeReliefInMeters )
|
nuclear@0
|
1198 {
|
nuclear@0
|
1199 pLower = &(distortions[0]);
|
nuclear@0
|
1200 pUpper = &(distortions[0]);
|
nuclear@0
|
1201 }
|
nuclear@0
|
1202 else
|
nuclear@0
|
1203 {
|
nuclear@0
|
1204 OVR_ASSERT ( distortions[numDistortions-1].EyeRelief <= eyeReliefInMeters );
|
nuclear@0
|
1205 pLower = &(distortions[numDistortions-1]);
|
nuclear@0
|
1206 pUpper = &(distortions[numDistortions-1]);
|
nuclear@0
|
1207 }
|
nuclear@0
|
1208 lerpVal = 0.0f;
|
nuclear@0
|
1209 #endif
|
nuclear@0
|
1210 }
|
nuclear@0
|
1211 float invLerpVal = 1.0f - lerpVal;
|
nuclear@0
|
1212
|
nuclear@0
|
1213 pLower->Config.MaxR = pLower->MaxRadius;
|
nuclear@0
|
1214 pUpper->Config.MaxR = pUpper->MaxRadius;
|
nuclear@0
|
1215
|
nuclear@0
|
1216 LensConfig result;
|
nuclear@0
|
1217 // Where is the edge of the lens - no point modelling further than this.
|
nuclear@0
|
1218 float maxValidRadius = invLerpVal * pLower->MaxRadius + lerpVal * pUpper->MaxRadius;
|
nuclear@0
|
1219 result.MaxR = maxValidRadius;
|
nuclear@0
|
1220
|
nuclear@0
|
1221 switch ( distortionType )
|
nuclear@0
|
1222 {
|
nuclear@0
|
1223 case Distortion_Poly4:
|
nuclear@0
|
1224 // Deprecated
|
nuclear@0
|
1225 OVR_ASSERT ( false );
|
nuclear@0
|
1226 break;
|
nuclear@0
|
1227 case Distortion_RecipPoly4:{
|
nuclear@0
|
1228 // Lerp control points and fit an equation to them.
|
nuclear@0
|
1229 float fitX[4];
|
nuclear@0
|
1230 float fitY[4];
|
nuclear@0
|
1231 fitX[0] = 0.0f;
|
nuclear@0
|
1232 fitY[0] = 1.0f;
|
nuclear@0
|
1233 for ( int ctrlPt = 1; ctrlPt < 4; ctrlPt ++ )
|
nuclear@0
|
1234 {
|
nuclear@0
|
1235 // SampleRadius is not valid for Distortion_RecipPoly4 types.
|
nuclear@0
|
1236 float radiusLerp = ( invLerpVal * pLower->MaxRadius + lerpVal * pUpper->MaxRadius ) * ( (float)ctrlPt / 4.0f );
|
nuclear@0
|
1237 float radiusLerpSq = radiusLerp * radiusLerp;
|
nuclear@0
|
1238 float fitYLower = pLower->Config.DistortionFnScaleRadiusSquared ( radiusLerpSq );
|
nuclear@0
|
1239 float fitYUpper = pUpper->Config.DistortionFnScaleRadiusSquared ( radiusLerpSq );
|
nuclear@0
|
1240 fitX[ctrlPt] = radiusLerpSq;
|
nuclear@0
|
1241 fitY[ctrlPt] = 1.0f / ( invLerpVal * fitYLower + lerpVal * fitYUpper );
|
nuclear@0
|
1242 }
|
nuclear@0
|
1243
|
nuclear@0
|
1244 result.Eqn = Distortion_RecipPoly4;
|
nuclear@0
|
1245 bool bSuccess = FitCubicPolynomial ( result.K, fitX, fitY );
|
nuclear@0
|
1246 OVR_ASSERT ( bSuccess );
|
nuclear@0
|
1247 OVR_UNUSED ( bSuccess );
|
nuclear@0
|
1248
|
nuclear@0
|
1249 // Set up the fast inverse.
|
nuclear@0
|
1250 float maxRDist = result.DistortionFn ( maxValidRadius );
|
nuclear@0
|
1251 result.MaxInvR = maxRDist;
|
nuclear@0
|
1252 result.SetUpInverseApprox();
|
nuclear@0
|
1253
|
nuclear@0
|
1254 }break;
|
nuclear@0
|
1255
|
nuclear@0
|
1256 case Distortion_CatmullRom10:{
|
nuclear@0
|
1257
|
nuclear@0
|
1258 // Evenly sample & lerp points on the curve.
|
nuclear@0
|
1259 const int NumSegments = LensConfig::NumCoefficients;
|
nuclear@0
|
1260 result.MaxR = maxValidRadius;
|
nuclear@0
|
1261 // Directly interpolate the K0 values
|
nuclear@0
|
1262 result.K[0] = invLerpVal * pLower->Config.K[0] + lerpVal * pUpper->Config.K[0];
|
nuclear@0
|
1263
|
nuclear@0
|
1264 // Sample and interpolate the distortion curves to derive K[1] ... K[n]
|
nuclear@0
|
1265 for ( int ctrlPt = 1; ctrlPt < NumSegments; ctrlPt++ )
|
nuclear@0
|
1266 {
|
nuclear@0
|
1267 float radiusSq = ( (float)ctrlPt / (float)(NumSegments-1) ) * maxValidRadius * maxValidRadius;
|
nuclear@0
|
1268 float fitYLower = pLower->Config.DistortionFnScaleRadiusSquared ( radiusSq );
|
nuclear@0
|
1269 float fitYUpper = pUpper->Config.DistortionFnScaleRadiusSquared ( radiusSq );
|
nuclear@0
|
1270 float fitLerp = invLerpVal * fitYLower + lerpVal * fitYUpper;
|
nuclear@0
|
1271 result.K[ctrlPt] = fitLerp;
|
nuclear@0
|
1272 }
|
nuclear@0
|
1273
|
nuclear@0
|
1274 result.Eqn = Distortion_CatmullRom10;
|
nuclear@0
|
1275
|
nuclear@0
|
1276 for ( int ctrlPt = 1; ctrlPt < NumSegments; ctrlPt++ )
|
nuclear@0
|
1277 {
|
nuclear@0
|
1278 float radiusSq = ( (float)ctrlPt / (float)(NumSegments-1) ) * maxValidRadius * maxValidRadius;
|
nuclear@0
|
1279 float val = result.DistortionFnScaleRadiusSquared ( radiusSq );
|
nuclear@0
|
1280 OVR_ASSERT ( Alg::Abs ( val - result.K[ctrlPt] ) < 0.0001f );
|
nuclear@0
|
1281 OVR_UNUSED1(val); // For release build.
|
nuclear@0
|
1282 }
|
nuclear@0
|
1283
|
nuclear@0
|
1284 // Set up the fast inverse.
|
nuclear@0
|
1285 float maxRDist = result.DistortionFn ( maxValidRadius );
|
nuclear@0
|
1286 result.MaxInvR = maxRDist;
|
nuclear@0
|
1287 result.SetUpInverseApprox();
|
nuclear@0
|
1288
|
nuclear@0
|
1289 }break;
|
nuclear@0
|
1290
|
nuclear@0
|
1291 default: OVR_ASSERT ( false ); break;
|
nuclear@0
|
1292 }
|
nuclear@0
|
1293
|
nuclear@0
|
1294
|
nuclear@0
|
1295 // Chromatic aberration.
|
nuclear@0
|
1296 result.ChromaticAberration[0] = invLerpVal * pLower->Config.ChromaticAberration[0] + lerpVal * pUpper->Config.ChromaticAberration[0];
|
nuclear@0
|
1297 result.ChromaticAberration[1] = invLerpVal * pLower->Config.ChromaticAberration[1] + lerpVal * pUpper->Config.ChromaticAberration[1];
|
nuclear@0
|
1298 result.ChromaticAberration[2] = invLerpVal * pLower->Config.ChromaticAberration[2] + lerpVal * pUpper->Config.ChromaticAberration[2];
|
nuclear@0
|
1299 result.ChromaticAberration[3] = invLerpVal * pLower->Config.ChromaticAberration[3] + lerpVal * pUpper->Config.ChromaticAberration[3];
|
nuclear@0
|
1300
|
nuclear@0
|
1301 // Scale.
|
nuclear@0
|
1302 result.MetersPerTanAngleAtCenter = pLower->Config.MetersPerTanAngleAtCenter * invLerpVal +
|
nuclear@0
|
1303 pUpper->Config.MetersPerTanAngleAtCenter * lerpVal;
|
nuclear@0
|
1304 /*
|
nuclear@0
|
1305 // Commented out - Causes ASSERT with no HMD plugged in
|
nuclear@0
|
1306 #ifdef OVR_BUILD_DEBUG
|
nuclear@0
|
1307 if ( distortionType == Distortion_CatmullRom10 )
|
nuclear@0
|
1308 {
|
nuclear@0
|
1309 TestSaveLoadLensConfig ( result );
|
nuclear@0
|
1310 }
|
nuclear@0
|
1311 #endif
|
nuclear@0
|
1312 */
|
nuclear@0
|
1313 return result;
|
nuclear@0
|
1314 }
|
nuclear@0
|
1315
|
nuclear@0
|
1316
|
nuclear@0
|
1317 DistortionRenderDesc CalculateDistortionRenderDesc ( StereoEye eyeType, HmdRenderInfo const &hmd,
|
nuclear@0
|
1318 const LensConfig *pLensOverride /*= NULL */ )
|
nuclear@0
|
1319 {
|
nuclear@0
|
1320 // From eye relief, IPD and device characteristics, we get the distortion mapping.
|
nuclear@0
|
1321 // This distortion does the following things:
|
nuclear@0
|
1322 // 1. It undoes the distortion that happens at the edges of the lens.
|
nuclear@0
|
1323 // 2. It maps the undistorted field into "retina" space.
|
nuclear@0
|
1324 // So the input is a pixel coordinate - the physical pixel on the display itself.
|
nuclear@0
|
1325 // The output is the real-world direction of the ray from this pixel as it comes out of the lens and hits the eye.
|
nuclear@0
|
1326 // However we typically think of rays "coming from" the eye, so the direction (TanAngleX,TanAngleY,1) is the direction
|
nuclear@0
|
1327 // that the pixel appears to be in real-world space, where AngleX and AngleY are relative to the straight-ahead vector.
|
nuclear@0
|
1328 // If your renderer is a raytracer, you can use this vector directly (normalize as appropriate).
|
nuclear@0
|
1329 // However in standard rasterisers, we have rendered a 2D image and are putting it in front of the eye,
|
nuclear@0
|
1330 // so we then need a mapping from this space to the [-1,1] UV coordinate space, which depends on exactly
|
nuclear@0
|
1331 // where "in space" the app wants to put that rendertarget.
|
nuclear@0
|
1332 // Where in space, and how large this rendertarget is, is completely up to the app and/or user,
|
nuclear@0
|
1333 // though of course we can provide some useful hints.
|
nuclear@0
|
1334
|
nuclear@0
|
1335 // TODO: Use IPD and eye relief to modify distortion (i.e. non-radial component)
|
nuclear@0
|
1336 // TODO: cope with lenses that don't produce collimated light.
|
nuclear@0
|
1337 // This means that IPD relative to the lens separation changes the light vergence,
|
nuclear@0
|
1338 // and so we actually need to change where the image is displayed.
|
nuclear@0
|
1339
|
nuclear@0
|
1340 const HmdRenderInfo::EyeConfig &hmdEyeConfig = ( eyeType == StereoEye_Left ) ? hmd.EyeLeft : hmd.EyeRight;
|
nuclear@0
|
1341
|
nuclear@0
|
1342 DistortionRenderDesc localDistortion;
|
nuclear@0
|
1343 localDistortion.Lens = hmdEyeConfig.Distortion;
|
nuclear@0
|
1344
|
nuclear@0
|
1345 if ( pLensOverride != NULL )
|
nuclear@0
|
1346 {
|
nuclear@0
|
1347 localDistortion.Lens = *pLensOverride;
|
nuclear@0
|
1348 }
|
nuclear@0
|
1349
|
nuclear@0
|
1350 Sizef pixelsPerMeter(hmd.ResolutionInPixels.w / ( hmd.ScreenSizeInMeters.w - hmd.ScreenGapSizeInMeters ),
|
nuclear@0
|
1351 hmd.ResolutionInPixels.h / hmd.ScreenSizeInMeters.h);
|
nuclear@0
|
1352
|
nuclear@0
|
1353 localDistortion.PixelsPerTanAngleAtCenter = (pixelsPerMeter * localDistortion.Lens.MetersPerTanAngleAtCenter).ToVector();
|
nuclear@0
|
1354 // Same thing, scaled to [-1,1] for each eye, rather than pixels.
|
nuclear@0
|
1355
|
nuclear@0
|
1356 localDistortion.TanEyeAngleScale = Vector2f(0.25f, 0.5f).EntrywiseMultiply(
|
nuclear@0
|
1357 (hmd.ScreenSizeInMeters / localDistortion.Lens.MetersPerTanAngleAtCenter).ToVector());
|
nuclear@0
|
1358
|
nuclear@0
|
1359 // <--------------left eye------------------><-ScreenGapSizeInMeters-><--------------right eye----------------->
|
nuclear@0
|
1360 // <------------------------------------------ScreenSizeInMeters.Width----------------------------------------->
|
nuclear@0
|
1361 // <----------------LensSeparationInMeters--------------->
|
nuclear@0
|
1362 // <--centerFromLeftInMeters->
|
nuclear@0
|
1363 // ^
|
nuclear@0
|
1364 // Center of lens
|
nuclear@0
|
1365
|
nuclear@0
|
1366 // Find the lens centers in scale of [-1,+1] (NDC) in left eye.
|
nuclear@0
|
1367 float visibleWidthOfOneEye = 0.5f * ( hmd.ScreenSizeInMeters.w - hmd.ScreenGapSizeInMeters );
|
nuclear@0
|
1368 float centerFromLeftInMeters = ( hmd.ScreenSizeInMeters.w - hmd.LensSeparationInMeters ) * 0.5f;
|
nuclear@0
|
1369 localDistortion.LensCenter.x = ( centerFromLeftInMeters / visibleWidthOfOneEye ) * 2.0f - 1.0f;
|
nuclear@0
|
1370 localDistortion.LensCenter.y = ( hmd.CenterFromTopInMeters / hmd.ScreenSizeInMeters.h ) * 2.0f - 1.0f;
|
nuclear@0
|
1371 if ( eyeType == StereoEye_Right )
|
nuclear@0
|
1372 {
|
nuclear@0
|
1373 localDistortion.LensCenter.x = -localDistortion.LensCenter.x;
|
nuclear@0
|
1374 }
|
nuclear@0
|
1375
|
nuclear@0
|
1376 return localDistortion;
|
nuclear@0
|
1377 }
|
nuclear@0
|
1378
|
nuclear@0
|
1379 FovPort CalculateFovFromEyePosition ( float eyeReliefInMeters,
|
nuclear@0
|
1380 float offsetToRightInMeters,
|
nuclear@0
|
1381 float offsetDownwardsInMeters,
|
nuclear@0
|
1382 float lensDiameterInMeters,
|
nuclear@0
|
1383 float extraEyeRotationInRadians /*= 0.0f*/ )
|
nuclear@0
|
1384 {
|
nuclear@0
|
1385 // 2D view of things:
|
nuclear@0
|
1386 // |-| <--- offsetToRightInMeters (in this case, it is negative)
|
nuclear@0
|
1387 // |=======C=======| <--- lens surface (C=center)
|
nuclear@0
|
1388 // \ | _/
|
nuclear@0
|
1389 // \ R _/
|
nuclear@0
|
1390 // \ | _/
|
nuclear@0
|
1391 // \ | _/
|
nuclear@0
|
1392 // \|/
|
nuclear@0
|
1393 // O <--- center of pupil
|
nuclear@0
|
1394
|
nuclear@0
|
1395 // (technically the lens is round rather than square, so it's not correct to
|
nuclear@0
|
1396 // separate vertical and horizontal like this, but it's close enough)
|
nuclear@0
|
1397 float halfLensDiameter = lensDiameterInMeters * 0.5f;
|
nuclear@0
|
1398 FovPort fovPort;
|
nuclear@0
|
1399 fovPort.UpTan = ( halfLensDiameter + offsetDownwardsInMeters ) / eyeReliefInMeters;
|
nuclear@0
|
1400 fovPort.DownTan = ( halfLensDiameter - offsetDownwardsInMeters ) / eyeReliefInMeters;
|
nuclear@0
|
1401 fovPort.LeftTan = ( halfLensDiameter + offsetToRightInMeters ) / eyeReliefInMeters;
|
nuclear@0
|
1402 fovPort.RightTan = ( halfLensDiameter - offsetToRightInMeters ) / eyeReliefInMeters;
|
nuclear@0
|
1403
|
nuclear@0
|
1404 if ( extraEyeRotationInRadians > 0.0f )
|
nuclear@0
|
1405 {
|
nuclear@0
|
1406 // That's the basic looking-straight-ahead eye position relative to the lens.
|
nuclear@0
|
1407 // But if you look left, the pupil moves left as the eyeball rotates, which
|
nuclear@0
|
1408 // means you can see more to the right than this geometry suggests.
|
nuclear@0
|
1409 // So add in the bounds for the extra movement of the pupil.
|
nuclear@0
|
1410
|
nuclear@0
|
1411 // Beyond 30 degrees does not increase FOV because the pupil starts moving backwards more than sideways.
|
nuclear@0
|
1412 extraEyeRotationInRadians = Alg::Min ( DegreeToRad ( 30.0f ), Alg::Max ( 0.0f, extraEyeRotationInRadians ) );
|
nuclear@0
|
1413
|
nuclear@0
|
1414 // The rotation of the eye is a bit more complex than a simple circle. The center of rotation
|
nuclear@0
|
1415 // at 13.5mm from cornea is slightly further back than the actual center of the eye.
|
nuclear@0
|
1416 // Additionally the rotation contains a small lateral component as the muscles pull the eye
|
nuclear@0
|
1417 const float eyeballCenterToPupil = 0.0135f; // center of eye rotation
|
nuclear@0
|
1418 const float eyeballLateralPull = 0.001f * (extraEyeRotationInRadians / DegreeToRad ( 30.0f)); // lateral motion as linear function
|
nuclear@0
|
1419 float extraTranslation = eyeballCenterToPupil * sinf ( extraEyeRotationInRadians ) + eyeballLateralPull;
|
nuclear@0
|
1420 float extraRelief = eyeballCenterToPupil * ( 1.0f - cosf ( extraEyeRotationInRadians ) );
|
nuclear@0
|
1421
|
nuclear@0
|
1422 fovPort.UpTan = Alg::Max ( fovPort.UpTan , ( halfLensDiameter + offsetDownwardsInMeters + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
|
nuclear@0
|
1423 fovPort.DownTan = Alg::Max ( fovPort.DownTan , ( halfLensDiameter - offsetDownwardsInMeters + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
|
nuclear@0
|
1424 fovPort.LeftTan = Alg::Max ( fovPort.LeftTan , ( halfLensDiameter + offsetToRightInMeters + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
|
nuclear@0
|
1425 fovPort.RightTan = Alg::Max ( fovPort.RightTan, ( halfLensDiameter - offsetToRightInMeters + extraTranslation ) / ( eyeReliefInMeters + extraRelief ) );
|
nuclear@0
|
1426 }
|
nuclear@0
|
1427
|
nuclear@0
|
1428 return fovPort;
|
nuclear@0
|
1429 }
|
nuclear@0
|
1430
|
nuclear@0
|
1431
|
nuclear@0
|
1432
|
nuclear@0
|
1433 FovPort CalculateFovFromHmdInfo ( StereoEye eyeType,
|
nuclear@0
|
1434 DistortionRenderDesc const &distortion,
|
nuclear@0
|
1435 HmdRenderInfo const &hmd,
|
nuclear@0
|
1436 float extraEyeRotationInRadians /*= 0.0f*/ )
|
nuclear@0
|
1437 {
|
nuclear@0
|
1438 FovPort fovPort;
|
nuclear@0
|
1439 float eyeReliefInMeters;
|
nuclear@0
|
1440 float offsetToRightInMeters;
|
nuclear@0
|
1441 if ( eyeType == StereoEye_Right )
|
nuclear@0
|
1442 {
|
nuclear@0
|
1443 eyeReliefInMeters = hmd.EyeRight.ReliefInMeters;
|
nuclear@0
|
1444 offsetToRightInMeters = hmd.EyeRight.NoseToPupilInMeters - 0.5f * hmd.LensSeparationInMeters;
|
nuclear@0
|
1445 }
|
nuclear@0
|
1446 else
|
nuclear@0
|
1447 {
|
nuclear@0
|
1448 eyeReliefInMeters = hmd.EyeLeft.ReliefInMeters;
|
nuclear@0
|
1449 offsetToRightInMeters = -(hmd.EyeLeft.NoseToPupilInMeters - 0.5f * hmd.LensSeparationInMeters);
|
nuclear@0
|
1450 }
|
nuclear@0
|
1451
|
nuclear@0
|
1452 // Limit the eye-relief to 6 mm for FOV calculations since this just tends to spread off-screen
|
nuclear@0
|
1453 // and get clamped anyways on DK1 (but in Unity it continues to spreads and causes
|
nuclear@0
|
1454 // unnecessarily large render targets)
|
nuclear@0
|
1455 eyeReliefInMeters = Alg::Max(eyeReliefInMeters, 0.006f);
|
nuclear@0
|
1456
|
nuclear@0
|
1457 // Central view.
|
nuclear@0
|
1458 fovPort = CalculateFovFromEyePosition ( eyeReliefInMeters,
|
nuclear@0
|
1459 offsetToRightInMeters,
|
nuclear@0
|
1460 0.0f,
|
nuclear@0
|
1461 hmd.LensDiameterInMeters,
|
nuclear@0
|
1462 extraEyeRotationInRadians );
|
nuclear@0
|
1463
|
nuclear@0
|
1464 // clamp to the screen
|
nuclear@0
|
1465 fovPort = ClampToPhysicalScreenFov ( eyeType, distortion, fovPort );
|
nuclear@0
|
1466
|
nuclear@0
|
1467 return fovPort;
|
nuclear@0
|
1468 }
|
nuclear@0
|
1469
|
nuclear@0
|
1470
|
nuclear@0
|
1471
|
nuclear@0
|
1472 FovPort GetPhysicalScreenFov ( StereoEye eyeType, DistortionRenderDesc const &distortion )
|
nuclear@0
|
1473 {
|
nuclear@0
|
1474 OVR_UNUSED1 ( eyeType );
|
nuclear@0
|
1475
|
nuclear@0
|
1476 FovPort resultFovPort;
|
nuclear@0
|
1477
|
nuclear@0
|
1478 // Figure out the boundaries of the screen. We take the middle pixel of the screen,
|
nuclear@0
|
1479 // move to each of the four screen edges, and transform those back into TanAngle space.
|
nuclear@0
|
1480 Vector2f dmiddle = distortion.LensCenter;
|
nuclear@0
|
1481
|
nuclear@0
|
1482 // The gotcha is that for some distortion functions, the map will "wrap around"
|
nuclear@0
|
1483 // for screen pixels that are not actually visible to the user (especially on DK1,
|
nuclear@0
|
1484 // which has a lot of invisible pixels), and map to pixels that are close to the middle.
|
nuclear@0
|
1485 // This means the edges of the screen will actually be
|
nuclear@0
|
1486 // "closer" than the visible bounds, so we'll clip too aggressively.
|
nuclear@0
|
1487
|
nuclear@0
|
1488 // Solution - step gradually towards the boundary, noting the maximum distance.
|
nuclear@0
|
1489 struct FunctionHider
|
nuclear@0
|
1490 {
|
nuclear@0
|
1491 static FovPort FindRange ( Vector2f from, Vector2f to, int numSteps,
|
nuclear@0
|
1492 DistortionRenderDesc const &distortionL )
|
nuclear@0
|
1493 {
|
nuclear@0
|
1494 FovPort result;
|
nuclear@0
|
1495 result.UpTan = 0.0f;
|
nuclear@0
|
1496 result.DownTan = 0.0f;
|
nuclear@0
|
1497 result.LeftTan = 0.0f;
|
nuclear@0
|
1498 result.RightTan = 0.0f;
|
nuclear@0
|
1499
|
nuclear@0
|
1500 float stepScale = 1.0f / ( numSteps - 1 );
|
nuclear@0
|
1501 for ( int step = 0; step < numSteps; step++ )
|
nuclear@0
|
1502 {
|
nuclear@0
|
1503 float lerpFactor = stepScale * (float)step;
|
nuclear@0
|
1504 Vector2f sample = from + (to - from) * lerpFactor;
|
nuclear@0
|
1505 Vector2f tanEyeAngle = TransformScreenNDCToTanFovSpace ( distortionL, sample );
|
nuclear@0
|
1506
|
nuclear@0
|
1507 result.LeftTan = Alg::Max ( result.LeftTan, -tanEyeAngle.x );
|
nuclear@0
|
1508 result.RightTan = Alg::Max ( result.RightTan, tanEyeAngle.x );
|
nuclear@0
|
1509 result.UpTan = Alg::Max ( result.UpTan, -tanEyeAngle.y );
|
nuclear@0
|
1510 result.DownTan = Alg::Max ( result.DownTan, tanEyeAngle.y );
|
nuclear@0
|
1511 }
|
nuclear@0
|
1512 return result;
|
nuclear@0
|
1513 }
|
nuclear@0
|
1514 };
|
nuclear@0
|
1515
|
nuclear@0
|
1516 FovPort leftFovPort = FunctionHider::FindRange( dmiddle, Vector2f( -1.0f, dmiddle.y ), 10, distortion );
|
nuclear@0
|
1517 FovPort rightFovPort = FunctionHider::FindRange( dmiddle, Vector2f( 1.0f, dmiddle.y ), 10, distortion );
|
nuclear@0
|
1518 FovPort upFovPort = FunctionHider::FindRange( dmiddle, Vector2f( dmiddle.x, -1.0f ), 10, distortion );
|
nuclear@0
|
1519 FovPort downFovPort = FunctionHider::FindRange( dmiddle, Vector2f( dmiddle.x, 1.0f ), 10, distortion );
|
nuclear@0
|
1520
|
nuclear@0
|
1521 resultFovPort.LeftTan = leftFovPort.LeftTan;
|
nuclear@0
|
1522 resultFovPort.RightTan = rightFovPort.RightTan;
|
nuclear@0
|
1523 resultFovPort.UpTan = upFovPort.UpTan;
|
nuclear@0
|
1524 resultFovPort.DownTan = downFovPort.DownTan;
|
nuclear@0
|
1525
|
nuclear@0
|
1526 return resultFovPort;
|
nuclear@0
|
1527 }
|
nuclear@0
|
1528
|
nuclear@0
|
1529 FovPort ClampToPhysicalScreenFov( StereoEye eyeType, DistortionRenderDesc const &distortion,
|
nuclear@0
|
1530 FovPort inputFovPort )
|
nuclear@0
|
1531 {
|
nuclear@0
|
1532 FovPort resultFovPort;
|
nuclear@0
|
1533 FovPort phsyicalFovPort = GetPhysicalScreenFov ( eyeType, distortion );
|
nuclear@0
|
1534 resultFovPort.LeftTan = Alg::Min ( inputFovPort.LeftTan, phsyicalFovPort.LeftTan );
|
nuclear@0
|
1535 resultFovPort.RightTan = Alg::Min ( inputFovPort.RightTan, phsyicalFovPort.RightTan );
|
nuclear@0
|
1536 resultFovPort.UpTan = Alg::Min ( inputFovPort.UpTan, phsyicalFovPort.UpTan );
|
nuclear@0
|
1537 resultFovPort.DownTan = Alg::Min ( inputFovPort.DownTan, phsyicalFovPort.DownTan );
|
nuclear@0
|
1538
|
nuclear@0
|
1539 return resultFovPort;
|
nuclear@0
|
1540 }
|
nuclear@0
|
1541
|
nuclear@0
|
1542 Sizei CalculateIdealPixelSize ( StereoEye eyeType, DistortionRenderDesc const &distortion,
|
nuclear@0
|
1543 FovPort tanHalfFov, float pixelsPerDisplayPixel )
|
nuclear@0
|
1544 {
|
nuclear@0
|
1545 OVR_UNUSED(eyeType); // might be useful in the future if we do overlapping fovs
|
nuclear@0
|
1546
|
nuclear@0
|
1547 Sizei result;
|
nuclear@0
|
1548 // TODO: if the app passes in a FOV that doesn't cover the centre, use the distortion values for the nearest edge/corner to match pixel size.
|
nuclear@0
|
1549 result.w = (int)(0.5f + pixelsPerDisplayPixel * distortion.PixelsPerTanAngleAtCenter.x * ( tanHalfFov.LeftTan + tanHalfFov.RightTan ) );
|
nuclear@0
|
1550 result.h = (int)(0.5f + pixelsPerDisplayPixel * distortion.PixelsPerTanAngleAtCenter.y * ( tanHalfFov.UpTan + tanHalfFov.DownTan ) );
|
nuclear@0
|
1551 return result;
|
nuclear@0
|
1552 }
|
nuclear@0
|
1553
|
nuclear@0
|
1554 Recti GetFramebufferViewport ( StereoEye eyeType, HmdRenderInfo const &hmd )
|
nuclear@0
|
1555 {
|
nuclear@0
|
1556 Recti result;
|
nuclear@0
|
1557 result.w = hmd.ResolutionInPixels.w/2;
|
nuclear@0
|
1558 result.h = hmd.ResolutionInPixels.h;
|
nuclear@0
|
1559 result.x = 0;
|
nuclear@0
|
1560 result.y = 0;
|
nuclear@0
|
1561 if ( eyeType == StereoEye_Right )
|
nuclear@0
|
1562 {
|
nuclear@0
|
1563 result.x = (hmd.ResolutionInPixels.w+1)/2; // Round up, not down.
|
nuclear@0
|
1564 }
|
nuclear@0
|
1565 return result;
|
nuclear@0
|
1566 }
|
nuclear@0
|
1567
|
nuclear@0
|
1568
|
nuclear@0
|
1569 ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort tanHalfFov )
|
nuclear@0
|
1570 {
|
nuclear@0
|
1571 float projXScale = 2.0f / ( tanHalfFov.LeftTan + tanHalfFov.RightTan );
|
nuclear@0
|
1572 float projXOffset = ( tanHalfFov.LeftTan - tanHalfFov.RightTan ) * projXScale * 0.5f;
|
nuclear@0
|
1573 float projYScale = 2.0f / ( tanHalfFov.UpTan + tanHalfFov.DownTan );
|
nuclear@0
|
1574 float projYOffset = ( tanHalfFov.UpTan - tanHalfFov.DownTan ) * projYScale * 0.5f;
|
nuclear@0
|
1575
|
nuclear@0
|
1576 ScaleAndOffset2D result;
|
nuclear@0
|
1577 result.Scale = Vector2f(projXScale, projYScale);
|
nuclear@0
|
1578 result.Offset = Vector2f(projXOffset, projYOffset);
|
nuclear@0
|
1579 // Hey - why is that Y.Offset negated?
|
nuclear@0
|
1580 // It's because a projection matrix transforms from world coords with Y=up,
|
nuclear@0
|
1581 // whereas this is from NDC which is Y=down.
|
nuclear@0
|
1582
|
nuclear@0
|
1583 return result;
|
nuclear@0
|
1584 }
|
nuclear@0
|
1585
|
nuclear@0
|
1586
|
nuclear@0
|
1587 ScaleAndOffset2D CreateUVScaleAndOffsetfromNDCScaleandOffset ( ScaleAndOffset2D scaleAndOffsetNDC,
|
nuclear@0
|
1588 Recti renderedViewport,
|
nuclear@0
|
1589 Sizei renderTargetSize )
|
nuclear@0
|
1590 {
|
nuclear@0
|
1591 // scaleAndOffsetNDC takes you to NDC space [-1,+1] within the given viewport on the rendertarget.
|
nuclear@0
|
1592 // We want a scale to instead go to actual UV coordinates you can sample with,
|
nuclear@0
|
1593 // which need [0,1] and ignore the viewport.
|
nuclear@0
|
1594 ScaleAndOffset2D result;
|
nuclear@0
|
1595 // Scale [-1,1] to [0,1]
|
nuclear@0
|
1596 result.Scale = scaleAndOffsetNDC.Scale * 0.5f;
|
nuclear@0
|
1597 result.Offset = scaleAndOffsetNDC.Offset * 0.5f + Vector2f(0.5f);
|
nuclear@0
|
1598
|
nuclear@0
|
1599 // ...but we will have rendered to a subsection of the RT, so scale for that.
|
nuclear@0
|
1600 Vector2f scale( (float)renderedViewport.w / (float)renderTargetSize.w,
|
nuclear@0
|
1601 (float)renderedViewport.h / (float)renderTargetSize.h );
|
nuclear@0
|
1602 Vector2f offset( (float)renderedViewport.x / (float)renderTargetSize.w,
|
nuclear@0
|
1603 (float)renderedViewport.y / (float)renderTargetSize.h );
|
nuclear@0
|
1604
|
nuclear@0
|
1605 result.Scale = result.Scale.EntrywiseMultiply(scale);
|
nuclear@0
|
1606 result.Offset = result.Offset.EntrywiseMultiply(scale) + offset;
|
nuclear@0
|
1607 return result;
|
nuclear@0
|
1608 }
|
nuclear@0
|
1609
|
nuclear@0
|
1610
|
nuclear@0
|
1611
|
nuclear@0
|
1612 Matrix4f CreateProjection( bool rightHanded, FovPort tanHalfFov,
|
nuclear@0
|
1613 float zNear /*= 0.01f*/, float zFar /*= 10000.0f*/ )
|
nuclear@0
|
1614 {
|
nuclear@0
|
1615 // A projection matrix is very like a scaling from NDC, so we can start with that.
|
nuclear@0
|
1616 ScaleAndOffset2D scaleAndOffset = CreateNDCScaleAndOffsetFromFov ( tanHalfFov );
|
nuclear@0
|
1617
|
nuclear@0
|
1618 float handednessScale = 1.0f;
|
nuclear@0
|
1619 if ( rightHanded )
|
nuclear@0
|
1620 {
|
nuclear@0
|
1621 handednessScale = -1.0f;
|
nuclear@0
|
1622 }
|
nuclear@0
|
1623
|
nuclear@0
|
1624 Matrix4f projection;
|
nuclear@0
|
1625 // Produces X result, mapping clip edges to [-w,+w]
|
nuclear@0
|
1626 projection.M[0][0] = scaleAndOffset.Scale.x;
|
nuclear@0
|
1627 projection.M[0][1] = 0.0f;
|
nuclear@0
|
1628 projection.M[0][2] = handednessScale * scaleAndOffset.Offset.x;
|
nuclear@0
|
1629 projection.M[0][3] = 0.0f;
|
nuclear@0
|
1630
|
nuclear@0
|
1631 // Produces Y result, mapping clip edges to [-w,+w]
|
nuclear@0
|
1632 // Hey - why is that YOffset negated?
|
nuclear@0
|
1633 // It's because a projection matrix transforms from world coords with Y=up,
|
nuclear@0
|
1634 // whereas this is derived from an NDC scaling, which is Y=down.
|
nuclear@0
|
1635 projection.M[1][0] = 0.0f;
|
nuclear@0
|
1636 projection.M[1][1] = scaleAndOffset.Scale.y;
|
nuclear@0
|
1637 projection.M[1][2] = handednessScale * -scaleAndOffset.Offset.y;
|
nuclear@0
|
1638 projection.M[1][3] = 0.0f;
|
nuclear@0
|
1639
|
nuclear@0
|
1640 // Produces Z-buffer result - app needs to fill this in with whatever Z range it wants.
|
nuclear@0
|
1641 // We'll just use some defaults for now.
|
nuclear@0
|
1642 projection.M[2][0] = 0.0f;
|
nuclear@0
|
1643 projection.M[2][1] = 0.0f;
|
nuclear@0
|
1644 projection.M[2][2] = -handednessScale * zFar / (zNear - zFar);
|
nuclear@0
|
1645 projection.M[2][3] = (zFar * zNear) / (zNear - zFar);
|
nuclear@0
|
1646
|
nuclear@0
|
1647 // Produces W result (= Z in)
|
nuclear@0
|
1648 projection.M[3][0] = 0.0f;
|
nuclear@0
|
1649 projection.M[3][1] = 0.0f;
|
nuclear@0
|
1650 projection.M[3][2] = handednessScale;
|
nuclear@0
|
1651 projection.M[3][3] = 0.0f;
|
nuclear@0
|
1652
|
nuclear@0
|
1653 return projection;
|
nuclear@0
|
1654 }
|
nuclear@0
|
1655
|
nuclear@0
|
1656
|
nuclear@0
|
1657 Matrix4f CreateOrthoSubProjection ( bool rightHanded, StereoEye eyeType,
|
nuclear@0
|
1658 float tanHalfFovX, float tanHalfFovY,
|
nuclear@0
|
1659 float unitsX, float unitsY,
|
nuclear@0
|
1660 float distanceFromCamera, float interpupillaryDistance,
|
nuclear@0
|
1661 Matrix4f const &projection,
|
nuclear@0
|
1662 float zNear /*= 0.0f*/, float zFar /*= 0.0f*/ )
|
nuclear@0
|
1663 {
|
nuclear@0
|
1664 OVR_UNUSED1 ( rightHanded );
|
nuclear@0
|
1665
|
nuclear@0
|
1666 float orthoHorizontalOffset = interpupillaryDistance * 0.5f / distanceFromCamera;
|
nuclear@0
|
1667 switch ( eyeType )
|
nuclear@0
|
1668 {
|
nuclear@0
|
1669 case StereoEye_Center:
|
nuclear@0
|
1670 orthoHorizontalOffset = 0.0f;
|
nuclear@0
|
1671 break;
|
nuclear@0
|
1672 case StereoEye_Left:
|
nuclear@0
|
1673 break;
|
nuclear@0
|
1674 case StereoEye_Right:
|
nuclear@0
|
1675 orthoHorizontalOffset = -orthoHorizontalOffset;
|
nuclear@0
|
1676 break;
|
nuclear@0
|
1677 default: OVR_ASSERT ( false ); break;
|
nuclear@0
|
1678 }
|
nuclear@0
|
1679
|
nuclear@0
|
1680 // Current projection maps real-world vector (x,y,1) to the RT.
|
nuclear@0
|
1681 // We want to find the projection that maps the range [-FovPixels/2,FovPixels/2] to
|
nuclear@0
|
1682 // the physical [-orthoHalfFov,orthoHalfFov]
|
nuclear@0
|
1683 // Note moving the offset from M[0][2]+M[1][2] to M[0][3]+M[1][3] - this means
|
nuclear@0
|
1684 // we don't have to feed in Z=1 all the time.
|
nuclear@0
|
1685 // The horizontal offset math is a little hinky because the destination is
|
nuclear@0
|
1686 // actually [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]
|
nuclear@0
|
1687 // So we need to first map [-FovPixels/2,FovPixels/2] to
|
nuclear@0
|
1688 // [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]:
|
nuclear@0
|
1689 // x1 = x0 * orthoHalfFov/(FovPixels/2) + orthoHorizontalOffset;
|
nuclear@0
|
1690 // = x0 * 2*orthoHalfFov/FovPixels + orthoHorizontalOffset;
|
nuclear@0
|
1691 // But then we need the sam mapping as the existing projection matrix, i.e.
|
nuclear@0
|
1692 // x2 = x1 * Projection.M[0][0] + Projection.M[0][2];
|
nuclear@0
|
1693 // = x0 * (2*orthoHalfFov/FovPixels + orthoHorizontalOffset) * Projection.M[0][0] + Projection.M[0][2];
|
nuclear@0
|
1694 // = x0 * Projection.M[0][0]*2*orthoHalfFov/FovPixels +
|
nuclear@0
|
1695 // orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2];
|
nuclear@0
|
1696 // So in the new projection matrix we need to scale by Projection.M[0][0]*2*orthoHalfFov/FovPixels and
|
nuclear@0
|
1697 // offset by orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2].
|
nuclear@0
|
1698
|
nuclear@0
|
1699 float orthoScaleX = 2.0f * tanHalfFovX / unitsX;
|
nuclear@0
|
1700 float orthoScaleY = 2.0f * tanHalfFovY / unitsY;
|
nuclear@0
|
1701 Matrix4f ortho;
|
nuclear@0
|
1702 ortho.M[0][0] = projection.M[0][0] * orthoScaleX;
|
nuclear@0
|
1703 ortho.M[0][1] = 0.0f;
|
nuclear@0
|
1704 ortho.M[0][2] = 0.0f;
|
nuclear@0
|
1705 ortho.M[0][3] = -projection.M[0][2] + ( orthoHorizontalOffset * projection.M[0][0] );
|
nuclear@0
|
1706
|
nuclear@0
|
1707 ortho.M[1][0] = 0.0f;
|
nuclear@0
|
1708 ortho.M[1][1] = -projection.M[1][1] * orthoScaleY; // Note sign flip (text rendering uses Y=down).
|
nuclear@0
|
1709 ortho.M[1][2] = 0.0f;
|
nuclear@0
|
1710 ortho.M[1][3] = -projection.M[1][2];
|
nuclear@0
|
1711
|
nuclear@0
|
1712 if ( fabsf ( zNear - zFar ) < 0.001f )
|
nuclear@0
|
1713 {
|
nuclear@0
|
1714 ortho.M[2][0] = 0.0f;
|
nuclear@0
|
1715 ortho.M[2][1] = 0.0f;
|
nuclear@0
|
1716 ortho.M[2][2] = 0.0f;
|
nuclear@0
|
1717 ortho.M[2][3] = zFar;
|
nuclear@0
|
1718 }
|
nuclear@0
|
1719 else
|
nuclear@0
|
1720 {
|
nuclear@0
|
1721 ortho.M[2][0] = 0.0f;
|
nuclear@0
|
1722 ortho.M[2][1] = 0.0f;
|
nuclear@0
|
1723 ortho.M[2][2] = zFar / (zNear - zFar);
|
nuclear@0
|
1724 ortho.M[2][3] = (zFar * zNear) / (zNear - zFar);
|
nuclear@0
|
1725 }
|
nuclear@0
|
1726
|
nuclear@0
|
1727 // No perspective correction for ortho.
|
nuclear@0
|
1728 ortho.M[3][0] = 0.0f;
|
nuclear@0
|
1729 ortho.M[3][1] = 0.0f;
|
nuclear@0
|
1730 ortho.M[3][2] = 0.0f;
|
nuclear@0
|
1731 ortho.M[3][3] = 1.0f;
|
nuclear@0
|
1732
|
nuclear@0
|
1733 return ortho;
|
nuclear@0
|
1734 }
|
nuclear@0
|
1735
|
nuclear@0
|
1736
|
nuclear@0
|
1737 //-----------------------------------------------------------------------------------
|
nuclear@0
|
1738 // A set of "forward-mapping" functions, mapping from framebuffer space to real-world and/or texture space.
|
nuclear@0
|
1739
|
nuclear@0
|
1740 // This mimics the first half of the distortion shader's function.
|
nuclear@0
|
1741 Vector2f TransformScreenNDCToTanFovSpace( DistortionRenderDesc const &distortion,
|
nuclear@0
|
1742 const Vector2f &framebufferNDC )
|
nuclear@0
|
1743 {
|
nuclear@0
|
1744 // Scale to TanHalfFov space, but still distorted.
|
nuclear@0
|
1745 Vector2f tanEyeAngleDistorted;
|
nuclear@0
|
1746 tanEyeAngleDistorted.x = ( framebufferNDC.x - distortion.LensCenter.x ) * distortion.TanEyeAngleScale.x;
|
nuclear@0
|
1747 tanEyeAngleDistorted.y = ( framebufferNDC.y - distortion.LensCenter.y ) * distortion.TanEyeAngleScale.y;
|
nuclear@0
|
1748 // Distort.
|
nuclear@0
|
1749 float radiusSquared = ( tanEyeAngleDistorted.x * tanEyeAngleDistorted.x )
|
nuclear@0
|
1750 + ( tanEyeAngleDistorted.y * tanEyeAngleDistorted.y );
|
nuclear@0
|
1751 float distortionScale = distortion.Lens.DistortionFnScaleRadiusSquared ( radiusSquared );
|
nuclear@0
|
1752 Vector2f tanEyeAngle;
|
nuclear@0
|
1753 tanEyeAngle.x = tanEyeAngleDistorted.x * distortionScale;
|
nuclear@0
|
1754 tanEyeAngle.y = tanEyeAngleDistorted.y * distortionScale;
|
nuclear@0
|
1755
|
nuclear@0
|
1756 return tanEyeAngle;
|
nuclear@0
|
1757 }
|
nuclear@0
|
1758
|
nuclear@0
|
1759 // Same, with chromatic aberration correction.
|
nuclear@0
|
1760 void TransformScreenNDCToTanFovSpaceChroma ( Vector2f *resultR, Vector2f *resultG, Vector2f *resultB,
|
nuclear@0
|
1761 DistortionRenderDesc const &distortion,
|
nuclear@0
|
1762 const Vector2f &framebufferNDC )
|
nuclear@0
|
1763 {
|
nuclear@0
|
1764 // Scale to TanHalfFov space, but still distorted.
|
nuclear@0
|
1765 Vector2f tanEyeAngleDistorted;
|
nuclear@0
|
1766 tanEyeAngleDistorted.x = ( framebufferNDC.x - distortion.LensCenter.x ) * distortion.TanEyeAngleScale.x;
|
nuclear@0
|
1767 tanEyeAngleDistorted.y = ( framebufferNDC.y - distortion.LensCenter.y ) * distortion.TanEyeAngleScale.y;
|
nuclear@0
|
1768 // Distort.
|
nuclear@0
|
1769 float radiusSquared = ( tanEyeAngleDistorted.x * tanEyeAngleDistorted.x )
|
nuclear@0
|
1770 + ( tanEyeAngleDistorted.y * tanEyeAngleDistorted.y );
|
nuclear@0
|
1771 Vector3f distortionScales = distortion.Lens.DistortionFnScaleRadiusSquaredChroma ( radiusSquared );
|
nuclear@0
|
1772 *resultR = tanEyeAngleDistorted * distortionScales.x;
|
nuclear@0
|
1773 *resultG = tanEyeAngleDistorted * distortionScales.y;
|
nuclear@0
|
1774 *resultB = tanEyeAngleDistorted * distortionScales.z;
|
nuclear@0
|
1775 }
|
nuclear@0
|
1776
|
nuclear@0
|
1777 // This mimics the second half of the distortion shader's function.
|
nuclear@0
|
1778 Vector2f TransformTanFovSpaceToRendertargetTexUV( ScaleAndOffset2D const &eyeToSourceUV,
|
nuclear@0
|
1779 Vector2f const &tanEyeAngle )
|
nuclear@0
|
1780 {
|
nuclear@0
|
1781 Vector2f textureUV;
|
nuclear@0
|
1782 textureUV.x = tanEyeAngle.x * eyeToSourceUV.Scale.x + eyeToSourceUV.Offset.x;
|
nuclear@0
|
1783 textureUV.y = tanEyeAngle.y * eyeToSourceUV.Scale.y + eyeToSourceUV.Offset.y;
|
nuclear@0
|
1784 return textureUV;
|
nuclear@0
|
1785 }
|
nuclear@0
|
1786
|
nuclear@0
|
1787 Vector2f TransformTanFovSpaceToRendertargetNDC( ScaleAndOffset2D const &eyeToSourceNDC,
|
nuclear@0
|
1788 Vector2f const &tanEyeAngle )
|
nuclear@0
|
1789 {
|
nuclear@0
|
1790 Vector2f textureNDC;
|
nuclear@0
|
1791 textureNDC.x = tanEyeAngle.x * eyeToSourceNDC.Scale.x + eyeToSourceNDC.Offset.x;
|
nuclear@0
|
1792 textureNDC.y = tanEyeAngle.y * eyeToSourceNDC.Scale.y + eyeToSourceNDC.Offset.y;
|
nuclear@0
|
1793 return textureNDC;
|
nuclear@0
|
1794 }
|
nuclear@0
|
1795
|
nuclear@0
|
1796 Vector2f TransformScreenPixelToScreenNDC( Recti const &distortionViewport,
|
nuclear@0
|
1797 Vector2f const &pixel )
|
nuclear@0
|
1798 {
|
nuclear@0
|
1799 // Move to [-1,1] NDC coords.
|
nuclear@0
|
1800 Vector2f framebufferNDC;
|
nuclear@0
|
1801 framebufferNDC.x = -1.0f + 2.0f * ( ( pixel.x - (float)distortionViewport.x ) / (float)distortionViewport.w );
|
nuclear@0
|
1802 framebufferNDC.y = -1.0f + 2.0f * ( ( pixel.y - (float)distortionViewport.y ) / (float)distortionViewport.h );
|
nuclear@0
|
1803 return framebufferNDC;
|
nuclear@0
|
1804 }
|
nuclear@0
|
1805
|
nuclear@0
|
1806 Vector2f TransformScreenPixelToTanFovSpace( Recti const &distortionViewport,
|
nuclear@0
|
1807 DistortionRenderDesc const &distortion,
|
nuclear@0
|
1808 Vector2f const &pixel )
|
nuclear@0
|
1809 {
|
nuclear@0
|
1810 return TransformScreenNDCToTanFovSpace( distortion,
|
nuclear@0
|
1811 TransformScreenPixelToScreenNDC( distortionViewport, pixel ) );
|
nuclear@0
|
1812 }
|
nuclear@0
|
1813
|
nuclear@0
|
1814 Vector2f TransformScreenNDCToRendertargetTexUV( DistortionRenderDesc const &distortion,
|
nuclear@0
|
1815 StereoEyeParams const &eyeParams,
|
nuclear@0
|
1816 Vector2f const &pixel )
|
nuclear@0
|
1817 {
|
nuclear@0
|
1818 return TransformTanFovSpaceToRendertargetTexUV ( eyeParams,
|
nuclear@0
|
1819 TransformScreenNDCToTanFovSpace ( distortion, pixel ) );
|
nuclear@0
|
1820 }
|
nuclear@0
|
1821
|
nuclear@0
|
1822 Vector2f TransformScreenPixelToRendertargetTexUV( Recti const &distortionViewport,
|
nuclear@0
|
1823 DistortionRenderDesc const &distortion,
|
nuclear@0
|
1824 StereoEyeParams const &eyeParams,
|
nuclear@0
|
1825 Vector2f const &pixel )
|
nuclear@0
|
1826 {
|
nuclear@0
|
1827 return TransformTanFovSpaceToRendertargetTexUV ( eyeParams,
|
nuclear@0
|
1828 TransformScreenPixelToTanFovSpace ( distortionViewport, distortion, pixel ) );
|
nuclear@0
|
1829 }
|
nuclear@0
|
1830
|
nuclear@0
|
1831
|
nuclear@0
|
1832 //-----------------------------------------------------------------------------------
|
nuclear@0
|
1833 // A set of "reverse-mapping" functions, mapping from real-world and/or texture space back to the framebuffer.
|
nuclear@0
|
1834
|
nuclear@0
|
1835 Vector2f TransformTanFovSpaceToScreenNDC( DistortionRenderDesc const &distortion,
|
nuclear@0
|
1836 const Vector2f &tanEyeAngle, bool usePolyApprox /*= false*/ )
|
nuclear@0
|
1837 {
|
nuclear@0
|
1838 float tanEyeAngleRadius = tanEyeAngle.Length();
|
nuclear@0
|
1839 float tanEyeAngleDistortedRadius = distortion.Lens.DistortionFnInverseApprox ( tanEyeAngleRadius );
|
nuclear@0
|
1840 if ( !usePolyApprox )
|
nuclear@0
|
1841 {
|
nuclear@0
|
1842 tanEyeAngleDistortedRadius = distortion.Lens.DistortionFnInverse ( tanEyeAngleRadius );
|
nuclear@0
|
1843 }
|
nuclear@0
|
1844 Vector2f tanEyeAngleDistorted = tanEyeAngle;
|
nuclear@0
|
1845 if ( tanEyeAngleRadius > 0.0f )
|
nuclear@0
|
1846 {
|
nuclear@0
|
1847 tanEyeAngleDistorted = tanEyeAngle * ( tanEyeAngleDistortedRadius / tanEyeAngleRadius );
|
nuclear@0
|
1848 }
|
nuclear@0
|
1849
|
nuclear@0
|
1850 Vector2f framebufferNDC;
|
nuclear@0
|
1851 framebufferNDC.x = ( tanEyeAngleDistorted.x / distortion.TanEyeAngleScale.x ) + distortion.LensCenter.x;
|
nuclear@0
|
1852 framebufferNDC.y = ( tanEyeAngleDistorted.y / distortion.TanEyeAngleScale.y ) + distortion.LensCenter.y;
|
nuclear@0
|
1853
|
nuclear@0
|
1854 return framebufferNDC;
|
nuclear@0
|
1855 }
|
nuclear@0
|
1856
|
nuclear@0
|
1857 Vector2f TransformRendertargetNDCToTanFovSpace( const ScaleAndOffset2D &eyeToSourceNDC,
|
nuclear@0
|
1858 const Vector2f &textureNDC )
|
nuclear@0
|
1859 {
|
nuclear@0
|
1860 Vector2f tanEyeAngle = (textureNDC - eyeToSourceNDC.Offset) / eyeToSourceNDC.Scale;
|
nuclear@0
|
1861 return tanEyeAngle;
|
nuclear@0
|
1862 }
|
nuclear@0
|
1863
|
nuclear@0
|
1864
|
nuclear@0
|
1865
|
nuclear@0
|
1866 } //namespace OVR
|
nuclear@0
|
1867
|
nuclear@0
|
1868 //Just want to make a copy disentangled from all these namespaces!
|
nuclear@0
|
1869 float ExtEvalCatmullRom10Spline ( float const *K, float scaledVal )
|
nuclear@0
|
1870 {
|
nuclear@0
|
1871 return(OVR::EvalCatmullRom10Spline ( K, scaledVal ));
|
nuclear@0
|
1872 }
|
nuclear@0
|
1873
|
nuclear@0
|
1874
|