rev |
line source |
nuclear@2
|
1 /*
|
nuclear@2
|
2 * jquant1.c
|
nuclear@2
|
3 *
|
nuclear@2
|
4 * Copyright (C) 1991-1996, Thomas G. Lane.
|
nuclear@2
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@2
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@2
|
7 *
|
nuclear@2
|
8 * This file contains 1-pass color quantization (color mapping) routines.
|
nuclear@2
|
9 * These routines provide mapping to a fixed color map using equally spaced
|
nuclear@2
|
10 * color values. Optional Floyd-Steinberg or ordered dithering is available.
|
nuclear@2
|
11 */
|
nuclear@2
|
12
|
nuclear@2
|
13 #define JPEG_INTERNALS
|
nuclear@2
|
14 #include "jinclude.h"
|
nuclear@2
|
15 #include "jpeglib.h"
|
nuclear@2
|
16
|
nuclear@2
|
17 #ifdef QUANT_1PASS_SUPPORTED
|
nuclear@2
|
18
|
nuclear@2
|
19
|
nuclear@2
|
20 /*
|
nuclear@2
|
21 * The main purpose of 1-pass quantization is to provide a fast, if not very
|
nuclear@2
|
22 * high quality, colormapped output capability. A 2-pass quantizer usually
|
nuclear@2
|
23 * gives better visual quality; however, for quantized grayscale output this
|
nuclear@2
|
24 * quantizer is perfectly adequate. Dithering is highly recommended with this
|
nuclear@2
|
25 * quantizer, though you can turn it off if you really want to.
|
nuclear@2
|
26 *
|
nuclear@2
|
27 * In 1-pass quantization the colormap must be chosen in advance of seeing the
|
nuclear@2
|
28 * image. We use a map consisting of all combinations of Ncolors[i] color
|
nuclear@2
|
29 * values for the i'th component. The Ncolors[] values are chosen so that
|
nuclear@2
|
30 * their product, the total number of colors, is no more than that requested.
|
nuclear@2
|
31 * (In most cases, the product will be somewhat less.)
|
nuclear@2
|
32 *
|
nuclear@2
|
33 * Since the colormap is orthogonal, the representative value for each color
|
nuclear@2
|
34 * component can be determined without considering the other components;
|
nuclear@2
|
35 * then these indexes can be combined into a colormap index by a standard
|
nuclear@2
|
36 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
nuclear@2
|
37 * can be precalculated and stored in the lookup table colorindex[].
|
nuclear@2
|
38 * colorindex[i][j] maps pixel value j in component i to the nearest
|
nuclear@2
|
39 * representative value (grid plane) for that component; this index is
|
nuclear@2
|
40 * multiplied by the array stride for component i, so that the
|
nuclear@2
|
41 * index of the colormap entry closest to a given pixel value is just
|
nuclear@2
|
42 * sum( colorindex[component-number][pixel-component-value] )
|
nuclear@2
|
43 * Aside from being fast, this scheme allows for variable spacing between
|
nuclear@2
|
44 * representative values with no additional lookup cost.
|
nuclear@2
|
45 *
|
nuclear@2
|
46 * If gamma correction has been applied in color conversion, it might be wise
|
nuclear@2
|
47 * to adjust the color grid spacing so that the representative colors are
|
nuclear@2
|
48 * equidistant in linear space. At this writing, gamma correction is not
|
nuclear@2
|
49 * implemented by jdcolor, so nothing is done here.
|
nuclear@2
|
50 */
|
nuclear@2
|
51
|
nuclear@2
|
52
|
nuclear@2
|
53 /* Declarations for ordered dithering.
|
nuclear@2
|
54 *
|
nuclear@2
|
55 * We use a standard 16x16 ordered dither array. The basic concept of ordered
|
nuclear@2
|
56 * dithering is described in many references, for instance Dale Schumacher's
|
nuclear@2
|
57 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
nuclear@2
|
58 * In place of Schumacher's comparisons against a "threshold" value, we add a
|
nuclear@2
|
59 * "dither" value to the input pixel and then round the result to the nearest
|
nuclear@2
|
60 * output value. The dither value is equivalent to (0.5 - threshold) times
|
nuclear@2
|
61 * the distance between output values. For ordered dithering, we assume that
|
nuclear@2
|
62 * the output colors are equally spaced; if not, results will probably be
|
nuclear@2
|
63 * worse, since the dither may be too much or too little at a given point.
|
nuclear@2
|
64 *
|
nuclear@2
|
65 * The normal calculation would be to form pixel value + dither, range-limit
|
nuclear@2
|
66 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
nuclear@2
|
67 * We can skip the separate range-limiting step by extending the colorindex
|
nuclear@2
|
68 * table in both directions.
|
nuclear@2
|
69 */
|
nuclear@2
|
70
|
nuclear@2
|
71 #define ODITHER_SIZE 16 /* dimension of dither matrix */
|
nuclear@2
|
72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
nuclear@2
|
73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
nuclear@2
|
74 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
nuclear@2
|
75
|
nuclear@2
|
76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
nuclear@2
|
77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
nuclear@2
|
78
|
nuclear@2
|
79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
nuclear@2
|
80 /* Bayer's order-4 dither array. Generated by the code given in
|
nuclear@2
|
81 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
nuclear@2
|
82 * The values in this array must range from 0 to ODITHER_CELLS-1.
|
nuclear@2
|
83 */
|
nuclear@2
|
84 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
nuclear@2
|
85 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
nuclear@2
|
86 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
nuclear@2
|
87 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
nuclear@2
|
88 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
nuclear@2
|
89 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
nuclear@2
|
90 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
nuclear@2
|
91 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
nuclear@2
|
92 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
nuclear@2
|
93 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
nuclear@2
|
94 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
nuclear@2
|
95 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
nuclear@2
|
96 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
nuclear@2
|
97 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
nuclear@2
|
98 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
nuclear@2
|
99 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
nuclear@2
|
100 };
|
nuclear@2
|
101
|
nuclear@2
|
102
|
nuclear@2
|
103 /* Declarations for Floyd-Steinberg dithering.
|
nuclear@2
|
104 *
|
nuclear@2
|
105 * Errors are accumulated into the array fserrors[], at a resolution of
|
nuclear@2
|
106 * 1/16th of a pixel count. The error at a given pixel is propagated
|
nuclear@2
|
107 * to its not-yet-processed neighbors using the standard F-S fractions,
|
nuclear@2
|
108 * ... (here) 7/16
|
nuclear@2
|
109 * 3/16 5/16 1/16
|
nuclear@2
|
110 * We work left-to-right on even rows, right-to-left on odd rows.
|
nuclear@2
|
111 *
|
nuclear@2
|
112 * We can get away with a single array (holding one row's worth of errors)
|
nuclear@2
|
113 * by using it to store the current row's errors at pixel columns not yet
|
nuclear@2
|
114 * processed, but the next row's errors at columns already processed. We
|
nuclear@2
|
115 * need only a few extra variables to hold the errors immediately around the
|
nuclear@2
|
116 * current column. (If we are lucky, those variables are in registers, but
|
nuclear@2
|
117 * even if not, they're probably cheaper to access than array elements are.)
|
nuclear@2
|
118 *
|
nuclear@2
|
119 * The fserrors[] array is indexed [component#][position].
|
nuclear@2
|
120 * We provide (#columns + 2) entries per component; the extra entry at each
|
nuclear@2
|
121 * end saves us from special-casing the first and last pixels.
|
nuclear@2
|
122 *
|
nuclear@2
|
123 * Note: on a wide image, we might not have enough room in a PC's near data
|
nuclear@2
|
124 * segment to hold the error array; so it is allocated with alloc_large.
|
nuclear@2
|
125 */
|
nuclear@2
|
126
|
nuclear@2
|
127 #if BITS_IN_JSAMPLE == 8
|
nuclear@2
|
128 typedef INT16 FSERROR; /* 16 bits should be enough */
|
nuclear@2
|
129 typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
nuclear@2
|
130 #else
|
nuclear@2
|
131 typedef INT32 FSERROR; /* may need more than 16 bits */
|
nuclear@2
|
132 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
nuclear@2
|
133 #endif
|
nuclear@2
|
134
|
nuclear@2
|
135 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
nuclear@2
|
136
|
nuclear@2
|
137
|
nuclear@2
|
138 /* Private subobject */
|
nuclear@2
|
139
|
nuclear@2
|
140 #define MAX_Q_COMPS 4 /* max components I can handle */
|
nuclear@2
|
141
|
nuclear@2
|
142 typedef struct {
|
nuclear@2
|
143 struct jpeg_color_quantizer pub; /* public fields */
|
nuclear@2
|
144
|
nuclear@2
|
145 /* Initially allocated colormap is saved here */
|
nuclear@2
|
146 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
nuclear@2
|
147 int sv_actual; /* number of entries in use */
|
nuclear@2
|
148
|
nuclear@2
|
149 JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
nuclear@2
|
150 /* colorindex[i][j] = index of color closest to pixel value j in component i,
|
nuclear@2
|
151 * premultiplied as described above. Since colormap indexes must fit into
|
nuclear@2
|
152 * JSAMPLEs, the entries of this array will too.
|
nuclear@2
|
153 */
|
nuclear@2
|
154 boolean is_padded; /* is the colorindex padded for odither? */
|
nuclear@2
|
155
|
nuclear@2
|
156 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
nuclear@2
|
157
|
nuclear@2
|
158 /* Variables for ordered dithering */
|
nuclear@2
|
159 int row_index; /* cur row's vertical index in dither matrix */
|
nuclear@2
|
160 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
nuclear@2
|
161
|
nuclear@2
|
162 /* Variables for Floyd-Steinberg dithering */
|
nuclear@2
|
163 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
nuclear@2
|
164 boolean on_odd_row; /* flag to remember which row we are on */
|
nuclear@2
|
165 } my_cquantizer;
|
nuclear@2
|
166
|
nuclear@2
|
167 typedef my_cquantizer * my_cquantize_ptr;
|
nuclear@2
|
168
|
nuclear@2
|
169
|
nuclear@2
|
170 /*
|
nuclear@2
|
171 * Policy-making subroutines for create_colormap and create_colorindex.
|
nuclear@2
|
172 * These routines determine the colormap to be used. The rest of the module
|
nuclear@2
|
173 * only assumes that the colormap is orthogonal.
|
nuclear@2
|
174 *
|
nuclear@2
|
175 * * select_ncolors decides how to divvy up the available colors
|
nuclear@2
|
176 * among the components.
|
nuclear@2
|
177 * * output_value defines the set of representative values for a component.
|
nuclear@2
|
178 * * largest_input_value defines the mapping from input values to
|
nuclear@2
|
179 * representative values for a component.
|
nuclear@2
|
180 * Note that the latter two routines may impose different policies for
|
nuclear@2
|
181 * different components, though this is not currently done.
|
nuclear@2
|
182 */
|
nuclear@2
|
183
|
nuclear@2
|
184
|
nuclear@2
|
185 LOCAL(int)
|
nuclear@2
|
186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
nuclear@2
|
187 /* Determine allocation of desired colors to components, */
|
nuclear@2
|
188 /* and fill in Ncolors[] array to indicate choice. */
|
nuclear@2
|
189 /* Return value is total number of colors (product of Ncolors[] values). */
|
nuclear@2
|
190 {
|
nuclear@2
|
191 int nc = cinfo->out_color_components; /* number of color components */
|
nuclear@2
|
192 int max_colors = cinfo->desired_number_of_colors;
|
nuclear@2
|
193 int total_colors, iroot, i, j;
|
nuclear@2
|
194 boolean changed;
|
nuclear@2
|
195 long temp;
|
nuclear@2
|
196 static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
nuclear@2
|
197
|
nuclear@2
|
198 /* We can allocate at least the nc'th root of max_colors per component. */
|
nuclear@2
|
199 /* Compute floor(nc'th root of max_colors). */
|
nuclear@2
|
200 iroot = 1;
|
nuclear@2
|
201 do {
|
nuclear@2
|
202 iroot++;
|
nuclear@2
|
203 temp = iroot; /* set temp = iroot ** nc */
|
nuclear@2
|
204 for (i = 1; i < nc; i++)
|
nuclear@2
|
205 temp *= iroot;
|
nuclear@2
|
206 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
nuclear@2
|
207 iroot--; /* now iroot = floor(root) */
|
nuclear@2
|
208
|
nuclear@2
|
209 /* Must have at least 2 color values per component */
|
nuclear@2
|
210 if (iroot < 2)
|
nuclear@2
|
211 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
nuclear@2
|
212
|
nuclear@2
|
213 /* Initialize to iroot color values for each component */
|
nuclear@2
|
214 total_colors = 1;
|
nuclear@2
|
215 for (i = 0; i < nc; i++) {
|
nuclear@2
|
216 Ncolors[i] = iroot;
|
nuclear@2
|
217 total_colors *= iroot;
|
nuclear@2
|
218 }
|
nuclear@2
|
219 /* We may be able to increment the count for one or more components without
|
nuclear@2
|
220 * exceeding max_colors, though we know not all can be incremented.
|
nuclear@2
|
221 * Sometimes, the first component can be incremented more than once!
|
nuclear@2
|
222 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
nuclear@2
|
223 * In RGB colorspace, try to increment G first, then R, then B.
|
nuclear@2
|
224 */
|
nuclear@2
|
225 do {
|
nuclear@2
|
226 changed = FALSE;
|
nuclear@2
|
227 for (i = 0; i < nc; i++) {
|
nuclear@2
|
228 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
nuclear@2
|
229 /* calculate new total_colors if Ncolors[j] is incremented */
|
nuclear@2
|
230 temp = total_colors / Ncolors[j];
|
nuclear@2
|
231 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
nuclear@2
|
232 if (temp > (long) max_colors)
|
nuclear@2
|
233 break; /* won't fit, done with this pass */
|
nuclear@2
|
234 Ncolors[j]++; /* OK, apply the increment */
|
nuclear@2
|
235 total_colors = (int) temp;
|
nuclear@2
|
236 changed = TRUE;
|
nuclear@2
|
237 }
|
nuclear@2
|
238 } while (changed);
|
nuclear@2
|
239
|
nuclear@2
|
240 return total_colors;
|
nuclear@2
|
241 }
|
nuclear@2
|
242
|
nuclear@2
|
243
|
nuclear@2
|
244 LOCAL(int)
|
nuclear@2
|
245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
nuclear@2
|
246 /* Return j'th output value, where j will range from 0 to maxj */
|
nuclear@2
|
247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
nuclear@2
|
248 {
|
nuclear@2
|
249 /* We always provide values 0 and MAXJSAMPLE for each component;
|
nuclear@2
|
250 * any additional values are equally spaced between these limits.
|
nuclear@2
|
251 * (Forcing the upper and lower values to the limits ensures that
|
nuclear@2
|
252 * dithering can't produce a color outside the selected gamut.)
|
nuclear@2
|
253 */
|
nuclear@2
|
254 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
nuclear@2
|
255 }
|
nuclear@2
|
256
|
nuclear@2
|
257
|
nuclear@2
|
258 LOCAL(int)
|
nuclear@2
|
259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
nuclear@2
|
260 /* Return largest input value that should map to j'th output value */
|
nuclear@2
|
261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
nuclear@2
|
262 {
|
nuclear@2
|
263 /* Breakpoints are halfway between values returned by output_value */
|
nuclear@2
|
264 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
nuclear@2
|
265 }
|
nuclear@2
|
266
|
nuclear@2
|
267
|
nuclear@2
|
268 /*
|
nuclear@2
|
269 * Create the colormap.
|
nuclear@2
|
270 */
|
nuclear@2
|
271
|
nuclear@2
|
272 LOCAL(void)
|
nuclear@2
|
273 create_colormap (j_decompress_ptr cinfo)
|
nuclear@2
|
274 {
|
nuclear@2
|
275 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
276 JSAMPARRAY colormap; /* Created colormap */
|
nuclear@2
|
277 int total_colors; /* Number of distinct output colors */
|
nuclear@2
|
278 int i,j,k, nci, blksize, blkdist, ptr, val;
|
nuclear@2
|
279
|
nuclear@2
|
280 /* Select number of colors for each component */
|
nuclear@2
|
281 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
nuclear@2
|
282
|
nuclear@2
|
283 /* Report selected color counts */
|
nuclear@2
|
284 if (cinfo->out_color_components == 3)
|
nuclear@2
|
285 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
nuclear@2
|
286 total_colors, cquantize->Ncolors[0],
|
nuclear@2
|
287 cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
nuclear@2
|
288 else
|
nuclear@2
|
289 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
nuclear@2
|
290
|
nuclear@2
|
291 /* Allocate and fill in the colormap. */
|
nuclear@2
|
292 /* The colors are ordered in the map in standard row-major order, */
|
nuclear@2
|
293 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
nuclear@2
|
294
|
nuclear@2
|
295 colormap = (*cinfo->mem->alloc_sarray)
|
nuclear@2
|
296 ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
297 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
nuclear@2
|
298
|
nuclear@2
|
299 /* blksize is number of adjacent repeated entries for a component */
|
nuclear@2
|
300 /* blkdist is distance between groups of identical entries for a component */
|
nuclear@2
|
301 blkdist = total_colors;
|
nuclear@2
|
302
|
nuclear@2
|
303 for (i = 0; i < cinfo->out_color_components; i++) {
|
nuclear@2
|
304 /* fill in colormap entries for i'th color component */
|
nuclear@2
|
305 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
nuclear@2
|
306 blksize = blkdist / nci;
|
nuclear@2
|
307 for (j = 0; j < nci; j++) {
|
nuclear@2
|
308 /* Compute j'th output value (out of nci) for component */
|
nuclear@2
|
309 val = output_value(cinfo, i, j, nci-1);
|
nuclear@2
|
310 /* Fill in all colormap entries that have this value of this component */
|
nuclear@2
|
311 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
nuclear@2
|
312 /* fill in blksize entries beginning at ptr */
|
nuclear@2
|
313 for (k = 0; k < blksize; k++)
|
nuclear@2
|
314 colormap[i][ptr+k] = (JSAMPLE) val;
|
nuclear@2
|
315 }
|
nuclear@2
|
316 }
|
nuclear@2
|
317 blkdist = blksize; /* blksize of this color is blkdist of next */
|
nuclear@2
|
318 }
|
nuclear@2
|
319
|
nuclear@2
|
320 /* Save the colormap in private storage,
|
nuclear@2
|
321 * where it will survive color quantization mode changes.
|
nuclear@2
|
322 */
|
nuclear@2
|
323 cquantize->sv_colormap = colormap;
|
nuclear@2
|
324 cquantize->sv_actual = total_colors;
|
nuclear@2
|
325 }
|
nuclear@2
|
326
|
nuclear@2
|
327
|
nuclear@2
|
328 /*
|
nuclear@2
|
329 * Create the color index table.
|
nuclear@2
|
330 */
|
nuclear@2
|
331
|
nuclear@2
|
332 LOCAL(void)
|
nuclear@2
|
333 create_colorindex (j_decompress_ptr cinfo)
|
nuclear@2
|
334 {
|
nuclear@2
|
335 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
336 JSAMPROW indexptr;
|
nuclear@2
|
337 int i,j,k, nci, blksize, val, pad;
|
nuclear@2
|
338
|
nuclear@2
|
339 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
nuclear@2
|
340 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
nuclear@2
|
341 * This is not necessary in the other dithering modes. However, we
|
nuclear@2
|
342 * flag whether it was done in case user changes dithering mode.
|
nuclear@2
|
343 */
|
nuclear@2
|
344 if (cinfo->dither_mode == JDITHER_ORDERED) {
|
nuclear@2
|
345 pad = MAXJSAMPLE*2;
|
nuclear@2
|
346 cquantize->is_padded = TRUE;
|
nuclear@2
|
347 } else {
|
nuclear@2
|
348 pad = 0;
|
nuclear@2
|
349 cquantize->is_padded = FALSE;
|
nuclear@2
|
350 }
|
nuclear@2
|
351
|
nuclear@2
|
352 cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
nuclear@2
|
353 ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
354 (JDIMENSION) (MAXJSAMPLE+1 + pad),
|
nuclear@2
|
355 (JDIMENSION) cinfo->out_color_components);
|
nuclear@2
|
356
|
nuclear@2
|
357 /* blksize is number of adjacent repeated entries for a component */
|
nuclear@2
|
358 blksize = cquantize->sv_actual;
|
nuclear@2
|
359
|
nuclear@2
|
360 for (i = 0; i < cinfo->out_color_components; i++) {
|
nuclear@2
|
361 /* fill in colorindex entries for i'th color component */
|
nuclear@2
|
362 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
nuclear@2
|
363 blksize = blksize / nci;
|
nuclear@2
|
364
|
nuclear@2
|
365 /* adjust colorindex pointers to provide padding at negative indexes. */
|
nuclear@2
|
366 if (pad)
|
nuclear@2
|
367 cquantize->colorindex[i] += MAXJSAMPLE;
|
nuclear@2
|
368
|
nuclear@2
|
369 /* in loop, val = index of current output value, */
|
nuclear@2
|
370 /* and k = largest j that maps to current val */
|
nuclear@2
|
371 indexptr = cquantize->colorindex[i];
|
nuclear@2
|
372 val = 0;
|
nuclear@2
|
373 k = largest_input_value(cinfo, i, 0, nci-1);
|
nuclear@2
|
374 for (j = 0; j <= MAXJSAMPLE; j++) {
|
nuclear@2
|
375 while (j > k) /* advance val if past boundary */
|
nuclear@2
|
376 k = largest_input_value(cinfo, i, ++val, nci-1);
|
nuclear@2
|
377 /* premultiply so that no multiplication needed in main processing */
|
nuclear@2
|
378 indexptr[j] = (JSAMPLE) (val * blksize);
|
nuclear@2
|
379 }
|
nuclear@2
|
380 /* Pad at both ends if necessary */
|
nuclear@2
|
381 if (pad)
|
nuclear@2
|
382 for (j = 1; j <= MAXJSAMPLE; j++) {
|
nuclear@2
|
383 indexptr[-j] = indexptr[0];
|
nuclear@2
|
384 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
nuclear@2
|
385 }
|
nuclear@2
|
386 }
|
nuclear@2
|
387 }
|
nuclear@2
|
388
|
nuclear@2
|
389
|
nuclear@2
|
390 /*
|
nuclear@2
|
391 * Create an ordered-dither array for a component having ncolors
|
nuclear@2
|
392 * distinct output values.
|
nuclear@2
|
393 */
|
nuclear@2
|
394
|
nuclear@2
|
395 LOCAL(ODITHER_MATRIX_PTR)
|
nuclear@2
|
396 make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
nuclear@2
|
397 {
|
nuclear@2
|
398 ODITHER_MATRIX_PTR odither;
|
nuclear@2
|
399 int j,k;
|
nuclear@2
|
400 INT32 num,den;
|
nuclear@2
|
401
|
nuclear@2
|
402 odither = (ODITHER_MATRIX_PTR)
|
nuclear@2
|
403 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
404 SIZEOF(ODITHER_MATRIX));
|
nuclear@2
|
405 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
nuclear@2
|
406 * Hence the dither value for the matrix cell with fill order f
|
nuclear@2
|
407 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
nuclear@2
|
408 * On 16-bit-int machine, be careful to avoid overflow.
|
nuclear@2
|
409 */
|
nuclear@2
|
410 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
nuclear@2
|
411 for (j = 0; j < ODITHER_SIZE; j++) {
|
nuclear@2
|
412 for (k = 0; k < ODITHER_SIZE; k++) {
|
nuclear@2
|
413 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
nuclear@2
|
414 * MAXJSAMPLE;
|
nuclear@2
|
415 /* Ensure round towards zero despite C's lack of consistency
|
nuclear@2
|
416 * about rounding negative values in integer division...
|
nuclear@2
|
417 */
|
nuclear@2
|
418 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
nuclear@2
|
419 }
|
nuclear@2
|
420 }
|
nuclear@2
|
421 return odither;
|
nuclear@2
|
422 }
|
nuclear@2
|
423
|
nuclear@2
|
424
|
nuclear@2
|
425 /*
|
nuclear@2
|
426 * Create the ordered-dither tables.
|
nuclear@2
|
427 * Components having the same number of representative colors may
|
nuclear@2
|
428 * share a dither table.
|
nuclear@2
|
429 */
|
nuclear@2
|
430
|
nuclear@2
|
431 LOCAL(void)
|
nuclear@2
|
432 create_odither_tables (j_decompress_ptr cinfo)
|
nuclear@2
|
433 {
|
nuclear@2
|
434 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
435 ODITHER_MATRIX_PTR odither;
|
nuclear@2
|
436 int i, j, nci;
|
nuclear@2
|
437
|
nuclear@2
|
438 for (i = 0; i < cinfo->out_color_components; i++) {
|
nuclear@2
|
439 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
nuclear@2
|
440 odither = NULL; /* search for matching prior component */
|
nuclear@2
|
441 for (j = 0; j < i; j++) {
|
nuclear@2
|
442 if (nci == cquantize->Ncolors[j]) {
|
nuclear@2
|
443 odither = cquantize->odither[j];
|
nuclear@2
|
444 break;
|
nuclear@2
|
445 }
|
nuclear@2
|
446 }
|
nuclear@2
|
447 if (odither == NULL) /* need a new table? */
|
nuclear@2
|
448 odither = make_odither_array(cinfo, nci);
|
nuclear@2
|
449 cquantize->odither[i] = odither;
|
nuclear@2
|
450 }
|
nuclear@2
|
451 }
|
nuclear@2
|
452
|
nuclear@2
|
453
|
nuclear@2
|
454 /*
|
nuclear@2
|
455 * Map some rows of pixels to the output colormapped representation.
|
nuclear@2
|
456 */
|
nuclear@2
|
457
|
nuclear@2
|
458 METHODDEF(void)
|
nuclear@2
|
459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
nuclear@2
|
460 JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
461 /* General case, no dithering */
|
nuclear@2
|
462 {
|
nuclear@2
|
463 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
464 JSAMPARRAY colorindex = cquantize->colorindex;
|
nuclear@2
|
465 register int pixcode, ci;
|
nuclear@2
|
466 register JSAMPROW ptrin, ptrout;
|
nuclear@2
|
467 int row;
|
nuclear@2
|
468 JDIMENSION col;
|
nuclear@2
|
469 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
470 register int nc = cinfo->out_color_components;
|
nuclear@2
|
471
|
nuclear@2
|
472 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
473 ptrin = input_buf[row];
|
nuclear@2
|
474 ptrout = output_buf[row];
|
nuclear@2
|
475 for (col = width; col > 0; col--) {
|
nuclear@2
|
476 pixcode = 0;
|
nuclear@2
|
477 for (ci = 0; ci < nc; ci++) {
|
nuclear@2
|
478 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
nuclear@2
|
479 }
|
nuclear@2
|
480 *ptrout++ = (JSAMPLE) pixcode;
|
nuclear@2
|
481 }
|
nuclear@2
|
482 }
|
nuclear@2
|
483 }
|
nuclear@2
|
484
|
nuclear@2
|
485
|
nuclear@2
|
486 METHODDEF(void)
|
nuclear@2
|
487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
nuclear@2
|
488 JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
489 /* Fast path for out_color_components==3, no dithering */
|
nuclear@2
|
490 {
|
nuclear@2
|
491 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
492 register int pixcode;
|
nuclear@2
|
493 register JSAMPROW ptrin, ptrout;
|
nuclear@2
|
494 JSAMPROW colorindex0 = cquantize->colorindex[0];
|
nuclear@2
|
495 JSAMPROW colorindex1 = cquantize->colorindex[1];
|
nuclear@2
|
496 JSAMPROW colorindex2 = cquantize->colorindex[2];
|
nuclear@2
|
497 int row;
|
nuclear@2
|
498 JDIMENSION col;
|
nuclear@2
|
499 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
500
|
nuclear@2
|
501 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
502 ptrin = input_buf[row];
|
nuclear@2
|
503 ptrout = output_buf[row];
|
nuclear@2
|
504 for (col = width; col > 0; col--) {
|
nuclear@2
|
505 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
nuclear@2
|
506 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
nuclear@2
|
507 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
nuclear@2
|
508 *ptrout++ = (JSAMPLE) pixcode;
|
nuclear@2
|
509 }
|
nuclear@2
|
510 }
|
nuclear@2
|
511 }
|
nuclear@2
|
512
|
nuclear@2
|
513
|
nuclear@2
|
514 METHODDEF(void)
|
nuclear@2
|
515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
nuclear@2
|
516 JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
517 /* General case, with ordered dithering */
|
nuclear@2
|
518 {
|
nuclear@2
|
519 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
520 register JSAMPROW input_ptr;
|
nuclear@2
|
521 register JSAMPROW output_ptr;
|
nuclear@2
|
522 JSAMPROW colorindex_ci;
|
nuclear@2
|
523 int * dither; /* points to active row of dither matrix */
|
nuclear@2
|
524 int row_index, col_index; /* current indexes into dither matrix */
|
nuclear@2
|
525 int nc = cinfo->out_color_components;
|
nuclear@2
|
526 int ci;
|
nuclear@2
|
527 int row;
|
nuclear@2
|
528 JDIMENSION col;
|
nuclear@2
|
529 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
530
|
nuclear@2
|
531 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
532 /* Initialize output values to 0 so can process components separately */
|
nuclear@2
|
533 jzero_far((void FAR *) output_buf[row],
|
nuclear@2
|
534 (size_t) (width * SIZEOF(JSAMPLE)));
|
nuclear@2
|
535 row_index = cquantize->row_index;
|
nuclear@2
|
536 for (ci = 0; ci < nc; ci++) {
|
nuclear@2
|
537 input_ptr = input_buf[row] + ci;
|
nuclear@2
|
538 output_ptr = output_buf[row];
|
nuclear@2
|
539 colorindex_ci = cquantize->colorindex[ci];
|
nuclear@2
|
540 dither = cquantize->odither[ci][row_index];
|
nuclear@2
|
541 col_index = 0;
|
nuclear@2
|
542
|
nuclear@2
|
543 for (col = width; col > 0; col--) {
|
nuclear@2
|
544 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
nuclear@2
|
545 * select output value, accumulate into output code for this pixel.
|
nuclear@2
|
546 * Range-limiting need not be done explicitly, as we have extended
|
nuclear@2
|
547 * the colorindex table to produce the right answers for out-of-range
|
nuclear@2
|
548 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
nuclear@2
|
549 * required amount of padding.
|
nuclear@2
|
550 */
|
nuclear@2
|
551 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
nuclear@2
|
552 input_ptr += nc;
|
nuclear@2
|
553 output_ptr++;
|
nuclear@2
|
554 col_index = (col_index + 1) & ODITHER_MASK;
|
nuclear@2
|
555 }
|
nuclear@2
|
556 }
|
nuclear@2
|
557 /* Advance row index for next row */
|
nuclear@2
|
558 row_index = (row_index + 1) & ODITHER_MASK;
|
nuclear@2
|
559 cquantize->row_index = row_index;
|
nuclear@2
|
560 }
|
nuclear@2
|
561 }
|
nuclear@2
|
562
|
nuclear@2
|
563
|
nuclear@2
|
564 METHODDEF(void)
|
nuclear@2
|
565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
nuclear@2
|
566 JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
567 /* Fast path for out_color_components==3, with ordered dithering */
|
nuclear@2
|
568 {
|
nuclear@2
|
569 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
570 register int pixcode;
|
nuclear@2
|
571 register JSAMPROW input_ptr;
|
nuclear@2
|
572 register JSAMPROW output_ptr;
|
nuclear@2
|
573 JSAMPROW colorindex0 = cquantize->colorindex[0];
|
nuclear@2
|
574 JSAMPROW colorindex1 = cquantize->colorindex[1];
|
nuclear@2
|
575 JSAMPROW colorindex2 = cquantize->colorindex[2];
|
nuclear@2
|
576 int * dither0; /* points to active row of dither matrix */
|
nuclear@2
|
577 int * dither1;
|
nuclear@2
|
578 int * dither2;
|
nuclear@2
|
579 int row_index, col_index; /* current indexes into dither matrix */
|
nuclear@2
|
580 int row;
|
nuclear@2
|
581 JDIMENSION col;
|
nuclear@2
|
582 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
583
|
nuclear@2
|
584 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
585 row_index = cquantize->row_index;
|
nuclear@2
|
586 input_ptr = input_buf[row];
|
nuclear@2
|
587 output_ptr = output_buf[row];
|
nuclear@2
|
588 dither0 = cquantize->odither[0][row_index];
|
nuclear@2
|
589 dither1 = cquantize->odither[1][row_index];
|
nuclear@2
|
590 dither2 = cquantize->odither[2][row_index];
|
nuclear@2
|
591 col_index = 0;
|
nuclear@2
|
592
|
nuclear@2
|
593 for (col = width; col > 0; col--) {
|
nuclear@2
|
594 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
nuclear@2
|
595 dither0[col_index]]);
|
nuclear@2
|
596 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
nuclear@2
|
597 dither1[col_index]]);
|
nuclear@2
|
598 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
nuclear@2
|
599 dither2[col_index]]);
|
nuclear@2
|
600 *output_ptr++ = (JSAMPLE) pixcode;
|
nuclear@2
|
601 col_index = (col_index + 1) & ODITHER_MASK;
|
nuclear@2
|
602 }
|
nuclear@2
|
603 row_index = (row_index + 1) & ODITHER_MASK;
|
nuclear@2
|
604 cquantize->row_index = row_index;
|
nuclear@2
|
605 }
|
nuclear@2
|
606 }
|
nuclear@2
|
607
|
nuclear@2
|
608
|
nuclear@2
|
609 METHODDEF(void)
|
nuclear@2
|
610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
nuclear@2
|
611 JSAMPARRAY output_buf, int num_rows)
|
nuclear@2
|
612 /* General case, with Floyd-Steinberg dithering */
|
nuclear@2
|
613 {
|
nuclear@2
|
614 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
615 register LOCFSERROR cur; /* current error or pixel value */
|
nuclear@2
|
616 LOCFSERROR belowerr; /* error for pixel below cur */
|
nuclear@2
|
617 LOCFSERROR bpreverr; /* error for below/prev col */
|
nuclear@2
|
618 LOCFSERROR bnexterr; /* error for below/next col */
|
nuclear@2
|
619 LOCFSERROR delta;
|
nuclear@2
|
620 register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
nuclear@2
|
621 register JSAMPROW input_ptr;
|
nuclear@2
|
622 register JSAMPROW output_ptr;
|
nuclear@2
|
623 JSAMPROW colorindex_ci;
|
nuclear@2
|
624 JSAMPROW colormap_ci;
|
nuclear@2
|
625 int pixcode;
|
nuclear@2
|
626 int nc = cinfo->out_color_components;
|
nuclear@2
|
627 int dir; /* 1 for left-to-right, -1 for right-to-left */
|
nuclear@2
|
628 int dirnc; /* dir * nc */
|
nuclear@2
|
629 int ci;
|
nuclear@2
|
630 int row;
|
nuclear@2
|
631 JDIMENSION col;
|
nuclear@2
|
632 JDIMENSION width = cinfo->output_width;
|
nuclear@2
|
633 JSAMPLE *range_limit = cinfo->sample_range_limit;
|
nuclear@2
|
634 SHIFT_TEMPS
|
nuclear@2
|
635
|
nuclear@2
|
636 for (row = 0; row < num_rows; row++) {
|
nuclear@2
|
637 /* Initialize output values to 0 so can process components separately */
|
nuclear@2
|
638 jzero_far((void FAR *) output_buf[row],
|
nuclear@2
|
639 (size_t) (width * SIZEOF(JSAMPLE)));
|
nuclear@2
|
640 for (ci = 0; ci < nc; ci++) {
|
nuclear@2
|
641 input_ptr = input_buf[row] + ci;
|
nuclear@2
|
642 output_ptr = output_buf[row];
|
nuclear@2
|
643 if (cquantize->on_odd_row) {
|
nuclear@2
|
644 /* work right to left in this row */
|
nuclear@2
|
645 input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
nuclear@2
|
646 output_ptr += width-1;
|
nuclear@2
|
647 dir = -1;
|
nuclear@2
|
648 dirnc = -nc;
|
nuclear@2
|
649 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
nuclear@2
|
650 } else {
|
nuclear@2
|
651 /* work left to right in this row */
|
nuclear@2
|
652 dir = 1;
|
nuclear@2
|
653 dirnc = nc;
|
nuclear@2
|
654 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
nuclear@2
|
655 }
|
nuclear@2
|
656 colorindex_ci = cquantize->colorindex[ci];
|
nuclear@2
|
657 colormap_ci = cquantize->sv_colormap[ci];
|
nuclear@2
|
658 /* Preset error values: no error propagated to first pixel from left */
|
nuclear@2
|
659 cur = 0;
|
nuclear@2
|
660 /* and no error propagated to row below yet */
|
nuclear@2
|
661 belowerr = bpreverr = 0;
|
nuclear@2
|
662
|
nuclear@2
|
663 for (col = width; col > 0; col--) {
|
nuclear@2
|
664 /* cur holds the error propagated from the previous pixel on the
|
nuclear@2
|
665 * current line. Add the error propagated from the previous line
|
nuclear@2
|
666 * to form the complete error correction term for this pixel, and
|
nuclear@2
|
667 * round the error term (which is expressed * 16) to an integer.
|
nuclear@2
|
668 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
nuclear@2
|
669 * for either sign of the error value.
|
nuclear@2
|
670 * Note: errorptr points to *previous* column's array entry.
|
nuclear@2
|
671 */
|
nuclear@2
|
672 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
nuclear@2
|
673 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
nuclear@2
|
674 * The maximum error is +- MAXJSAMPLE; this sets the required size
|
nuclear@2
|
675 * of the range_limit array.
|
nuclear@2
|
676 */
|
nuclear@2
|
677 cur += GETJSAMPLE(*input_ptr);
|
nuclear@2
|
678 cur = GETJSAMPLE(range_limit[cur]);
|
nuclear@2
|
679 /* Select output value, accumulate into output code for this pixel */
|
nuclear@2
|
680 pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
nuclear@2
|
681 *output_ptr += (JSAMPLE) pixcode;
|
nuclear@2
|
682 /* Compute actual representation error at this pixel */
|
nuclear@2
|
683 /* Note: we can do this even though we don't have the final */
|
nuclear@2
|
684 /* pixel code, because the colormap is orthogonal. */
|
nuclear@2
|
685 cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
nuclear@2
|
686 /* Compute error fractions to be propagated to adjacent pixels.
|
nuclear@2
|
687 * Add these into the running sums, and simultaneously shift the
|
nuclear@2
|
688 * next-line error sums left by 1 column.
|
nuclear@2
|
689 */
|
nuclear@2
|
690 bnexterr = cur;
|
nuclear@2
|
691 delta = cur * 2;
|
nuclear@2
|
692 cur += delta; /* form error * 3 */
|
nuclear@2
|
693 errorptr[0] = (FSERROR) (bpreverr + cur);
|
nuclear@2
|
694 cur += delta; /* form error * 5 */
|
nuclear@2
|
695 bpreverr = belowerr + cur;
|
nuclear@2
|
696 belowerr = bnexterr;
|
nuclear@2
|
697 cur += delta; /* form error * 7 */
|
nuclear@2
|
698 /* At this point cur contains the 7/16 error value to be propagated
|
nuclear@2
|
699 * to the next pixel on the current line, and all the errors for the
|
nuclear@2
|
700 * next line have been shifted over. We are therefore ready to move on.
|
nuclear@2
|
701 */
|
nuclear@2
|
702 input_ptr += dirnc; /* advance input ptr to next column */
|
nuclear@2
|
703 output_ptr += dir; /* advance output ptr to next column */
|
nuclear@2
|
704 errorptr += dir; /* advance errorptr to current column */
|
nuclear@2
|
705 }
|
nuclear@2
|
706 /* Post-loop cleanup: we must unload the final error value into the
|
nuclear@2
|
707 * final fserrors[] entry. Note we need not unload belowerr because
|
nuclear@2
|
708 * it is for the dummy column before or after the actual array.
|
nuclear@2
|
709 */
|
nuclear@2
|
710 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
nuclear@2
|
711 }
|
nuclear@2
|
712 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
nuclear@2
|
713 }
|
nuclear@2
|
714 }
|
nuclear@2
|
715
|
nuclear@2
|
716
|
nuclear@2
|
717 /*
|
nuclear@2
|
718 * Allocate workspace for Floyd-Steinberg errors.
|
nuclear@2
|
719 */
|
nuclear@2
|
720
|
nuclear@2
|
721 LOCAL(void)
|
nuclear@2
|
722 alloc_fs_workspace (j_decompress_ptr cinfo)
|
nuclear@2
|
723 {
|
nuclear@2
|
724 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
725 size_t arraysize;
|
nuclear@2
|
726 int i;
|
nuclear@2
|
727
|
nuclear@2
|
728 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
nuclear@2
|
729 for (i = 0; i < cinfo->out_color_components; i++) {
|
nuclear@2
|
730 cquantize->fserrors[i] = (FSERRPTR)
|
nuclear@2
|
731 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
nuclear@2
|
732 }
|
nuclear@2
|
733 }
|
nuclear@2
|
734
|
nuclear@2
|
735
|
nuclear@2
|
736 /*
|
nuclear@2
|
737 * Initialize for one-pass color quantization.
|
nuclear@2
|
738 */
|
nuclear@2
|
739
|
nuclear@2
|
740 METHODDEF(void)
|
nuclear@2
|
741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
nuclear@2
|
742 {
|
nuclear@2
|
743 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
nuclear@2
|
744 size_t arraysize;
|
nuclear@2
|
745 int i;
|
nuclear@2
|
746
|
nuclear@2
|
747 /* Install my colormap. */
|
nuclear@2
|
748 cinfo->colormap = cquantize->sv_colormap;
|
nuclear@2
|
749 cinfo->actual_number_of_colors = cquantize->sv_actual;
|
nuclear@2
|
750
|
nuclear@2
|
751 /* Initialize for desired dithering mode. */
|
nuclear@2
|
752 switch (cinfo->dither_mode) {
|
nuclear@2
|
753 case JDITHER_NONE:
|
nuclear@2
|
754 if (cinfo->out_color_components == 3)
|
nuclear@2
|
755 cquantize->pub.color_quantize = color_quantize3;
|
nuclear@2
|
756 else
|
nuclear@2
|
757 cquantize->pub.color_quantize = color_quantize;
|
nuclear@2
|
758 break;
|
nuclear@2
|
759 case JDITHER_ORDERED:
|
nuclear@2
|
760 if (cinfo->out_color_components == 3)
|
nuclear@2
|
761 cquantize->pub.color_quantize = quantize3_ord_dither;
|
nuclear@2
|
762 else
|
nuclear@2
|
763 cquantize->pub.color_quantize = quantize_ord_dither;
|
nuclear@2
|
764 cquantize->row_index = 0; /* initialize state for ordered dither */
|
nuclear@2
|
765 /* If user changed to ordered dither from another mode,
|
nuclear@2
|
766 * we must recreate the color index table with padding.
|
nuclear@2
|
767 * This will cost extra space, but probably isn't very likely.
|
nuclear@2
|
768 */
|
nuclear@2
|
769 if (! cquantize->is_padded)
|
nuclear@2
|
770 create_colorindex(cinfo);
|
nuclear@2
|
771 /* Create ordered-dither tables if we didn't already. */
|
nuclear@2
|
772 if (cquantize->odither[0] == NULL)
|
nuclear@2
|
773 create_odither_tables(cinfo);
|
nuclear@2
|
774 break;
|
nuclear@2
|
775 case JDITHER_FS:
|
nuclear@2
|
776 cquantize->pub.color_quantize = quantize_fs_dither;
|
nuclear@2
|
777 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
nuclear@2
|
778 /* Allocate Floyd-Steinberg workspace if didn't already. */
|
nuclear@2
|
779 if (cquantize->fserrors[0] == NULL)
|
nuclear@2
|
780 alloc_fs_workspace(cinfo);
|
nuclear@2
|
781 /* Initialize the propagated errors to zero. */
|
nuclear@2
|
782 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
nuclear@2
|
783 for (i = 0; i < cinfo->out_color_components; i++)
|
nuclear@2
|
784 jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
|
nuclear@2
|
785 break;
|
nuclear@2
|
786 default:
|
nuclear@2
|
787 ERREXIT(cinfo, JERR_NOT_COMPILED);
|
nuclear@2
|
788 break;
|
nuclear@2
|
789 }
|
nuclear@2
|
790 }
|
nuclear@2
|
791
|
nuclear@2
|
792
|
nuclear@2
|
793 /*
|
nuclear@2
|
794 * Finish up at the end of the pass.
|
nuclear@2
|
795 */
|
nuclear@2
|
796
|
nuclear@2
|
797 METHODDEF(void)
|
nuclear@2
|
798 finish_pass_1_quant (j_decompress_ptr cinfo)
|
nuclear@2
|
799 {
|
nuclear@2
|
800 /* no work in 1-pass case */
|
nuclear@2
|
801 }
|
nuclear@2
|
802
|
nuclear@2
|
803
|
nuclear@2
|
804 /*
|
nuclear@2
|
805 * Switch to a new external colormap between output passes.
|
nuclear@2
|
806 * Shouldn't get to this module!
|
nuclear@2
|
807 */
|
nuclear@2
|
808
|
nuclear@2
|
809 METHODDEF(void)
|
nuclear@2
|
810 new_color_map_1_quant (j_decompress_ptr cinfo)
|
nuclear@2
|
811 {
|
nuclear@2
|
812 ERREXIT(cinfo, JERR_MODE_CHANGE);
|
nuclear@2
|
813 }
|
nuclear@2
|
814
|
nuclear@2
|
815
|
nuclear@2
|
816 /*
|
nuclear@2
|
817 * Module initialization routine for 1-pass color quantization.
|
nuclear@2
|
818 */
|
nuclear@2
|
819
|
nuclear@2
|
820 GLOBAL(void)
|
nuclear@2
|
821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
nuclear@2
|
822 {
|
nuclear@2
|
823 my_cquantize_ptr cquantize;
|
nuclear@2
|
824
|
nuclear@2
|
825 cquantize = (my_cquantize_ptr)
|
nuclear@2
|
826 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@2
|
827 SIZEOF(my_cquantizer));
|
nuclear@2
|
828 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
nuclear@2
|
829 cquantize->pub.start_pass = start_pass_1_quant;
|
nuclear@2
|
830 cquantize->pub.finish_pass = finish_pass_1_quant;
|
nuclear@2
|
831 cquantize->pub.new_color_map = new_color_map_1_quant;
|
nuclear@2
|
832 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
nuclear@2
|
833 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
nuclear@2
|
834
|
nuclear@2
|
835 /* Make sure my internal arrays won't overflow */
|
nuclear@2
|
836 if (cinfo->out_color_components > MAX_Q_COMPS)
|
nuclear@2
|
837 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
nuclear@2
|
838 /* Make sure colormap indexes can be represented by JSAMPLEs */
|
nuclear@2
|
839 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
nuclear@2
|
840 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
nuclear@2
|
841
|
nuclear@2
|
842 /* Create the colormap and color index table. */
|
nuclear@2
|
843 create_colormap(cinfo);
|
nuclear@2
|
844 create_colorindex(cinfo);
|
nuclear@2
|
845
|
nuclear@2
|
846 /* Allocate Floyd-Steinberg workspace now if requested.
|
nuclear@2
|
847 * We do this now since it is FAR storage and may affect the memory
|
nuclear@2
|
848 * manager's space calculations. If the user changes to FS dither
|
nuclear@2
|
849 * mode in a later pass, we will allocate the space then, and will
|
nuclear@2
|
850 * possibly overrun the max_memory_to_use setting.
|
nuclear@2
|
851 */
|
nuclear@2
|
852 if (cinfo->dither_mode == JDITHER_FS)
|
nuclear@2
|
853 alloc_fs_workspace(cinfo);
|
nuclear@2
|
854 }
|
nuclear@2
|
855
|
nuclear@2
|
856 #endif /* QUANT_1PASS_SUPPORTED */
|