rev |
line source |
nuclear@2
|
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
|
nuclear@2
|
2 * Copyright (C) 1995-2004 Mark Adler
|
nuclear@2
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
nuclear@2
|
4 */
|
nuclear@2
|
5
|
nuclear@2
|
6 /* @(#) $Id$ */
|
nuclear@2
|
7
|
nuclear@2
|
8 #define ZLIB_INTERNAL
|
nuclear@2
|
9 #include "zlib.h"
|
nuclear@2
|
10
|
nuclear@2
|
11 #define BASE 65521UL /* largest prime smaller than 65536 */
|
nuclear@2
|
12 #define NMAX 5552
|
nuclear@2
|
13 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
nuclear@2
|
14
|
nuclear@2
|
15 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
nuclear@2
|
16 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
nuclear@2
|
17 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
nuclear@2
|
18 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
nuclear@2
|
19 #define DO16(buf) DO8(buf,0); DO8(buf,8);
|
nuclear@2
|
20
|
nuclear@2
|
21 /* use NO_DIVIDE if your processor does not do division in hardware */
|
nuclear@2
|
22 #ifdef NO_DIVIDE
|
nuclear@2
|
23 # define MOD(a) \
|
nuclear@2
|
24 do { \
|
nuclear@2
|
25 if (a >= (BASE << 16)) a -= (BASE << 16); \
|
nuclear@2
|
26 if (a >= (BASE << 15)) a -= (BASE << 15); \
|
nuclear@2
|
27 if (a >= (BASE << 14)) a -= (BASE << 14); \
|
nuclear@2
|
28 if (a >= (BASE << 13)) a -= (BASE << 13); \
|
nuclear@2
|
29 if (a >= (BASE << 12)) a -= (BASE << 12); \
|
nuclear@2
|
30 if (a >= (BASE << 11)) a -= (BASE << 11); \
|
nuclear@2
|
31 if (a >= (BASE << 10)) a -= (BASE << 10); \
|
nuclear@2
|
32 if (a >= (BASE << 9)) a -= (BASE << 9); \
|
nuclear@2
|
33 if (a >= (BASE << 8)) a -= (BASE << 8); \
|
nuclear@2
|
34 if (a >= (BASE << 7)) a -= (BASE << 7); \
|
nuclear@2
|
35 if (a >= (BASE << 6)) a -= (BASE << 6); \
|
nuclear@2
|
36 if (a >= (BASE << 5)) a -= (BASE << 5); \
|
nuclear@2
|
37 if (a >= (BASE << 4)) a -= (BASE << 4); \
|
nuclear@2
|
38 if (a >= (BASE << 3)) a -= (BASE << 3); \
|
nuclear@2
|
39 if (a >= (BASE << 2)) a -= (BASE << 2); \
|
nuclear@2
|
40 if (a >= (BASE << 1)) a -= (BASE << 1); \
|
nuclear@2
|
41 if (a >= BASE) a -= BASE; \
|
nuclear@2
|
42 } while (0)
|
nuclear@2
|
43 # define MOD4(a) \
|
nuclear@2
|
44 do { \
|
nuclear@2
|
45 if (a >= (BASE << 4)) a -= (BASE << 4); \
|
nuclear@2
|
46 if (a >= (BASE << 3)) a -= (BASE << 3); \
|
nuclear@2
|
47 if (a >= (BASE << 2)) a -= (BASE << 2); \
|
nuclear@2
|
48 if (a >= (BASE << 1)) a -= (BASE << 1); \
|
nuclear@2
|
49 if (a >= BASE) a -= BASE; \
|
nuclear@2
|
50 } while (0)
|
nuclear@2
|
51 #else
|
nuclear@2
|
52 # define MOD(a) a %= BASE
|
nuclear@2
|
53 # define MOD4(a) a %= BASE
|
nuclear@2
|
54 #endif
|
nuclear@2
|
55
|
nuclear@2
|
56 /* ========================================================================= */
|
nuclear@2
|
57 uLong ZEXPORT adler32(adler, buf, len)
|
nuclear@2
|
58 uLong adler;
|
nuclear@2
|
59 const Bytef *buf;
|
nuclear@2
|
60 uInt len;
|
nuclear@2
|
61 {
|
nuclear@2
|
62 unsigned long sum2;
|
nuclear@2
|
63 unsigned n;
|
nuclear@2
|
64
|
nuclear@2
|
65 /* split Adler-32 into component sums */
|
nuclear@2
|
66 sum2 = (adler >> 16) & 0xffff;
|
nuclear@2
|
67 adler &= 0xffff;
|
nuclear@2
|
68
|
nuclear@2
|
69 /* in case user likes doing a byte at a time, keep it fast */
|
nuclear@2
|
70 if (len == 1) {
|
nuclear@2
|
71 adler += buf[0];
|
nuclear@2
|
72 if (adler >= BASE)
|
nuclear@2
|
73 adler -= BASE;
|
nuclear@2
|
74 sum2 += adler;
|
nuclear@2
|
75 if (sum2 >= BASE)
|
nuclear@2
|
76 sum2 -= BASE;
|
nuclear@2
|
77 return adler | (sum2 << 16);
|
nuclear@2
|
78 }
|
nuclear@2
|
79
|
nuclear@2
|
80 /* initial Adler-32 value (deferred check for len == 1 speed) */
|
nuclear@2
|
81 if (buf == Z_NULL)
|
nuclear@2
|
82 return 1L;
|
nuclear@2
|
83
|
nuclear@2
|
84 /* in case short lengths are provided, keep it somewhat fast */
|
nuclear@2
|
85 if (len < 16) {
|
nuclear@2
|
86 while (len--) {
|
nuclear@2
|
87 adler += *buf++;
|
nuclear@2
|
88 sum2 += adler;
|
nuclear@2
|
89 }
|
nuclear@2
|
90 if (adler >= BASE)
|
nuclear@2
|
91 adler -= BASE;
|
nuclear@2
|
92 MOD4(sum2); /* only added so many BASE's */
|
nuclear@2
|
93 return adler | (sum2 << 16);
|
nuclear@2
|
94 }
|
nuclear@2
|
95
|
nuclear@2
|
96 /* do length NMAX blocks -- requires just one modulo operation */
|
nuclear@2
|
97 while (len >= NMAX) {
|
nuclear@2
|
98 len -= NMAX;
|
nuclear@2
|
99 n = NMAX / 16; /* NMAX is divisible by 16 */
|
nuclear@2
|
100 do {
|
nuclear@2
|
101 DO16(buf); /* 16 sums unrolled */
|
nuclear@2
|
102 buf += 16;
|
nuclear@2
|
103 } while (--n);
|
nuclear@2
|
104 MOD(adler);
|
nuclear@2
|
105 MOD(sum2);
|
nuclear@2
|
106 }
|
nuclear@2
|
107
|
nuclear@2
|
108 /* do remaining bytes (less than NMAX, still just one modulo) */
|
nuclear@2
|
109 if (len) { /* avoid modulos if none remaining */
|
nuclear@2
|
110 while (len >= 16) {
|
nuclear@2
|
111 len -= 16;
|
nuclear@2
|
112 DO16(buf);
|
nuclear@2
|
113 buf += 16;
|
nuclear@2
|
114 }
|
nuclear@2
|
115 while (len--) {
|
nuclear@2
|
116 adler += *buf++;
|
nuclear@2
|
117 sum2 += adler;
|
nuclear@2
|
118 }
|
nuclear@2
|
119 MOD(adler);
|
nuclear@2
|
120 MOD(sum2);
|
nuclear@2
|
121 }
|
nuclear@2
|
122
|
nuclear@2
|
123 /* return recombined sums */
|
nuclear@2
|
124 return adler | (sum2 << 16);
|
nuclear@2
|
125 }
|
nuclear@2
|
126
|
nuclear@2
|
127 /* ========================================================================= */
|
nuclear@2
|
128 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
nuclear@2
|
129 uLong adler1;
|
nuclear@2
|
130 uLong adler2;
|
nuclear@2
|
131 z_off_t len2;
|
nuclear@2
|
132 {
|
nuclear@2
|
133 unsigned long sum1;
|
nuclear@2
|
134 unsigned long sum2;
|
nuclear@2
|
135 unsigned rem;
|
nuclear@2
|
136
|
nuclear@2
|
137 /* the derivation of this formula is left as an exercise for the reader */
|
nuclear@2
|
138 rem = (unsigned)(len2 % BASE);
|
nuclear@2
|
139 sum1 = adler1 & 0xffff;
|
nuclear@2
|
140 sum2 = rem * sum1;
|
nuclear@2
|
141 MOD(sum2);
|
nuclear@2
|
142 sum1 += (adler2 & 0xffff) + BASE - 1;
|
nuclear@2
|
143 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
nuclear@2
|
144 if (sum1 > BASE) sum1 -= BASE;
|
nuclear@2
|
145 if (sum1 > BASE) sum1 -= BASE;
|
nuclear@2
|
146 if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
|
nuclear@2
|
147 if (sum2 > BASE) sum2 -= BASE;
|
nuclear@2
|
148 return sum1 | (sum2 << 16);
|
nuclear@2
|
149 }
|