kern

annotate src/vm.c @ 43:5f6c5751ae05

- implemented clone_vmem
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 25 Jul 2011 11:29:02 +0300
parents 373a9f50b4e6
children b8f02479e3f4
rev   line source
nuclear@17 1 #include <stdio.h>
nuclear@17 2 #include <string.h>
nuclear@17 3 #include <inttypes.h>
nuclear@17 4 #include "vm.h"
nuclear@17 5 #include <stdio.h>
nuclear@17 6 #include "intr.h"
nuclear@17 7 #include "mem.h"
nuclear@17 8 #include "panic.h"
nuclear@17 9
nuclear@17 10
nuclear@17 11 #define KMEM_START 0xc0000000
nuclear@17 12 #define IDMAP_START 0xa0000
nuclear@17 13
nuclear@24 14 #define PGDIR_ADDR 0xfffff000
nuclear@24 15 #define PGTBL_BASE (0xffffffff - 4096 * 1024 + 1)
nuclear@24 16 #define PGTBL(x) ((uint32_t*)(PGTBL_BASE + PGSIZE * (x)))
nuclear@24 17
nuclear@17 18 #define ATTR_PGDIR_MASK 0x3f
nuclear@17 19 #define ATTR_PGTBL_MASK 0x1ff
nuclear@17 20 #define ADDR_PGENT_MASK 0xfffff000
nuclear@17 21
nuclear@17 22 #define PAGEFAULT 14
nuclear@17 23
nuclear@22 24
nuclear@22 25 struct page_range {
nuclear@22 26 int start, end;
nuclear@22 27 struct page_range *next;
nuclear@22 28 };
nuclear@22 29
nuclear@22 30 /* defined in vm-asm.S */
nuclear@22 31 void enable_paging(void);
nuclear@23 32 void disable_paging(void);
nuclear@23 33 int get_paging_status(void);
nuclear@22 34 void set_pgdir_addr(uint32_t addr);
nuclear@23 35 void flush_tlb(void);
nuclear@23 36 void flush_tlb_addr(uint32_t addr);
nuclear@23 37 #define flush_tlb_page(p) flush_tlb_addr(PAGE_TO_ADDR(p))
nuclear@22 38 uint32_t get_fault_addr(void);
nuclear@22 39
nuclear@23 40 static void coalesce(struct page_range *low, struct page_range *mid, struct page_range *high);
nuclear@22 41 static void pgfault(int inum, uint32_t err);
nuclear@22 42 static struct page_range *alloc_node(void);
nuclear@22 43 static void free_node(struct page_range *node);
nuclear@22 44
nuclear@22 45 /* page directory */
nuclear@22 46 static uint32_t *pgdir;
nuclear@22 47
nuclear@22 48 /* 2 lists of free ranges, for kernel memory and user memory */
nuclear@22 49 static struct page_range *pglist[2];
nuclear@22 50 /* list of free page_range structures to be used in the lists */
nuclear@22 51 static struct page_range *node_pool;
nuclear@23 52 /* the first page range for the whole kernel address space, to get things started */
nuclear@23 53 static struct page_range first_node;
nuclear@22 54
nuclear@22 55
nuclear@26 56 void init_vm(void)
nuclear@17 57 {
nuclear@19 58 uint32_t idmap_end;
nuclear@19 59
nuclear@23 60 /* setup the page tables */
nuclear@18 61 pgdir = (uint32_t*)alloc_phys_page();
nuclear@23 62 memset(pgdir, 0, PGSIZE);
nuclear@24 63 set_pgdir_addr((uint32_t)pgdir);
nuclear@17 64
nuclear@17 65 /* map the video memory and kernel code 1-1 */
nuclear@19 66 get_kernel_mem_range(0, &idmap_end);
nuclear@19 67 map_mem_range(IDMAP_START, idmap_end - IDMAP_START, IDMAP_START, 0);
nuclear@17 68
nuclear@24 69 /* make the last page directory entry point to the page directory */
nuclear@24 70 pgdir[1023] = ((uint32_t)pgdir & ADDR_PGENT_MASK) | PG_PRESENT;
nuclear@24 71 pgdir = (uint32_t*)PGDIR_ADDR;
nuclear@24 72
nuclear@23 73 /* set the page fault handler */
nuclear@17 74 interrupt(PAGEFAULT, pgfault);
nuclear@17 75
nuclear@23 76 /* we can enable paging now */
nuclear@17 77 enable_paging();
nuclear@23 78
nuclear@23 79 /* initialize the virtual page allocator */
nuclear@23 80 node_pool = 0;
nuclear@23 81
nuclear@23 82 first_node.start = ADDR_TO_PAGE(KMEM_START);
nuclear@26 83 first_node.end = ADDR_TO_PAGE(PGTBL_BASE);
nuclear@23 84 first_node.next = 0;
nuclear@23 85 pglist[MEM_KERNEL] = &first_node;
nuclear@23 86
nuclear@23 87 pglist[MEM_USER] = alloc_node();
nuclear@26 88 pglist[MEM_USER]->start = ADDR_TO_PAGE(idmap_end);
nuclear@23 89 pglist[MEM_USER]->end = ADDR_TO_PAGE(KMEM_START);
nuclear@23 90 pglist[MEM_USER]->next = 0;
nuclear@17 91 }
nuclear@17 92
nuclear@23 93 /* if ppage == -1 we allocate a physical page by calling alloc_phys_page */
nuclear@23 94 int map_page(int vpage, int ppage, unsigned int attr)
nuclear@17 95 {
nuclear@17 96 uint32_t *pgtbl;
nuclear@25 97 int diridx, pgidx, pgon, intr_state;
nuclear@25 98
nuclear@25 99 intr_state = get_intr_state();
nuclear@25 100 disable_intr();
nuclear@23 101
nuclear@23 102 pgon = get_paging_status();
nuclear@23 103
nuclear@23 104 if(ppage < 0) {
nuclear@23 105 uint32_t addr = alloc_phys_page();
nuclear@23 106 if(!addr) {
nuclear@25 107 set_intr_state(intr_state);
nuclear@23 108 return -1;
nuclear@23 109 }
nuclear@23 110 ppage = ADDR_TO_PAGE(addr);
nuclear@23 111 }
nuclear@23 112
nuclear@23 113 diridx = PAGE_TO_PGTBL(vpage);
nuclear@23 114 pgidx = PAGE_TO_PGTBL_PG(vpage);
nuclear@17 115
nuclear@17 116 if(!(pgdir[diridx] & PG_PRESENT)) {
nuclear@17 117 uint32_t addr = alloc_phys_page();
nuclear@24 118 pgdir[diridx] = addr | (attr & ATTR_PGDIR_MASK) | PG_PRESENT;
nuclear@24 119
nuclear@24 120 pgtbl = pgon ? PGTBL(diridx) : (uint32_t*)addr;
nuclear@18 121 memset(pgtbl, 0, PGSIZE);
nuclear@17 122 } else {
nuclear@24 123 if(pgon) {
nuclear@24 124 pgtbl = PGTBL(diridx);
nuclear@24 125 } else {
nuclear@24 126 pgtbl = (uint32_t*)(pgdir[diridx] & ADDR_PGENT_MASK);
nuclear@24 127 }
nuclear@17 128 }
nuclear@17 129
nuclear@17 130 pgtbl[pgidx] = PAGE_TO_ADDR(ppage) | (attr & ATTR_PGTBL_MASK) | PG_PRESENT;
nuclear@23 131 flush_tlb_page(vpage);
nuclear@23 132
nuclear@25 133 set_intr_state(intr_state);
nuclear@23 134 return 0;
nuclear@17 135 }
nuclear@17 136
nuclear@43 137 int unmap_page(int vpage)
nuclear@17 138 {
nuclear@17 139 uint32_t *pgtbl;
nuclear@43 140 int res = 0;
nuclear@17 141 int diridx = PAGE_TO_PGTBL(vpage);
nuclear@17 142 int pgidx = PAGE_TO_PGTBL_PG(vpage);
nuclear@17 143
nuclear@25 144 int intr_state = get_intr_state();
nuclear@25 145 disable_intr();
nuclear@25 146
nuclear@17 147 if(!(pgdir[diridx] & PG_PRESENT)) {
nuclear@17 148 goto err;
nuclear@17 149 }
nuclear@26 150 pgtbl = PGTBL(diridx);
nuclear@17 151
nuclear@17 152 if(!(pgtbl[pgidx] & PG_PRESENT)) {
nuclear@17 153 goto err;
nuclear@17 154 }
nuclear@17 155 pgtbl[pgidx] = 0;
nuclear@23 156 flush_tlb_page(vpage);
nuclear@17 157
nuclear@25 158 if(0) {
nuclear@17 159 err:
nuclear@25 160 printf("unmap_page(%d): page already not mapped\n", vpage);
nuclear@43 161 res = -1;
nuclear@25 162 }
nuclear@25 163 set_intr_state(intr_state);
nuclear@43 164 return res;
nuclear@17 165 }
nuclear@17 166
nuclear@22 167 /* if ppg_start is -1, we allocate physical pages to map with alloc_phys_page() */
nuclear@23 168 int map_page_range(int vpg_start, int pgcount, int ppg_start, unsigned int attr)
nuclear@17 169 {
nuclear@23 170 int i, phys_pg;
nuclear@17 171
nuclear@17 172 for(i=0; i<pgcount; i++) {
nuclear@26 173 phys_pg = ppg_start < 0 ? -1 : ppg_start + i;
nuclear@23 174 map_page(vpg_start + i, phys_pg, attr);
nuclear@17 175 }
nuclear@23 176 return 0;
nuclear@17 177 }
nuclear@17 178
nuclear@43 179 int unmap_page_range(int vpg_start, int pgcount)
nuclear@43 180 {
nuclear@43 181 int i, res = 0;
nuclear@43 182
nuclear@43 183 for(i=0; i<pgcount; i++) {
nuclear@43 184 if(unmap_page(vpg_start + i) == -1) {
nuclear@43 185 res = -1;
nuclear@43 186 }
nuclear@43 187 }
nuclear@43 188 return res;
nuclear@43 189 }
nuclear@43 190
nuclear@23 191 /* if paddr is 0, we allocate physical pages with alloc_phys_page() */
nuclear@23 192 int map_mem_range(uint32_t vaddr, size_t sz, uint32_t paddr, unsigned int attr)
nuclear@17 193 {
nuclear@17 194 int vpg_start, ppg_start, num_pages;
nuclear@17 195
nuclear@23 196 if(!sz) return -1;
nuclear@17 197
nuclear@17 198 if(ADDR_TO_PGOFFS(paddr)) {
nuclear@17 199 panic("map_mem_range called with unaligned physical address: %x\n", paddr);
nuclear@17 200 }
nuclear@17 201
nuclear@17 202 vpg_start = ADDR_TO_PAGE(vaddr);
nuclear@23 203 ppg_start = paddr > 0 ? ADDR_TO_PAGE(paddr) : -1;
nuclear@17 204 num_pages = ADDR_TO_PAGE(sz) + 1;
nuclear@17 205
nuclear@23 206 return map_page_range(vpg_start, num_pages, ppg_start, attr);
nuclear@17 207 }
nuclear@17 208
nuclear@18 209 uint32_t virt_to_phys(uint32_t vaddr)
nuclear@18 210 {
nuclear@43 211 int pg;
nuclear@43 212 uint32_t pgaddr;
nuclear@43 213
nuclear@43 214 if((pg = virt_to_phys_page(ADDR_TO_PAGE(vaddr))) == -1) {
nuclear@43 215 return 0;
nuclear@43 216 }
nuclear@43 217 pgaddr = PAGE_TO_ADDR(pg);
nuclear@43 218
nuclear@43 219 return pgaddr | ADDR_TO_PGOFFS(vaddr);
nuclear@43 220 }
nuclear@43 221
nuclear@43 222 int virt_to_phys_page(int vpg)
nuclear@43 223 {
nuclear@18 224 uint32_t pgaddr, *pgtbl;
nuclear@43 225 int diridx, pgidx;
nuclear@43 226
nuclear@43 227 if(vpg < 0 || vpg >= PAGE_COUNT) {
nuclear@43 228 return -1;
nuclear@43 229 }
nuclear@43 230
nuclear@43 231 diridx = PAGE_TO_PGTBL(vpg);
nuclear@43 232 pgidx = PAGE_TO_PGTBL_PG(vpg);
nuclear@18 233
nuclear@18 234 if(!(pgdir[diridx] & PG_PRESENT)) {
nuclear@43 235 return -1;
nuclear@18 236 }
nuclear@26 237 pgtbl = PGTBL(diridx);
nuclear@18 238
nuclear@18 239 if(!(pgtbl[pgidx] & PG_PRESENT)) {
nuclear@43 240 return -1;
nuclear@18 241 }
nuclear@18 242 pgaddr = pgtbl[pgidx] & PGENT_ADDR_MASK;
nuclear@43 243 return ADDR_TO_PAGE(pgaddr);
nuclear@18 244 }
nuclear@18 245
nuclear@22 246 /* allocate a contiguous block of virtual memory pages along with
nuclear@22 247 * backing physical memory for them, and update the page table.
nuclear@22 248 */
nuclear@22 249 int pgalloc(int num, int area)
nuclear@22 250 {
nuclear@25 251 int intr_state, ret = -1;
nuclear@22 252 struct page_range *node, *prev, dummy;
nuclear@22 253
nuclear@25 254 intr_state = get_intr_state();
nuclear@25 255 disable_intr();
nuclear@25 256
nuclear@22 257 dummy.next = pglist[area];
nuclear@22 258 node = pglist[area];
nuclear@22 259 prev = &dummy;
nuclear@22 260
nuclear@22 261 while(node) {
nuclear@22 262 if(node->end - node->start >= num) {
nuclear@22 263 ret = node->start;
nuclear@22 264 node->start += num;
nuclear@22 265
nuclear@22 266 if(node->start == node->end) {
nuclear@22 267 prev->next = node->next;
nuclear@22 268 node->next = 0;
nuclear@22 269
nuclear@22 270 if(node == pglist[area]) {
nuclear@22 271 pglist[area] = 0;
nuclear@22 272 }
nuclear@22 273 free_node(node);
nuclear@22 274 }
nuclear@22 275 break;
nuclear@22 276 }
nuclear@22 277
nuclear@22 278 prev = node;
nuclear@22 279 node = node->next;
nuclear@22 280 }
nuclear@22 281
nuclear@22 282 if(ret >= 0) {
nuclear@23 283 /* allocate physical storage and map */
nuclear@23 284 if(map_page_range(ret, num, -1, 0) == -1) {
nuclear@23 285 ret = -1;
nuclear@23 286 }
nuclear@22 287 }
nuclear@22 288
nuclear@25 289 set_intr_state(intr_state);
nuclear@22 290 return ret;
nuclear@22 291 }
nuclear@22 292
nuclear@22 293 void pgfree(int start, int num)
nuclear@22 294 {
nuclear@33 295 int i, area, intr_state;
nuclear@23 296 struct page_range *node, *new, *prev, *next;
nuclear@23 297
nuclear@25 298 intr_state = get_intr_state();
nuclear@25 299 disable_intr();
nuclear@25 300
nuclear@26 301 for(i=0; i<num; i++) {
nuclear@43 302 int phys_pg = virt_to_phys_page(start + i);
nuclear@43 303 if(phys_pg != -1) {
nuclear@43 304 free_phys_page(phys_pg);
nuclear@26 305 }
nuclear@26 306 }
nuclear@26 307
nuclear@23 308 if(!(new = alloc_node())) {
nuclear@23 309 panic("pgfree: can't allocate new page_range node to add the freed pages\n");
nuclear@23 310 }
nuclear@23 311 new->start = start;
nuclear@33 312 new->end = start + num;
nuclear@23 313
nuclear@23 314 area = PAGE_TO_ADDR(start) >= KMEM_START ? MEM_KERNEL : MEM_USER;
nuclear@23 315
nuclear@23 316 if(!pglist[area] || pglist[area]->start > start) {
nuclear@23 317 next = new->next = pglist[area];
nuclear@23 318 pglist[area] = new;
nuclear@23 319 prev = 0;
nuclear@23 320
nuclear@23 321 } else {
nuclear@23 322
nuclear@23 323 prev = 0;
nuclear@23 324 node = pglist[area];
nuclear@23 325 next = node ? node->next : 0;
nuclear@23 326
nuclear@23 327 while(node) {
nuclear@23 328 if(!next || next->start > start) {
nuclear@23 329 /* place here, after node */
nuclear@23 330 new->next = next;
nuclear@23 331 node->next = new;
nuclear@23 332 prev = node; /* needed by coalesce after the loop */
nuclear@23 333 break;
nuclear@23 334 }
nuclear@23 335
nuclear@23 336 prev = node;
nuclear@23 337 node = next;
nuclear@23 338 next = node ? node->next : 0;
nuclear@23 339 }
nuclear@23 340 }
nuclear@23 341
nuclear@23 342 coalesce(prev, new, next);
nuclear@25 343 set_intr_state(intr_state);
nuclear@23 344 }
nuclear@23 345
nuclear@23 346 static void coalesce(struct page_range *low, struct page_range *mid, struct page_range *high)
nuclear@23 347 {
nuclear@23 348 if(high) {
nuclear@23 349 if(mid->end == high->start) {
nuclear@23 350 mid->end = high->end;
nuclear@23 351 mid->next = high->next;
nuclear@23 352 free_node(high);
nuclear@23 353 }
nuclear@23 354 }
nuclear@23 355
nuclear@23 356 if(low) {
nuclear@23 357 if(low->end == mid->start) {
nuclear@23 358 low->end += mid->end;
nuclear@23 359 low->next = mid->next;
nuclear@23 360 free_node(mid);
nuclear@23 361 }
nuclear@23 362 }
nuclear@22 363 }
nuclear@22 364
nuclear@17 365 static void pgfault(int inum, uint32_t err)
nuclear@17 366 {
nuclear@17 367 printf("~~~~ PAGE FAULT ~~~~\n");
nuclear@17 368
nuclear@17 369 printf("fault address: %x\n", get_fault_addr());
nuclear@17 370
nuclear@17 371 if(err & PG_PRESENT) {
nuclear@17 372 if(err & 8) {
nuclear@17 373 printf("reserved bit set in some paging structure\n");
nuclear@17 374 } else {
nuclear@17 375 printf("%s protection violation ", (err & PG_WRITABLE) ? "write" : "read");
nuclear@17 376 printf("in %s mode\n", err & PG_USER ? "user" : "kernel");
nuclear@17 377 }
nuclear@17 378 } else {
nuclear@17 379 printf("page not present\n");
nuclear@17 380 }
nuclear@19 381
nuclear@19 382 panic("unhandled page fault\n");
nuclear@17 383 }
nuclear@22 384
nuclear@22 385 /* --- page range list node management --- */
nuclear@23 386 #define NODES_IN_PAGE (PGSIZE / sizeof(struct page_range))
nuclear@23 387
nuclear@22 388 static struct page_range *alloc_node(void)
nuclear@22 389 {
nuclear@22 390 struct page_range *node;
nuclear@23 391 int pg, i;
nuclear@22 392
nuclear@22 393 if(node_pool) {
nuclear@22 394 node = node_pool;
nuclear@22 395 node_pool = node_pool->next;
nuclear@23 396 printf("alloc_node -> %x\n", (unsigned int)node);
nuclear@22 397 return node;
nuclear@22 398 }
nuclear@22 399
nuclear@23 400 /* no node structures in the pool, we need to allocate a new page,
nuclear@23 401 * split it up into node structures, add them in the pool, and
nuclear@23 402 * allocate one of them.
nuclear@22 403 */
nuclear@23 404 if(!(pg = pgalloc(1, MEM_KERNEL))) {
nuclear@22 405 panic("ran out of physical memory while allocating VM range structures\n");
nuclear@22 406 }
nuclear@23 407 node_pool = (struct page_range*)PAGE_TO_ADDR(pg);
nuclear@22 408
nuclear@23 409 /* link them up, skip the first as we'll just allocate it anyway */
nuclear@23 410 for(i=2; i<NODES_IN_PAGE; i++) {
nuclear@23 411 node_pool[i - 1].next = node_pool + i;
nuclear@23 412 }
nuclear@23 413 node_pool[NODES_IN_PAGE - 1].next = 0;
nuclear@23 414
nuclear@23 415 /* grab the first and return it */
nuclear@23 416 node = node_pool++;
nuclear@23 417 printf("alloc_node -> %x\n", (unsigned int)node);
nuclear@23 418 return node;
nuclear@22 419 }
nuclear@22 420
nuclear@22 421 static void free_node(struct page_range *node)
nuclear@22 422 {
nuclear@22 423 node->next = node_pool;
nuclear@22 424 node_pool = node;
nuclear@23 425 printf("free_node\n");
nuclear@22 426 }
nuclear@23 427
nuclear@23 428
nuclear@43 429 /* clone_vmem makes a copy of the current page tables, thus duplicating
nuclear@43 430 * the virtual address space.
nuclear@43 431 *
nuclear@43 432 * Returns the physical address of the new page directory.
nuclear@43 433 */
nuclear@43 434 uint32_t clone_vmem(void)
nuclear@43 435 {
nuclear@43 436 int i, dirpg, tblpg;
nuclear@43 437 uint32_t paddr;
nuclear@43 438 uint32_t *ndir, *ntbl;
nuclear@43 439
nuclear@43 440 if((dirpg = pgalloc(1, MEM_KERNEL)) == -1) {
nuclear@43 441 panic("clone_vmem: failed to allocate page directory page\n");
nuclear@43 442 }
nuclear@43 443 ndir = (uint32_t*)PAGE_TO_ADDR(dirpg);
nuclear@43 444
nuclear@43 445 if((tblpg = pgalloc(1, MEM_KERNEL)) == -1) {
nuclear@43 446 panic("clone_vmem: failed to allocate page table page\n");
nuclear@43 447 }
nuclear@43 448 ntbl = (uint32_t*)PAGE_TO_ADDR(tblpg);
nuclear@43 449
nuclear@43 450 /* we will allocate physical pages and map them to this virtual page
nuclear@43 451 * as needed in the loop below.
nuclear@43 452 */
nuclear@43 453 free_phys_page(virt_to_phys(tblpg));
nuclear@43 454
nuclear@43 455 for(i=0; i<1024; i++) {
nuclear@43 456 if(pgdir[i] & PG_PRESENT) {
nuclear@43 457 paddr = alloc_phys_page();
nuclear@43 458 map_page(tblpg, ADDR_TO_PAGE(paddr), 0);
nuclear@43 459
nuclear@43 460 /* copy the page table */
nuclear@43 461 memcpy(ntbl, PGTBL(i), PGSIZE);
nuclear@43 462
nuclear@43 463 /* set the new page directory entry */
nuclear@43 464 ndir[i] = paddr | (pgdir[i] & PGOFFS_MASK);
nuclear@43 465 } else {
nuclear@43 466 ndir[i] = 0;
nuclear@43 467 }
nuclear@43 468 }
nuclear@43 469
nuclear@43 470 paddr = virt_to_phys(dirpg);
nuclear@43 471
nuclear@43 472 /* unmap before freeing to avoid deallocating the physical pages */
nuclear@43 473 unmap_page(dirpg);
nuclear@43 474 unmap_page(tblpg);
nuclear@43 475
nuclear@43 476 pgfree(dirpg, 1);
nuclear@43 477 pgfree(tblpg, 1);
nuclear@43 478
nuclear@43 479 return paddr;
nuclear@43 480 }
nuclear@43 481
nuclear@43 482
nuclear@23 483 void dbg_print_vm(int area)
nuclear@23 484 {
nuclear@25 485 struct page_range *node;
nuclear@25 486 int last, intr_state;
nuclear@25 487
nuclear@25 488 intr_state = get_intr_state();
nuclear@25 489 disable_intr();
nuclear@25 490
nuclear@25 491 node = pglist[area];
nuclear@25 492 last = area == MEM_USER ? 0 : ADDR_TO_PAGE(KMEM_START);
nuclear@23 493
nuclear@23 494 printf("%s vm space\n", area == MEM_USER ? "user" : "kernel");
nuclear@23 495
nuclear@23 496 while(node) {
nuclear@23 497 if(node->start > last) {
nuclear@23 498 printf(" vm-used: %x -> %x\n", PAGE_TO_ADDR(last), PAGE_TO_ADDR(node->start));
nuclear@23 499 }
nuclear@23 500
nuclear@23 501 printf(" vm-free: %x -> ", PAGE_TO_ADDR(node->start));
nuclear@23 502 if(node->end >= PAGE_COUNT) {
nuclear@23 503 printf("END\n");
nuclear@23 504 } else {
nuclear@23 505 printf("%x\n", PAGE_TO_ADDR(node->end));
nuclear@23 506 }
nuclear@23 507
nuclear@23 508 last = node->end;
nuclear@23 509 node = node->next;
nuclear@23 510 }
nuclear@25 511
nuclear@25 512 set_intr_state(intr_state);
nuclear@23 513 }