oculus2_psprite

annotate src/main.c @ 9:9c36ae39ad95

merged
author John Tsiombikas <nuclear@member.fsf.org>
date Sat, 25 Oct 2014 20:07:55 +0300
parents 4d6733229e01 5b04743fd3d0
children 3d224ad45cac
rev   line source
nuclear@5 1 /* Very simple OculusSDK OpenGL usage example.
nuclear@6 2 *
nuclear@6 3 * Uses SDL2 (www.libsdl.org) for event handling and OpenGL context management.
nuclear@6 4 * Uses GLEW (glew.sourceforge.net) for OpenGL extension wrangling.
nuclear@5 5 *
nuclear@5 6 * Author: John Tsiombikas <nuclear@member.fsf.org>
nuclear@5 7 * This code is in the public domain. Do whatever you like with it.
nuclear@5 8 */
nuclear@0 9 #include <stdio.h>
nuclear@0 10 #include <stdlib.h>
nuclear@2 11 #include <assert.h>
nuclear@0 12 #include <SDL2/SDL.h>
nuclear@0 13 #include <GL/glew.h>
nuclear@0 14
nuclear@2 15 #ifdef WIN32
nuclear@2 16 #define OVR_OS_WIN32
nuclear@2 17 #endif
nuclear@2 18 #ifdef __APPLE__
nuclear@2 19 #define OVR_OS_MAC
nuclear@2 20 #endif
nuclear@2 21
nuclear@0 22 #include <OVR_CAPI.h>
nuclear@0 23 #include <OVR_CAPI_GL.h>
nuclear@0 24
nuclear@2 25 int init(void);
nuclear@2 26 void cleanup(void);
nuclear@4 27 void toggle_hmd_fullscreen(void);
nuclear@2 28 void display(void);
nuclear@2 29 void draw_scene(void);
nuclear@2 30 void draw_box(float xsz, float ysz, float zsz, float norm_sign);
nuclear@0 31 void update_rtarg(int width, int height);
nuclear@0 32 int handle_event(SDL_Event *ev);
nuclear@0 33 int key_event(int key, int state);
nuclear@0 34 void reshape(int x, int y);
nuclear@0 35 unsigned int next_pow2(unsigned int x);
nuclear@4 36 void quat_to_matrix(const float *quat, float *mat);
nuclear@4 37 unsigned int gen_chess_tex(float r0, float g0, float b0, float r1, float g1, float b1);
nuclear@0 38
nuclear@4 39 /* forward declaration to avoid including non-public headers of libovr */
nuclear@0 40 OVR_EXPORT void ovrhmd_EnableHSWDisplaySDKRender(ovrHmd hmd, ovrBool enable);
nuclear@0 41
nuclear@0 42 static SDL_Window *win;
nuclear@0 43 static SDL_GLContext ctx;
nuclear@2 44 static int win_width, win_height;
nuclear@0 45
nuclear@0 46 static unsigned int fbo, fb_tex, fb_depth;
nuclear@0 47 static int fb_width, fb_height;
nuclear@0 48 static int fb_tex_width, fb_tex_height;
nuclear@0 49
nuclear@0 50 static ovrHmd hmd;
nuclear@0 51 static ovrSizei eyeres[2];
nuclear@2 52 static ovrEyeRenderDesc eye_rdesc[2];
nuclear@2 53 static ovrGLTexture fb_ovr_tex[2];
nuclear@0 54
nuclear@4 55 static unsigned int chess_tex;
nuclear@0 56
nuclear@4 57
nuclear@4 58 int main(int argc, char **argv)
nuclear@0 59 {
nuclear@0 60 if(init() == -1) {
nuclear@0 61 return 1;
nuclear@0 62 }
nuclear@0 63
nuclear@0 64 for(;;) {
nuclear@0 65 SDL_Event ev;
nuclear@0 66 while(SDL_PollEvent(&ev)) {
nuclear@0 67 if(handle_event(&ev) == -1) {
nuclear@0 68 goto done;
nuclear@0 69 }
nuclear@0 70 }
nuclear@0 71 display();
nuclear@0 72 }
nuclear@0 73
nuclear@0 74 done:
nuclear@0 75 cleanup();
nuclear@0 76 return 0;
nuclear@0 77 }
nuclear@0 78
nuclear@0 79
nuclear@2 80 int init(void)
nuclear@0 81 {
nuclear@2 82 int i, x, y;
nuclear@0 83 unsigned int flags, dcaps;
nuclear@0 84 union ovrGLConfig glcfg;
nuclear@0 85
nuclear@4 86 /* libovr must be initialized before we create the OpenGL context */
nuclear@0 87 ovr_Initialize();
nuclear@0 88
nuclear@0 89 SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER);
nuclear@0 90
nuclear@0 91 x = y = SDL_WINDOWPOS_UNDEFINED;
nuclear@2 92 flags = SDL_WINDOW_OPENGL;
nuclear@4 93 if(!(win = SDL_CreateWindow("press 'f' to move to the HMD", x, y, 1280, 800, flags))) {
nuclear@0 94 fprintf(stderr, "failed to create window\n");
nuclear@0 95 return -1;
nuclear@0 96 }
nuclear@0 97 if(!(ctx = SDL_GL_CreateContext(win))) {
nuclear@0 98 fprintf(stderr, "failed to create OpenGL context\n");
nuclear@0 99 return -1;
nuclear@0 100 }
nuclear@0 101
nuclear@0 102 glewInit();
nuclear@0 103
nuclear@0 104 if(!(hmd = ovrHmd_Create(0))) {
nuclear@0 105 fprintf(stderr, "failed to open Oculus HMD, falling back to virtual debug HMD\n");
nuclear@2 106 if(!(hmd = ovrHmd_CreateDebug(ovrHmd_DK2))) {
nuclear@0 107 fprintf(stderr, "failed to create virtual debug HMD\n");
nuclear@0 108 return -1;
nuclear@0 109 }
nuclear@0 110 }
nuclear@0 111 printf("initialized HMD: %s - %s\n", hmd->Manufacturer, hmd->ProductName);
nuclear@0 112
nuclear@5 113 /* resize our window to match the HMD resolution */
nuclear@2 114 SDL_SetWindowSize(win, hmd->Resolution.w, hmd->Resolution.h);
nuclear@4 115 SDL_SetWindowPosition(win, SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED);
nuclear@4 116 win_width = hmd->Resolution.w;
nuclear@4 117 win_height = hmd->Resolution.h;
nuclear@0 118
nuclear@5 119 /* enable position and rotation tracking (and anything else they might add in the future) */
nuclear@0 120 ovrHmd_ConfigureTracking(hmd, 0xffffffff, 0);
nuclear@5 121 /* retrieve the optimal render target resolution for each eye */
nuclear@0 122 eyeres[0] = ovrHmd_GetFovTextureSize(hmd, ovrEye_Left, hmd->DefaultEyeFov[0], 1.0);
nuclear@0 123 eyeres[1] = ovrHmd_GetFovTextureSize(hmd, ovrEye_Right, hmd->DefaultEyeFov[1], 1.0);
nuclear@0 124
nuclear@5 125 /* and create a single render target texture to encompass both eyes */
nuclear@2 126 fb_width = eyeres[0].w + eyeres[1].w;
nuclear@0 127 fb_height = eyeres[0].h > eyeres[1].h ? eyeres[0].h : eyeres[1].h;
nuclear@0 128 update_rtarg(fb_width, fb_height);
nuclear@0 129
nuclear@5 130 /* fill in the ovrGLTexture structures that describe our render target texture */
nuclear@2 131 for(i=0; i<2; i++) {
nuclear@2 132 fb_ovr_tex[i].OGL.Header.API = ovrRenderAPI_OpenGL;
nuclear@2 133 fb_ovr_tex[i].OGL.Header.TextureSize.w = fb_tex_width;
nuclear@2 134 fb_ovr_tex[i].OGL.Header.TextureSize.h = fb_tex_height;
nuclear@5 135 /* this next field is the only one that differs between the two eyes */
nuclear@3 136 fb_ovr_tex[i].OGL.Header.RenderViewport.Pos.x = i == 0 ? 0 : fb_width / 2.0;
nuclear@3 137 fb_ovr_tex[i].OGL.Header.RenderViewport.Pos.y = fb_tex_height - fb_height;
nuclear@2 138 fb_ovr_tex[i].OGL.Header.RenderViewport.Size.w = fb_width / 2.0;
nuclear@2 139 fb_ovr_tex[i].OGL.Header.RenderViewport.Size.h = fb_height;
nuclear@5 140 fb_ovr_tex[i].OGL.TexId = fb_tex; /* both eyes will use the same texture id */
nuclear@2 141 }
nuclear@2 142
nuclear@5 143 /* fill in the ovrGLConfig structure needed by the SDK to draw our stereo pair
nuclear@5 144 * to the actual HMD display (SDK-distortion mode)
nuclear@5 145 */
nuclear@0 146 memset(&glcfg, 0, sizeof glcfg);
nuclear@0 147 glcfg.OGL.Header.API = ovrRenderAPI_OpenGL;
nuclear@0 148 glcfg.OGL.Header.RTSize = hmd->Resolution;
nuclear@0 149 glcfg.OGL.Header.Multisample = 1;
nuclear@0 150
nuclear@0 151 if(hmd->HmdCaps & ovrHmdCap_ExtendDesktop) {
nuclear@0 152 printf("running in \"extended desktop\" mode\n");
nuclear@0 153 } else {
nuclear@5 154 /* to sucessfully draw to the HMD display in "direct-hmd" mode, we have to
nuclear@5 155 * call ovrHmd_AttachToWindow
nuclear@5 156 * XXX: this doesn't work properly yet due to bugs in the oculus 0.4.1 sdk/driver
nuclear@5 157 */
nuclear@2 158 #ifdef WIN32
nuclear@7 159 HWND sys_win = GetActiveWindow();
nuclear@2 160 glcfg.OGL.Window = sys_win;
nuclear@2 161 glcfg.OGL.DC = wglGetCurrentDC();
nuclear@2 162 ovrHmd_AttachToWindow(hmd, sys_win, 0, 0);
nuclear@2 163 #endif
nuclear@0 164 printf("running in \"direct-hmd\" mode\n");
nuclear@0 165 }
nuclear@5 166
nuclear@5 167 /* enable low-persistence display and dynamic prediction for lattency compensation */
nuclear@2 168 ovrHmd_SetEnabledCaps(hmd, ovrHmdCap_LowPersistence | ovrHmdCap_DynamicPrediction);
nuclear@0 169
nuclear@5 170 /* configure SDK-rendering and enable chromatic abberation correction, vignetting, and
nuclear@5 171 * timewrap, which shifts the image before drawing to counter any lattency between the call
nuclear@5 172 * to ovrHmd_GetEyePose and ovrHmd_EndFrame.
nuclear@5 173 */
nuclear@7 174 dcaps = ovrDistortionCap_Chromatic | ovrDistortionCap_Vignette | ovrDistortionCap_TimeWarp |
nuclear@7 175 ovrDistortionCap_Overdrive;
nuclear@0 176 if(!ovrHmd_ConfigureRendering(hmd, &glcfg.Config, dcaps, hmd->DefaultEyeFov, eye_rdesc)) {
nuclear@0 177 fprintf(stderr, "failed to configure distortion renderer\n");
nuclear@0 178 }
nuclear@0 179
nuclear@5 180 /* disable the retarded "health and safety warning" */
nuclear@3 181 ovrhmd_EnableHSWDisplaySDKRender(hmd, 0);
nuclear@0 182
nuclear@0 183 glEnable(GL_DEPTH_TEST);
nuclear@0 184 glEnable(GL_CULL_FACE);
nuclear@0 185 glEnable(GL_LIGHTING);
nuclear@0 186 glEnable(GL_LIGHT0);
nuclear@4 187 glEnable(GL_LIGHT1);
nuclear@4 188 glEnable(GL_NORMALIZE);
nuclear@0 189
nuclear@4 190 glClearColor(0.1, 0.1, 0.1, 1);
nuclear@0 191
nuclear@4 192 chess_tex = gen_chess_tex(1.0, 0.7, 0.4, 0.4, 0.7, 1.0);
nuclear@0 193 return 0;
nuclear@0 194 }
nuclear@0 195
nuclear@2 196 void cleanup(void)
nuclear@0 197 {
nuclear@0 198 if(hmd) {
nuclear@0 199 ovrHmd_Destroy(hmd);
nuclear@0 200 }
nuclear@0 201 ovr_Shutdown();
nuclear@0 202
nuclear@0 203 SDL_Quit();
nuclear@0 204 }
nuclear@0 205
nuclear@4 206 void toggle_hmd_fullscreen(void)
nuclear@4 207 {
nuclear@4 208 static int fullscr, prev_x, prev_y;
nuclear@4 209 fullscr = !fullscr;
nuclear@4 210
nuclear@4 211 if(fullscr) {
nuclear@5 212 /* going fullscreen on the rift. save current window position, and move it
nuclear@5 213 * to the rift's part of the desktop before going fullscreen
nuclear@5 214 */
nuclear@4 215 SDL_GetWindowPosition(win, &prev_x, &prev_y);
nuclear@4 216 SDL_SetWindowPosition(win, hmd->WindowsPos.x, hmd->WindowsPos.y);
nuclear@4 217 SDL_SetWindowFullscreen(win, SDL_WINDOW_FULLSCREEN_DESKTOP);
nuclear@4 218 } else {
nuclear@5 219 /* return to windowed mode and move the window back to its original position */
nuclear@4 220 SDL_SetWindowFullscreen(win, 0);
nuclear@4 221 SDL_SetWindowPosition(win, prev_x, prev_y);
nuclear@4 222 }
nuclear@4 223 }
nuclear@4 224
nuclear@2 225 void display(void)
nuclear@0 226 {
nuclear@2 227 int i;
nuclear@2 228 ovrMatrix4f proj;
nuclear@2 229 ovrPosef pose[2];
nuclear@4 230 float rot_mat[16];
nuclear@2 231
nuclear@4 232 /* the drawing starts with a call to ovrHmd_BeginFrame */
nuclear@2 233 ovrHmd_BeginFrame(hmd, 0);
nuclear@2 234
nuclear@4 235 /* start drawing onto our texture render target */
nuclear@2 236 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
nuclear@0 237 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
nuclear@0 238
nuclear@2 239 /* for each eye ... */
nuclear@2 240 for(i=0; i<2; i++) {
nuclear@7 241 ovrEyeType eye = hmd->EyeRenderOrder[i];
nuclear@2 242
nuclear@4 243 /* -- viewport transformation --
nuclear@4 244 * setup the viewport to draw in the left half of the framebuffer when we're
nuclear@4 245 * rendering the left eye's view (0, 0, width/2, height), and in the right half
nuclear@4 246 * of the framebuffer for the right eye's view (width/2, 0, width/2, height)
nuclear@4 247 */
nuclear@7 248 glViewport(eye == ovrEye_Left ? 0 : fb_width / 2, 0, fb_width / 2, fb_height);
nuclear@2 249
nuclear@4 250 /* -- projection transformation --
nuclear@4 251 * we'll just have to use the projection matrix supplied by the oculus SDK for this eye
nuclear@4 252 * note that libovr matrices are the transpose of what OpenGL expects, so we have to
nuclear@4 253 * use glLoadTransposeMatrixf instead of glLoadMatrixf to load it.
nuclear@4 254 */
nuclear@2 255 proj = ovrMatrix4f_Projection(hmd->DefaultEyeFov[eye], 0.5, 500.0, 1);
nuclear@2 256 glMatrixMode(GL_PROJECTION);
nuclear@4 257 glLoadTransposeMatrixf(proj.M[0]);
nuclear@2 258
nuclear@4 259 /* -- view/camera transformation --
nuclear@4 260 * we need to construct a view matrix by combining all the information provided by the oculus
nuclear@4 261 * SDK, about the position and orientation of the user's head in the world.
nuclear@4 262 */
nuclear@8 263 /* TODO: use ovrHmd_GetEyePoses out of the loop instead */
nuclear@8 264 pose[eye] = ovrHmd_GetHmdPosePerEye(hmd, eye);
nuclear@2 265 glMatrixMode(GL_MODELVIEW);
nuclear@4 266 glLoadIdentity();
nuclear@8 267 glTranslatef(eye_rdesc[eye].HmdToEyeViewOffset.x,
nuclear@8 268 eye_rdesc[eye].HmdToEyeViewOffset.y,
nuclear@8 269 eye_rdesc[eye].HmdToEyeViewOffset.z);
nuclear@4 270 /* retrieve the orientation quaternion and convert it to a rotation matrix */
nuclear@4 271 quat_to_matrix(&pose[eye].Orientation.x, rot_mat);
nuclear@4 272 glMultMatrixf(rot_mat);
nuclear@4 273 /* translate the view matrix with the positional tracking */
nuclear@4 274 glTranslatef(-pose[eye].Position.x, -pose[eye].Position.y, -pose[eye].Position.z);
nuclear@4 275 /* move the camera to the eye level of the user */
nuclear@4 276 glTranslatef(0, -ovrHmd_GetFloat(hmd, OVR_KEY_EYE_HEIGHT, 1.65), 0);
nuclear@2 277
nuclear@4 278 /* finally draw the scene for this eye */
nuclear@2 279 draw_scene();
nuclear@2 280 }
nuclear@2 281
nuclear@4 282 /* after drawing both eyes into the texture render target, revert to drawing directly to the
nuclear@4 283 * display, and we call ovrHmd_EndFrame, to let the Oculus SDK draw both images properly
nuclear@4 284 * compensated for lens distortion and chromatic abberation onto the HMD screen.
nuclear@4 285 */
nuclear@2 286 glBindFramebuffer(GL_FRAMEBUFFER, 0);
nuclear@2 287 glViewport(0, 0, win_width, win_height);
nuclear@2 288
nuclear@2 289 ovrHmd_EndFrame(hmd, pose, &fb_ovr_tex[0].Texture);
nuclear@2 290
nuclear@2 291 assert(glGetError() == GL_NO_ERROR);
nuclear@2 292 }
nuclear@2 293
nuclear@2 294 void draw_scene(void)
nuclear@2 295 {
nuclear@2 296 int i;
nuclear@4 297 float grey[] = {0.8, 0.8, 0.8, 1};
nuclear@4 298 float col[] = {0, 0, 0, 1};
nuclear@4 299 float lpos[][4] = {
nuclear@4 300 {-8, 2, 10, 1},
nuclear@4 301 {0, 15, 0, 1}
nuclear@4 302 };
nuclear@4 303 float lcol[][4] = {
nuclear@4 304 {0.8, 0.8, 0.8, 1},
nuclear@4 305 {0.4, 0.3, 0.3, 1}
nuclear@4 306 };
nuclear@4 307
nuclear@4 308 for(i=0; i<2; i++) {
nuclear@4 309 glLightfv(GL_LIGHT0 + i, GL_POSITION, lpos[i]);
nuclear@4 310 glLightfv(GL_LIGHT0 + i, GL_DIFFUSE, lcol[i]);
nuclear@4 311 }
nuclear@4 312
nuclear@4 313 glMatrixMode(GL_MODELVIEW);
nuclear@2 314
nuclear@3 315 glPushMatrix();
nuclear@4 316 glTranslatef(0, 10, 0);
nuclear@4 317 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, grey);
nuclear@4 318 glBindTexture(GL_TEXTURE_2D, chess_tex);
nuclear@4 319 glEnable(GL_TEXTURE_2D);
nuclear@4 320 draw_box(30, 20, 30, -1.0);
nuclear@4 321 glDisable(GL_TEXTURE_2D);
nuclear@3 322 glPopMatrix();
nuclear@3 323
nuclear@4 324 for(i=0; i<4; i++) {
nuclear@4 325 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, grey);
nuclear@4 326 glPushMatrix();
nuclear@4 327 glTranslatef(i & 1 ? 5 : -5, 1, i & 2 ? -5 : 5);
nuclear@4 328 draw_box(0.5, 2, 0.5, 1.0);
nuclear@4 329 glPopMatrix();
nuclear@2 330
nuclear@4 331 col[0] = i & 1 ? 1.0 : 0.3;
nuclear@4 332 col[1] = i == 0 ? 1.0 : 0.3;
nuclear@4 333 col[2] = i & 2 ? 1.0 : 0.3;
nuclear@4 334 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, col);
nuclear@4 335
nuclear@2 336 glPushMatrix();
nuclear@2 337 if(i & 1) {
nuclear@4 338 glTranslatef(0, 0.25, i & 2 ? 2 : -2);
nuclear@2 339 } else {
nuclear@4 340 glTranslatef(i & 2 ? 2 : -2, 0.25, 0);
nuclear@2 341 }
nuclear@4 342 draw_box(0.5, 0.5, 0.5, 1.0);
nuclear@2 343 glPopMatrix();
nuclear@2 344 }
nuclear@2 345 }
nuclear@2 346
nuclear@2 347 void draw_box(float xsz, float ysz, float zsz, float norm_sign)
nuclear@2 348 {
nuclear@2 349 glMatrixMode(GL_MODELVIEW);
nuclear@2 350 glScalef(xsz * 0.5, ysz * 0.5, zsz * 0.5);
nuclear@2 351
nuclear@2 352 if(norm_sign < 0.0) {
nuclear@2 353 glFrontFace(GL_CW);
nuclear@2 354 }
nuclear@2 355
nuclear@2 356 glBegin(GL_QUADS);
nuclear@2 357 glNormal3f(0, 0, 1 * norm_sign);
nuclear@2 358 glTexCoord2f(0, 0); glVertex3f(-1, -1, 1);
nuclear@2 359 glTexCoord2f(1, 0); glVertex3f(1, -1, 1);
nuclear@2 360 glTexCoord2f(1, 1); glVertex3f(1, 1, 1);
nuclear@2 361 glTexCoord2f(0, 1); glVertex3f(-1, 1, 1);
nuclear@2 362 glNormal3f(1 * norm_sign, 0, 0);
nuclear@2 363 glTexCoord2f(0, 0); glVertex3f(1, -1, 1);
nuclear@2 364 glTexCoord2f(1, 0); glVertex3f(1, -1, -1);
nuclear@2 365 glTexCoord2f(1, 1); glVertex3f(1, 1, -1);
nuclear@2 366 glTexCoord2f(0, 1); glVertex3f(1, 1, 1);
nuclear@2 367 glNormal3f(0, 0, -1 * norm_sign);
nuclear@2 368 glTexCoord2f(0, 0); glVertex3f(1, -1, -1);
nuclear@2 369 glTexCoord2f(1, 0); glVertex3f(-1, -1, -1);
nuclear@2 370 glTexCoord2f(1, 1); glVertex3f(-1, 1, -1);
nuclear@2 371 glTexCoord2f(0, 1); glVertex3f(1, 1, -1);
nuclear@2 372 glNormal3f(-1 * norm_sign, 0, 0);
nuclear@2 373 glTexCoord2f(0, 0); glVertex3f(-1, -1, -1);
nuclear@2 374 glTexCoord2f(1, 0); glVertex3f(-1, -1, 1);
nuclear@2 375 glTexCoord2f(1, 1); glVertex3f(-1, 1, 1);
nuclear@2 376 glTexCoord2f(0, 1); glVertex3f(-1, 1, -1);
nuclear@4 377 glEnd();
nuclear@4 378 glBegin(GL_TRIANGLE_FAN);
nuclear@2 379 glNormal3f(0, 1 * norm_sign, 0);
nuclear@4 380 glTexCoord2f(0.5, 0.5); glVertex3f(0, 1, 0);
nuclear@2 381 glTexCoord2f(0, 0); glVertex3f(-1, 1, 1);
nuclear@2 382 glTexCoord2f(1, 0); glVertex3f(1, 1, 1);
nuclear@2 383 glTexCoord2f(1, 1); glVertex3f(1, 1, -1);
nuclear@2 384 glTexCoord2f(0, 1); glVertex3f(-1, 1, -1);
nuclear@4 385 glTexCoord2f(0, 0); glVertex3f(-1, 1, 1);
nuclear@4 386 glEnd();
nuclear@4 387 glBegin(GL_TRIANGLE_FAN);
nuclear@2 388 glNormal3f(0, -1 * norm_sign, 0);
nuclear@4 389 glTexCoord2f(0.5, 0.5); glVertex3f(0, -1, 0);
nuclear@2 390 glTexCoord2f(0, 0); glVertex3f(-1, -1, -1);
nuclear@2 391 glTexCoord2f(1, 0); glVertex3f(1, -1, -1);
nuclear@2 392 glTexCoord2f(1, 1); glVertex3f(1, -1, 1);
nuclear@2 393 glTexCoord2f(0, 1); glVertex3f(-1, -1, 1);
nuclear@4 394 glTexCoord2f(0, 0); glVertex3f(-1, -1, -1);
nuclear@2 395 glEnd();
nuclear@2 396
nuclear@2 397 glFrontFace(GL_CCW);
nuclear@0 398 }
nuclear@0 399
nuclear@5 400 /* update_rtarg creates (and/or resizes) the render target used to draw the two stero views */
nuclear@0 401 void update_rtarg(int width, int height)
nuclear@0 402 {
nuclear@0 403 if(!fbo) {
nuclear@5 404 /* if fbo does not exist, then nothing does... create every opengl object */
nuclear@0 405 glGenFramebuffers(1, &fbo);
nuclear@0 406 glGenTextures(1, &fb_tex);
nuclear@0 407 glGenRenderbuffers(1, &fb_depth);
nuclear@0 408
nuclear@0 409 glBindTexture(GL_TEXTURE_2D, fb_tex);
nuclear@0 410 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
nuclear@0 411 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
nuclear@0 412 }
nuclear@0 413
nuclear@0 414 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
nuclear@0 415
nuclear@5 416 /* calculate the next power of two in both dimensions and use that as a texture size */
nuclear@0 417 fb_tex_width = next_pow2(width);
nuclear@0 418 fb_tex_height = next_pow2(height);
nuclear@0 419
nuclear@5 420 /* create and attach the texture that will be used as a color buffer */
nuclear@0 421 glBindTexture(GL_TEXTURE_2D, fb_tex);
nuclear@0 422 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, fb_tex_width, fb_tex_height, 0,
nuclear@0 423 GL_RGBA, GL_UNSIGNED_BYTE, 0);
nuclear@0 424 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb_tex, 0);
nuclear@0 425
nuclear@5 426 /* create and attach the renderbuffer that will serve as our z-buffer */
nuclear@0 427 glBindRenderbuffer(GL_RENDERBUFFER, fb_depth);
nuclear@0 428 glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, fb_tex_width, fb_tex_height);
nuclear@0 429 glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, fb_depth);
nuclear@0 430
nuclear@0 431 if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
nuclear@0 432 fprintf(stderr, "incomplete framebuffer!\n");
nuclear@0 433 }
nuclear@0 434
nuclear@0 435 glBindFramebuffer(GL_FRAMEBUFFER, 0);
nuclear@0 436 printf("created render target: %dx%d (texture size: %dx%d)\n", width, height, fb_tex_width, fb_tex_height);
nuclear@0 437 }
nuclear@0 438
nuclear@0 439 int handle_event(SDL_Event *ev)
nuclear@0 440 {
nuclear@0 441 switch(ev->type) {
nuclear@4 442 case SDL_QUIT:
nuclear@4 443 return -1;
nuclear@4 444
nuclear@0 445 case SDL_KEYDOWN:
nuclear@0 446 case SDL_KEYUP:
nuclear@0 447 if(key_event(ev->key.keysym.sym, ev->key.state == SDL_PRESSED) == -1) {
nuclear@0 448 return -1;
nuclear@0 449 }
nuclear@0 450 break;
nuclear@0 451
nuclear@0 452 default:
nuclear@0 453 break;
nuclear@0 454 }
nuclear@0 455
nuclear@0 456 return 0;
nuclear@0 457 }
nuclear@0 458
nuclear@0 459 int key_event(int key, int state)
nuclear@0 460 {
nuclear@0 461 if(state) {
nuclear@5 462 /*
nuclear@4 463 ovrHSWDisplayState hsw;
nuclear@4 464 ovrHmd_GetHSWDisplayState(hmd, &hsw);
nuclear@4 465 if(hsw.Displayed) {
nuclear@4 466 ovrHmd_DismissHSWDisplay(hmd);
nuclear@4 467 }
nuclear@5 468 */
nuclear@4 469
nuclear@0 470 switch(key) {
nuclear@0 471 case 27:
nuclear@0 472 return -1;
nuclear@0 473
nuclear@4 474 case ' ':
nuclear@4 475 /* allow the user to recenter by pressing space */
nuclear@4 476 ovrHmd_RecenterPose(hmd);
nuclear@4 477 break;
nuclear@4 478
nuclear@4 479 case 'f':
nuclear@4 480 /* press f to move the window to the HMD */
nuclear@4 481 toggle_hmd_fullscreen();
nuclear@4 482 break;
nuclear@4 483
nuclear@0 484 default:
nuclear@0 485 break;
nuclear@0 486 }
nuclear@0 487 }
nuclear@0 488 return 0;
nuclear@0 489 }
nuclear@4 490
nuclear@4 491 unsigned int next_pow2(unsigned int x)
nuclear@4 492 {
nuclear@4 493 x -= 1;
nuclear@4 494 x |= x >> 1;
nuclear@4 495 x |= x >> 2;
nuclear@4 496 x |= x >> 4;
nuclear@4 497 x |= x >> 8;
nuclear@4 498 x |= x >> 16;
nuclear@4 499 return x + 1;
nuclear@4 500 }
nuclear@4 501
nuclear@5 502 /* convert a quaternion to a rotation matrix */
nuclear@4 503 void quat_to_matrix(const float *quat, float *mat)
nuclear@4 504 {
nuclear@4 505 mat[0] = 1.0 - 2.0 * quat[1] * quat[1] - 2.0 * quat[2] * quat[2];
nuclear@4 506 mat[4] = 2.0 * quat[0] * quat[1] + 2.0 * quat[3] * quat[2];
nuclear@4 507 mat[8] = 2.0 * quat[2] * quat[0] - 2.0 * quat[3] * quat[1];
nuclear@4 508 mat[12] = 0.0f;
nuclear@4 509
nuclear@4 510 mat[1] = 2.0 * quat[0] * quat[1] - 2.0 * quat[3] * quat[2];
nuclear@4 511 mat[5] = 1.0 - 2.0 * quat[0]*quat[0] - 2.0 * quat[2]*quat[2];
nuclear@4 512 mat[9] = 2.0 * quat[1] * quat[2] + 2.0 * quat[3] * quat[0];
nuclear@4 513 mat[13] = 0.0f;
nuclear@4 514
nuclear@4 515 mat[2] = 2.0 * quat[2] * quat[0] + 2.0 * quat[3] * quat[1];
nuclear@4 516 mat[6] = 2.0 * quat[1] * quat[2] - 2.0 * quat[3] * quat[0];
nuclear@4 517 mat[10] = 1.0 - 2.0 * quat[0]*quat[0] - 2.0 * quat[1]*quat[1];
nuclear@4 518 mat[14] = 0.0f;
nuclear@4 519
nuclear@4 520 mat[3] = mat[7] = mat[11] = 0.0f;
nuclear@4 521 mat[15] = 1.0f;
nuclear@4 522 }
nuclear@4 523
nuclear@5 524 /* generate a chessboard texture with tiles colored (r0, g0, b0) and (r1, g1, b1) */
nuclear@4 525 unsigned int gen_chess_tex(float r0, float g0, float b0, float r1, float g1, float b1)
nuclear@4 526 {
nuclear@4 527 int i, j;
nuclear@4 528 unsigned int tex;
nuclear@4 529 unsigned char img[8 * 8 * 3];
nuclear@4 530 unsigned char *pix = img;
nuclear@4 531
nuclear@4 532 for(i=0; i<8; i++) {
nuclear@4 533 for(j=0; j<8; j++) {
nuclear@4 534 int black = (i & 1) == (j & 1);
nuclear@4 535 pix[0] = (black ? r0 : r1) * 255;
nuclear@4 536 pix[1] = (black ? g0 : g1) * 255;
nuclear@4 537 pix[2] = (black ? b0 : b1) * 255;
nuclear@4 538 pix += 3;
nuclear@4 539 }
nuclear@4 540 }
nuclear@4 541
nuclear@4 542 glGenTextures(1, &tex);
nuclear@4 543 glBindTexture(GL_TEXTURE_2D, tex);
nuclear@4 544 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
nuclear@4 545 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
nuclear@4 546 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, img);
nuclear@4 547
nuclear@4 548 return tex;
nuclear@8 549 }