rev |
line source |
nuclear@1
|
1 #include <stdlib.h>
|
nuclear@0
|
2 #include <limits.h>
|
nuclear@0
|
3 #include <assert.h>
|
nuclear@0
|
4 #include "anim.h"
|
nuclear@0
|
5 #include "dynarr.h"
|
nuclear@0
|
6
|
nuclear@7
|
7 #define ROT_USE_SLERP
|
nuclear@7
|
8
|
nuclear@0
|
9 static void invalidate_cache(struct anm_node *node);
|
nuclear@0
|
10
|
nuclear@0
|
11 int anm_init_node(struct anm_node *node)
|
nuclear@0
|
12 {
|
nuclear@0
|
13 int i, j;
|
nuclear@0
|
14 static const float defaults[] = {
|
nuclear@0
|
15 0.0f, 0.0f, 0.0f, /* default position */
|
nuclear@0
|
16 0.0f, 0.0f, 0.0f, 1.0f, /* default rotation quat */
|
nuclear@0
|
17 1.0f, 1.0f, 1.0f /* default scale factor */
|
nuclear@0
|
18 };
|
nuclear@0
|
19
|
nuclear@0
|
20 memset(node, 0, sizeof *node);
|
nuclear@0
|
21
|
nuclear@0
|
22 /* initialize thread-local matrix cache */
|
nuclear@0
|
23 pthread_key_create(&node->cache_key, 0);
|
nuclear@0
|
24
|
nuclear@0
|
25 for(i=0; i<ANM_NUM_TRACKS; i++) {
|
nuclear@0
|
26 if(anm_init_track(node->tracks + i) == -1) {
|
nuclear@0
|
27 for(j=0; j<i; j++) {
|
nuclear@0
|
28 anm_destroy_track(node->tracks + i);
|
nuclear@0
|
29 }
|
nuclear@0
|
30 }
|
nuclear@0
|
31 anm_set_track_default(node->tracks + i, defaults[i]);
|
nuclear@0
|
32 }
|
nuclear@0
|
33 return 0;
|
nuclear@0
|
34 }
|
nuclear@0
|
35
|
nuclear@0
|
36 void anm_destroy_node(struct anm_node *node)
|
nuclear@0
|
37 {
|
nuclear@0
|
38 int i;
|
nuclear@0
|
39 free(node->name);
|
nuclear@0
|
40
|
nuclear@0
|
41 for(i=0; i<ANM_NUM_TRACKS; i++) {
|
nuclear@0
|
42 anm_destroy_track(node->tracks + i);
|
nuclear@0
|
43 }
|
nuclear@0
|
44
|
nuclear@0
|
45 /* destroy thread-specific cache */
|
nuclear@0
|
46 pthread_key_delete(node->cache_key);
|
nuclear@0
|
47
|
nuclear@0
|
48 while(node->cache_list) {
|
nuclear@0
|
49 struct mat_cache *tmp = node->cache_list;
|
nuclear@0
|
50 node->cache_list = tmp->next;
|
nuclear@0
|
51 free(tmp);
|
nuclear@0
|
52 }
|
nuclear@0
|
53 }
|
nuclear@0
|
54
|
nuclear@0
|
55 void anm_destroy_node_tree(struct anm_node *tree)
|
nuclear@0
|
56 {
|
nuclear@0
|
57 struct anm_node *c, *tmp;
|
nuclear@0
|
58
|
nuclear@0
|
59 if(!tree) return;
|
nuclear@0
|
60
|
nuclear@0
|
61 c = tree->child;
|
nuclear@0
|
62 while(c) {
|
nuclear@0
|
63 tmp = c;
|
nuclear@0
|
64 c = c->next;
|
nuclear@0
|
65
|
nuclear@0
|
66 anm_destroy_node_tree(tmp);
|
nuclear@0
|
67 }
|
nuclear@0
|
68 anm_destroy_node(tree);
|
nuclear@0
|
69 }
|
nuclear@0
|
70
|
nuclear@0
|
71 struct anm_node *anm_create_node(void)
|
nuclear@0
|
72 {
|
nuclear@0
|
73 struct anm_node *n;
|
nuclear@0
|
74
|
nuclear@0
|
75 if((n = malloc(sizeof *n))) {
|
nuclear@0
|
76 if(anm_init_node(n) == -1) {
|
nuclear@0
|
77 free(n);
|
nuclear@0
|
78 return 0;
|
nuclear@0
|
79 }
|
nuclear@0
|
80 }
|
nuclear@0
|
81 return n;
|
nuclear@0
|
82 }
|
nuclear@0
|
83
|
nuclear@0
|
84 void anm_free_node(struct anm_node *node)
|
nuclear@0
|
85 {
|
nuclear@0
|
86 anm_destroy_node(node);
|
nuclear@0
|
87 free(node);
|
nuclear@0
|
88 }
|
nuclear@0
|
89
|
nuclear@0
|
90 void anm_free_node_tree(struct anm_node *tree)
|
nuclear@0
|
91 {
|
nuclear@0
|
92 struct anm_node *c, *tmp;
|
nuclear@0
|
93
|
nuclear@0
|
94 if(!tree) return;
|
nuclear@0
|
95
|
nuclear@0
|
96 c = tree->child;
|
nuclear@0
|
97 while(c) {
|
nuclear@0
|
98 tmp = c;
|
nuclear@0
|
99 c = c->next;
|
nuclear@0
|
100
|
nuclear@0
|
101 anm_free_node_tree(tmp);
|
nuclear@0
|
102 }
|
nuclear@0
|
103
|
nuclear@0
|
104 anm_free_node(tree);
|
nuclear@0
|
105 }
|
nuclear@0
|
106
|
nuclear@0
|
107 int anm_set_node_name(struct anm_node *node, const char *name)
|
nuclear@0
|
108 {
|
nuclear@0
|
109 char *str;
|
nuclear@0
|
110
|
nuclear@0
|
111 if(!(str = malloc(strlen(name) + 1))) {
|
nuclear@0
|
112 return -1;
|
nuclear@0
|
113 }
|
nuclear@0
|
114 strcpy(str, name);
|
nuclear@0
|
115 free(node->name);
|
nuclear@0
|
116 node->name = str;
|
nuclear@0
|
117 return 0;
|
nuclear@0
|
118 }
|
nuclear@0
|
119
|
nuclear@0
|
120 const char *anm_get_node_name(struct anm_node *node)
|
nuclear@0
|
121 {
|
nuclear@0
|
122 return node->name ? node->name : "";
|
nuclear@0
|
123 }
|
nuclear@0
|
124
|
nuclear@0
|
125 void anm_set_interpolator(struct anm_node *node, enum anm_interpolator in)
|
nuclear@0
|
126 {
|
nuclear@0
|
127 int i;
|
nuclear@0
|
128
|
nuclear@0
|
129 for(i=0; i<ANM_NUM_TRACKS; i++) {
|
nuclear@0
|
130 anm_set_track_interpolator(node->tracks + i, in);
|
nuclear@0
|
131 }
|
nuclear@0
|
132 invalidate_cache(node);
|
nuclear@0
|
133 }
|
nuclear@0
|
134
|
nuclear@0
|
135 void anm_set_extrapolator(struct anm_node *node, enum anm_extrapolator ex)
|
nuclear@0
|
136 {
|
nuclear@0
|
137 int i;
|
nuclear@0
|
138
|
nuclear@0
|
139 for(i=0; i<ANM_NUM_TRACKS; i++) {
|
nuclear@0
|
140 anm_set_track_extrapolator(node->tracks + i, ex);
|
nuclear@0
|
141 }
|
nuclear@0
|
142 invalidate_cache(node);
|
nuclear@0
|
143 }
|
nuclear@0
|
144
|
nuclear@0
|
145 void anm_link_node(struct anm_node *p, struct anm_node *c)
|
nuclear@0
|
146 {
|
nuclear@0
|
147 c->next = p->child;
|
nuclear@0
|
148 p->child = c;
|
nuclear@0
|
149
|
nuclear@0
|
150 c->parent = p;
|
nuclear@0
|
151 invalidate_cache(c);
|
nuclear@0
|
152 }
|
nuclear@0
|
153
|
nuclear@0
|
154 int anm_unlink_node(struct anm_node *p, struct anm_node *c)
|
nuclear@0
|
155 {
|
nuclear@0
|
156 struct anm_node *iter;
|
nuclear@0
|
157
|
nuclear@0
|
158 if(p->child == c) {
|
nuclear@0
|
159 p->child = c->next;
|
nuclear@0
|
160 c->next = 0;
|
nuclear@0
|
161 invalidate_cache(c);
|
nuclear@0
|
162 return 0;
|
nuclear@0
|
163 }
|
nuclear@0
|
164
|
nuclear@0
|
165 iter = p->child;
|
nuclear@0
|
166 while(iter->next) {
|
nuclear@0
|
167 if(iter->next == c) {
|
nuclear@0
|
168 iter->next = c->next;
|
nuclear@0
|
169 c->next = 0;
|
nuclear@0
|
170 invalidate_cache(c);
|
nuclear@0
|
171 return 0;
|
nuclear@0
|
172 }
|
nuclear@0
|
173 }
|
nuclear@0
|
174 return -1;
|
nuclear@0
|
175 }
|
nuclear@0
|
176
|
nuclear@0
|
177 void anm_set_position(struct anm_node *node, vec3_t pos, anm_time_t tm)
|
nuclear@0
|
178 {
|
nuclear@0
|
179 anm_set_value(node->tracks + ANM_TRACK_POS_X, tm, pos.x);
|
nuclear@0
|
180 anm_set_value(node->tracks + ANM_TRACK_POS_Y, tm, pos.y);
|
nuclear@0
|
181 anm_set_value(node->tracks + ANM_TRACK_POS_Z, tm, pos.z);
|
nuclear@0
|
182 invalidate_cache(node);
|
nuclear@0
|
183 }
|
nuclear@0
|
184
|
nuclear@0
|
185 vec3_t anm_get_node_position(struct anm_node *node, anm_time_t tm)
|
nuclear@0
|
186 {
|
nuclear@0
|
187 vec3_t v;
|
nuclear@0
|
188 v.x = anm_get_value(node->tracks + ANM_TRACK_POS_X, tm);
|
nuclear@0
|
189 v.y = anm_get_value(node->tracks + ANM_TRACK_POS_Y, tm);
|
nuclear@0
|
190 v.z = anm_get_value(node->tracks + ANM_TRACK_POS_Z, tm);
|
nuclear@0
|
191 return v;
|
nuclear@0
|
192 }
|
nuclear@0
|
193
|
nuclear@0
|
194 void anm_set_rotation(struct anm_node *node, quat_t rot, anm_time_t tm)
|
nuclear@0
|
195 {
|
nuclear@0
|
196 anm_set_value(node->tracks + ANM_TRACK_ROT_X, tm, rot.x);
|
nuclear@0
|
197 anm_set_value(node->tracks + ANM_TRACK_ROT_Y, tm, rot.y);
|
nuclear@0
|
198 anm_set_value(node->tracks + ANM_TRACK_ROT_Z, tm, rot.z);
|
nuclear@0
|
199 anm_set_value(node->tracks + ANM_TRACK_ROT_W, tm, rot.w);
|
nuclear@0
|
200 invalidate_cache(node);
|
nuclear@0
|
201 }
|
nuclear@0
|
202
|
nuclear@0
|
203 quat_t anm_get_node_rotation(struct anm_node *node, anm_time_t tm)
|
nuclear@0
|
204 {
|
nuclear@7
|
205 #ifndef ROT_USE_SLERP
|
nuclear@7
|
206 quat_t q;
|
nuclear@6
|
207 q.x = anm_get_value(node->tracks + ANM_TRACK_ROT_X, tm);
|
nuclear@6
|
208 q.y = anm_get_value(node->tracks + ANM_TRACK_ROT_Y, tm);
|
nuclear@6
|
209 q.z = anm_get_value(node->tracks + ANM_TRACK_ROT_Z, tm);
|
nuclear@6
|
210 q.w = anm_get_value(node->tracks + ANM_TRACK_ROT_W, tm);
|
nuclear@7
|
211 return q;
|
nuclear@7
|
212 #else
|
nuclear@0
|
213 int idx0, idx1, last_idx;
|
nuclear@0
|
214 anm_time_t tstart, tend;
|
nuclear@0
|
215 float t, dt;
|
nuclear@0
|
216 struct anm_track *track_x, *track_y, *track_z, *track_w;
|
nuclear@0
|
217 quat_t q, q1, q2;
|
nuclear@0
|
218
|
nuclear@0
|
219 track_x = node->tracks + ANM_TRACK_ROT_X;
|
nuclear@0
|
220 track_y = node->tracks + ANM_TRACK_ROT_Y;
|
nuclear@0
|
221 track_z = node->tracks + ANM_TRACK_ROT_Z;
|
nuclear@0
|
222 track_w = node->tracks + ANM_TRACK_ROT_W;
|
nuclear@0
|
223
|
nuclear@0
|
224 if(!track_x->count) {
|
nuclear@0
|
225 q.x = track_x->def_val;
|
nuclear@0
|
226 q.y = track_y->def_val;
|
nuclear@0
|
227 q.z = track_z->def_val;
|
nuclear@0
|
228 q.w = track_w->def_val;
|
nuclear@0
|
229 return q;
|
nuclear@0
|
230 }
|
nuclear@0
|
231
|
nuclear@0
|
232 last_idx = track_x->count - 1;
|
nuclear@0
|
233
|
nuclear@0
|
234 tstart = track_x->keys[0].time;
|
nuclear@0
|
235 tend = track_x->keys[last_idx].time;
|
nuclear@6
|
236
|
nuclear@6
|
237 if(tstart == tend) {
|
nuclear@6
|
238 q.x = track_x->keys[0].val;
|
nuclear@6
|
239 q.y = track_y->keys[0].val;
|
nuclear@6
|
240 q.z = track_z->keys[0].val;
|
nuclear@6
|
241 q.w = track_w->keys[0].val;
|
nuclear@6
|
242 return q;
|
nuclear@6
|
243 }
|
nuclear@6
|
244
|
nuclear@0
|
245 tm = anm_remap_time(track_x, tm, tstart, tend);
|
nuclear@0
|
246
|
nuclear@0
|
247 idx0 = anm_get_key_interval(track_x, tm);
|
nuclear@0
|
248 assert(idx0 >= 0 && idx0 < track_x->count);
|
nuclear@0
|
249 idx1 = idx0 + 1;
|
nuclear@0
|
250
|
nuclear@6
|
251 if(idx0 == last_idx) {
|
nuclear@6
|
252 q.x = track_x->keys[idx0].val;
|
nuclear@6
|
253 q.y = track_y->keys[idx0].val;
|
nuclear@6
|
254 q.z = track_z->keys[idx0].val;
|
nuclear@6
|
255 q.w = track_w->keys[idx0].val;
|
nuclear@6
|
256 return q;
|
nuclear@6
|
257 }
|
nuclear@6
|
258
|
nuclear@0
|
259 dt = (float)(track_x->keys[idx1].time - track_x->keys[idx0].time);
|
nuclear@0
|
260 t = (float)(tm - track_x->keys[idx0].time) / dt;
|
nuclear@0
|
261
|
nuclear@0
|
262 q1.x = track_x->keys[idx0].val;
|
nuclear@0
|
263 q1.y = track_y->keys[idx0].val;
|
nuclear@0
|
264 q1.z = track_z->keys[idx0].val;
|
nuclear@0
|
265 q1.w = track_w->keys[idx0].val;
|
nuclear@0
|
266
|
nuclear@0
|
267 q2.x = track_x->keys[idx1].val;
|
nuclear@0
|
268 q2.y = track_y->keys[idx1].val;
|
nuclear@0
|
269 q2.z = track_z->keys[idx1].val;
|
nuclear@0
|
270 q2.w = track_w->keys[idx1].val;
|
nuclear@0
|
271
|
nuclear@9
|
272 /*q1 = quat_normalize(q1);
|
nuclear@9
|
273 q2 = quat_normalize(q2);*/
|
nuclear@9
|
274
|
nuclear@0
|
275 return quat_slerp(q1, q2, t);
|
nuclear@7
|
276 #endif
|
nuclear@0
|
277 }
|
nuclear@0
|
278
|
nuclear@0
|
279 void anm_set_scaling(struct anm_node *node, vec3_t scl, anm_time_t tm)
|
nuclear@0
|
280 {
|
nuclear@0
|
281 anm_set_value(node->tracks + ANM_TRACK_SCL_X, tm, scl.x);
|
nuclear@0
|
282 anm_set_value(node->tracks + ANM_TRACK_SCL_Y, tm, scl.y);
|
nuclear@0
|
283 anm_set_value(node->tracks + ANM_TRACK_SCL_Z, tm, scl.z);
|
nuclear@0
|
284 invalidate_cache(node);
|
nuclear@0
|
285 }
|
nuclear@0
|
286
|
nuclear@0
|
287 vec3_t anm_get_node_scaling(struct anm_node *node, anm_time_t tm)
|
nuclear@0
|
288 {
|
nuclear@0
|
289 vec3_t v;
|
nuclear@0
|
290 v.x = anm_get_value(node->tracks + ANM_TRACK_SCL_X, tm);
|
nuclear@0
|
291 v.y = anm_get_value(node->tracks + ANM_TRACK_SCL_Y, tm);
|
nuclear@0
|
292 v.z = anm_get_value(node->tracks + ANM_TRACK_SCL_Z, tm);
|
nuclear@0
|
293 return v;
|
nuclear@0
|
294 }
|
nuclear@0
|
295
|
nuclear@0
|
296
|
nuclear@0
|
297 vec3_t anm_get_position(struct anm_node *node, anm_time_t tm)
|
nuclear@0
|
298 {
|
nuclear@0
|
299 mat4_t xform;
|
nuclear@0
|
300 vec3_t pos = {0.0, 0.0, 0.0};
|
nuclear@0
|
301
|
nuclear@0
|
302 if(!node->parent) {
|
nuclear@0
|
303 return anm_get_node_position(node, tm);
|
nuclear@0
|
304 }
|
nuclear@0
|
305
|
nuclear@0
|
306 anm_get_matrix(node, xform, tm);
|
nuclear@0
|
307 return v3_transform(pos, xform);
|
nuclear@0
|
308 }
|
nuclear@0
|
309
|
nuclear@0
|
310 quat_t anm_get_rotation(struct anm_node *node, anm_time_t tm)
|
nuclear@0
|
311 {
|
nuclear@0
|
312 quat_t rot, prot;
|
nuclear@0
|
313 rot = anm_get_node_rotation(node, tm);
|
nuclear@0
|
314
|
nuclear@0
|
315 if(!node->parent) {
|
nuclear@0
|
316 return rot;
|
nuclear@0
|
317 }
|
nuclear@0
|
318
|
nuclear@0
|
319 prot = anm_get_rotation(node->parent, tm);
|
nuclear@0
|
320 return quat_mul(prot, rot);
|
nuclear@0
|
321 }
|
nuclear@0
|
322
|
nuclear@0
|
323 vec3_t anm_get_scaling(struct anm_node *node, anm_time_t tm)
|
nuclear@0
|
324 {
|
nuclear@0
|
325 vec3_t s, ps;
|
nuclear@0
|
326 s = anm_get_node_scaling(node, tm);
|
nuclear@0
|
327
|
nuclear@0
|
328 if(!node->parent) {
|
nuclear@0
|
329 return s;
|
nuclear@0
|
330 }
|
nuclear@0
|
331
|
nuclear@0
|
332 ps = anm_get_scaling(node->parent, tm);
|
nuclear@0
|
333 return v3_mul(s, ps);
|
nuclear@0
|
334 }
|
nuclear@0
|
335
|
nuclear@0
|
336 void anm_set_pivot(struct anm_node *node, vec3_t piv)
|
nuclear@0
|
337 {
|
nuclear@0
|
338 node->pivot = piv;
|
nuclear@0
|
339 }
|
nuclear@0
|
340
|
nuclear@0
|
341 vec3_t anm_get_pivot(struct anm_node *node)
|
nuclear@0
|
342 {
|
nuclear@0
|
343 return node->pivot;
|
nuclear@0
|
344 }
|
nuclear@0
|
345
|
nuclear@5
|
346 void anm_get_node_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
|
nuclear@5
|
347 {
|
nuclear@9
|
348 int i;
|
nuclear@9
|
349 mat4_t rmat;
|
nuclear@5
|
350 vec3_t pos, scale;
|
nuclear@5
|
351 quat_t rot;
|
nuclear@5
|
352
|
nuclear@5
|
353 pos = anm_get_node_position(node, tm);
|
nuclear@5
|
354 rot = anm_get_node_rotation(node, tm);
|
nuclear@5
|
355 scale = anm_get_node_scaling(node, tm);
|
nuclear@5
|
356
|
nuclear@9
|
357 m4_set_translation(mat, node->pivot.x, node->pivot.y, node->pivot.z);
|
nuclear@5
|
358
|
nuclear@5
|
359 quat_to_mat4(rmat, rot);
|
nuclear@9
|
360 for(i=0; i<3; i++) {
|
nuclear@9
|
361 mat[i][0] = rmat[i][0];
|
nuclear@9
|
362 mat[i][1] = rmat[i][1];
|
nuclear@9
|
363 mat[i][2] = rmat[i][2];
|
nuclear@9
|
364 }
|
nuclear@9
|
365 /* this loop is equivalent to: m4_mult(mat, mat, rmat); */
|
nuclear@5
|
366
|
nuclear@9
|
367 mat[0][0] *= scale.x; mat[0][1] *= scale.y; mat[0][2] *= scale.z; mat[0][3] += pos.x;
|
nuclear@9
|
368 mat[1][0] *= scale.x; mat[1][1] *= scale.y; mat[1][2] *= scale.z; mat[1][3] += pos.y;
|
nuclear@9
|
369 mat[2][0] *= scale.x; mat[2][1] *= scale.y; mat[2][2] *= scale.z; mat[2][3] += pos.z;
|
nuclear@9
|
370
|
nuclear@9
|
371 m4_translate(mat, -node->pivot.x, -node->pivot.y, -node->pivot.z);
|
nuclear@9
|
372
|
nuclear@9
|
373 /* that's basically: pivot * rotation * translation * scaling * -pivot */
|
nuclear@5
|
374 }
|
nuclear@5
|
375
|
nuclear@5
|
376 void anm_get_node_inv_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
|
nuclear@5
|
377 {
|
nuclear@5
|
378 mat4_t tmp;
|
nuclear@5
|
379 anm_get_node_matrix(node, tmp, tm);
|
nuclear@5
|
380 m4_inverse(mat, tmp);
|
nuclear@5
|
381 }
|
nuclear@5
|
382
|
nuclear@0
|
383 void anm_get_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
|
nuclear@0
|
384 {
|
nuclear@0
|
385 struct mat_cache *cache = pthread_getspecific(node->cache_key);
|
nuclear@0
|
386 if(!cache) {
|
nuclear@0
|
387 cache = malloc(sizeof *cache);
|
nuclear@0
|
388 assert(cache);
|
nuclear@0
|
389
|
nuclear@0
|
390 pthread_mutex_lock(&node->cache_list_lock);
|
nuclear@0
|
391 cache->next = node->cache_list;
|
nuclear@0
|
392 node->cache_list = cache;
|
nuclear@0
|
393 pthread_mutex_unlock(&node->cache_list_lock);
|
nuclear@0
|
394
|
nuclear@0
|
395 cache->time = ANM_TIME_INVAL;
|
nuclear@2
|
396 cache->inv_time = ANM_TIME_INVAL;
|
nuclear@0
|
397 pthread_setspecific(node->cache_key, cache);
|
nuclear@0
|
398 }
|
nuclear@0
|
399
|
nuclear@0
|
400 if(cache->time != tm) {
|
nuclear@5
|
401 anm_get_node_matrix(node, cache->matrix, tm);
|
nuclear@0
|
402
|
nuclear@0
|
403 if(node->parent) {
|
nuclear@0
|
404 mat4_t parent_mat;
|
nuclear@0
|
405
|
nuclear@4
|
406 anm_get_matrix(node->parent, parent_mat, tm);
|
nuclear@0
|
407 m4_mult(cache->matrix, parent_mat, cache->matrix);
|
nuclear@0
|
408 }
|
nuclear@0
|
409 cache->time = tm;
|
nuclear@0
|
410 }
|
nuclear@0
|
411 m4_copy(mat, cache->matrix);
|
nuclear@0
|
412 }
|
nuclear@0
|
413
|
nuclear@0
|
414 void anm_get_inv_matrix(struct anm_node *node, mat4_t mat, anm_time_t tm)
|
nuclear@0
|
415 {
|
nuclear@0
|
416 struct mat_cache *cache = pthread_getspecific(node->cache_key);
|
nuclear@0
|
417 if(!cache) {
|
nuclear@0
|
418 cache = malloc(sizeof *cache);
|
nuclear@0
|
419 assert(cache);
|
nuclear@0
|
420
|
nuclear@0
|
421 pthread_mutex_lock(&node->cache_list_lock);
|
nuclear@0
|
422 cache->next = node->cache_list;
|
nuclear@0
|
423 node->cache_list = cache;
|
nuclear@0
|
424 pthread_mutex_unlock(&node->cache_list_lock);
|
nuclear@0
|
425
|
nuclear@0
|
426 cache->inv_time = ANM_TIME_INVAL;
|
nuclear@2
|
427 cache->inv_time = ANM_TIME_INVAL;
|
nuclear@0
|
428 pthread_setspecific(node->cache_key, cache);
|
nuclear@0
|
429 }
|
nuclear@0
|
430
|
nuclear@0
|
431 if(cache->inv_time != tm) {
|
nuclear@0
|
432 anm_get_matrix(node, mat, tm);
|
nuclear@0
|
433 m4_inverse(cache->inv_matrix, mat);
|
nuclear@0
|
434 cache->inv_time = tm;
|
nuclear@0
|
435 }
|
nuclear@0
|
436 m4_copy(mat, cache->inv_matrix);
|
nuclear@0
|
437 }
|
nuclear@0
|
438
|
nuclear@0
|
439 anm_time_t anm_get_start_time(struct anm_node *node)
|
nuclear@0
|
440 {
|
nuclear@0
|
441 int i;
|
nuclear@0
|
442 struct anm_node *c;
|
nuclear@0
|
443 anm_time_t res = LONG_MAX;
|
nuclear@0
|
444
|
nuclear@0
|
445 for(i=0; i<ANM_NUM_TRACKS; i++) {
|
nuclear@0
|
446 if(node->tracks[i].count) {
|
nuclear@0
|
447 anm_time_t tm = node->tracks[i].keys[0].time;
|
nuclear@0
|
448 if(tm < res) {
|
nuclear@0
|
449 res = tm;
|
nuclear@0
|
450 }
|
nuclear@0
|
451 }
|
nuclear@0
|
452 }
|
nuclear@0
|
453
|
nuclear@0
|
454 c = node->child;
|
nuclear@0
|
455 while(c) {
|
nuclear@0
|
456 anm_time_t tm = anm_get_start_time(c);
|
nuclear@0
|
457 if(tm < res) {
|
nuclear@0
|
458 res = tm;
|
nuclear@0
|
459 }
|
nuclear@0
|
460 c = c->next;
|
nuclear@0
|
461 }
|
nuclear@0
|
462 return res;
|
nuclear@0
|
463 }
|
nuclear@0
|
464
|
nuclear@0
|
465 anm_time_t anm_get_end_time(struct anm_node *node)
|
nuclear@0
|
466 {
|
nuclear@0
|
467 int i;
|
nuclear@0
|
468 struct anm_node *c;
|
nuclear@0
|
469 anm_time_t res = LONG_MIN;
|
nuclear@0
|
470
|
nuclear@0
|
471 for(i=0; i<ANM_NUM_TRACKS; i++) {
|
nuclear@0
|
472 if(node->tracks[i].count) {
|
nuclear@0
|
473 anm_time_t tm = node->tracks[i].keys[node->tracks[i].count - 1].time;
|
nuclear@0
|
474 if(tm > res) {
|
nuclear@0
|
475 res = tm;
|
nuclear@0
|
476 }
|
nuclear@0
|
477 }
|
nuclear@0
|
478 }
|
nuclear@0
|
479
|
nuclear@0
|
480 c = node->child;
|
nuclear@0
|
481 while(c) {
|
nuclear@0
|
482 anm_time_t tm = anm_get_end_time(c);
|
nuclear@0
|
483 if(tm > res) {
|
nuclear@0
|
484 res = tm;
|
nuclear@0
|
485 }
|
nuclear@0
|
486 c = c->next;
|
nuclear@0
|
487 }
|
nuclear@0
|
488 return res;
|
nuclear@0
|
489 }
|
nuclear@0
|
490
|
nuclear@0
|
491 static void invalidate_cache(struct anm_node *node)
|
nuclear@0
|
492 {
|
nuclear@0
|
493 struct mat_cache *cache = pthread_getspecific(node->cache_key);
|
nuclear@0
|
494 if(cache) {
|
nuclear@0
|
495 cache->time = ANM_TIME_INVAL;
|
nuclear@0
|
496 }
|
nuclear@0
|
497 }
|