istereo2
diff libs/libjpeg/jdct.h @ 2:81d35769f546
added the tunnel effect source
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sat, 19 Sep 2015 05:51:51 +0300 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jdct.h Sat Sep 19 05:51:51 2015 +0300 1.3 @@ -0,0 +1,176 @@ 1.4 +/* 1.5 + * jdct.h 1.6 + * 1.7 + * Copyright (C) 1994-1996, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This include file contains common declarations for the forward and 1.12 + * inverse DCT modules. These declarations are private to the DCT managers 1.13 + * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. 1.14 + * The individual DCT algorithms are kept in separate files to ease 1.15 + * machine-dependent tuning (e.g., assembly coding). 1.16 + */ 1.17 + 1.18 + 1.19 +/* 1.20 + * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; 1.21 + * the DCT is to be performed in-place in that buffer. Type DCTELEM is int 1.22 + * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT 1.23 + * implementations use an array of type FAST_FLOAT, instead.) 1.24 + * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). 1.25 + * The DCT outputs are returned scaled up by a factor of 8; they therefore 1.26 + * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This 1.27 + * convention improves accuracy in integer implementations and saves some 1.28 + * work in floating-point ones. 1.29 + * Quantization of the output coefficients is done by jcdctmgr.c. 1.30 + */ 1.31 + 1.32 +#if BITS_IN_JSAMPLE == 8 1.33 +typedef int DCTELEM; /* 16 or 32 bits is fine */ 1.34 +#else 1.35 +typedef INT32 DCTELEM; /* must have 32 bits */ 1.36 +#endif 1.37 + 1.38 +typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); 1.39 +typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); 1.40 + 1.41 + 1.42 +/* 1.43 + * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer 1.44 + * to an output sample array. The routine must dequantize the input data as 1.45 + * well as perform the IDCT; for dequantization, it uses the multiplier table 1.46 + * pointed to by compptr->dct_table. The output data is to be placed into the 1.47 + * sample array starting at a specified column. (Any row offset needed will 1.48 + * be applied to the array pointer before it is passed to the IDCT code.) 1.49 + * Note that the number of samples emitted by the IDCT routine is 1.50 + * DCT_scaled_size * DCT_scaled_size. 1.51 + */ 1.52 + 1.53 +/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ 1.54 + 1.55 +/* 1.56 + * Each IDCT routine has its own ideas about the best dct_table element type. 1.57 + */ 1.58 + 1.59 +typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ 1.60 +#if BITS_IN_JSAMPLE == 8 1.61 +typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ 1.62 +#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ 1.63 +#else 1.64 +typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ 1.65 +#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ 1.66 +#endif 1.67 +typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ 1.68 + 1.69 + 1.70 +/* 1.71 + * Each IDCT routine is responsible for range-limiting its results and 1.72 + * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could 1.73 + * be quite far out of range if the input data is corrupt, so a bulletproof 1.74 + * range-limiting step is required. We use a mask-and-table-lookup method 1.75 + * to do the combined operations quickly. See the comments with 1.76 + * prepare_range_limit_table (in jdmaster.c) for more info. 1.77 + */ 1.78 + 1.79 +#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) 1.80 + 1.81 +#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ 1.82 + 1.83 + 1.84 +/* Short forms of external names for systems with brain-damaged linkers. */ 1.85 + 1.86 +#ifdef NEED_SHORT_EXTERNAL_NAMES 1.87 +#define jpeg_fdct_islow jFDislow 1.88 +#define jpeg_fdct_ifast jFDifast 1.89 +#define jpeg_fdct_float jFDfloat 1.90 +#define jpeg_idct_islow jRDislow 1.91 +#define jpeg_idct_ifast jRDifast 1.92 +#define jpeg_idct_float jRDfloat 1.93 +#define jpeg_idct_4x4 jRD4x4 1.94 +#define jpeg_idct_2x2 jRD2x2 1.95 +#define jpeg_idct_1x1 jRD1x1 1.96 +#endif /* NEED_SHORT_EXTERNAL_NAMES */ 1.97 + 1.98 +/* Extern declarations for the forward and inverse DCT routines. */ 1.99 + 1.100 +EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data)); 1.101 +EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data)); 1.102 +EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data)); 1.103 + 1.104 +EXTERN(void) jpeg_idct_islow 1.105 + JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, 1.106 + JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); 1.107 +EXTERN(void) jpeg_idct_ifast 1.108 + JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, 1.109 + JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); 1.110 +EXTERN(void) jpeg_idct_float 1.111 + JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, 1.112 + JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); 1.113 +EXTERN(void) jpeg_idct_4x4 1.114 + JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, 1.115 + JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); 1.116 +EXTERN(void) jpeg_idct_2x2 1.117 + JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, 1.118 + JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); 1.119 +EXTERN(void) jpeg_idct_1x1 1.120 + JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, 1.121 + JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); 1.122 + 1.123 + 1.124 +/* 1.125 + * Macros for handling fixed-point arithmetic; these are used by many 1.126 + * but not all of the DCT/IDCT modules. 1.127 + * 1.128 + * All values are expected to be of type INT32. 1.129 + * Fractional constants are scaled left by CONST_BITS bits. 1.130 + * CONST_BITS is defined within each module using these macros, 1.131 + * and may differ from one module to the next. 1.132 + */ 1.133 + 1.134 +#define ONE ((INT32) 1) 1.135 +#define CONST_SCALE (ONE << CONST_BITS) 1.136 + 1.137 +/* Convert a positive real constant to an integer scaled by CONST_SCALE. 1.138 + * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, 1.139 + * thus causing a lot of useless floating-point operations at run time. 1.140 + */ 1.141 + 1.142 +#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) 1.143 + 1.144 +/* Descale and correctly round an INT32 value that's scaled by N bits. 1.145 + * We assume RIGHT_SHIFT rounds towards minus infinity, so adding 1.146 + * the fudge factor is correct for either sign of X. 1.147 + */ 1.148 + 1.149 +#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) 1.150 + 1.151 +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. 1.152 + * This macro is used only when the two inputs will actually be no more than 1.153 + * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a 1.154 + * full 32x32 multiply. This provides a useful speedup on many machines. 1.155 + * Unfortunately there is no way to specify a 16x16->32 multiply portably 1.156 + * in C, but some C compilers will do the right thing if you provide the 1.157 + * correct combination of casts. 1.158 + */ 1.159 + 1.160 +#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ 1.161 +#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) 1.162 +#endif 1.163 +#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ 1.164 +#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) 1.165 +#endif 1.166 + 1.167 +#ifndef MULTIPLY16C16 /* default definition */ 1.168 +#define MULTIPLY16C16(var,const) ((var) * (const)) 1.169 +#endif 1.170 + 1.171 +/* Same except both inputs are variables. */ 1.172 + 1.173 +#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ 1.174 +#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) 1.175 +#endif 1.176 + 1.177 +#ifndef MULTIPLY16V16 /* default definition */ 1.178 +#define MULTIPLY16V16(var1,var2) ((var1) * (var2)) 1.179 +#endif