rev |
line source |
nuclear@2
|
1 /*
|
nuclear@2
|
2 * jidctred.c
|
nuclear@2
|
3 *
|
nuclear@2
|
4 * Copyright (C) 1994-1998, Thomas G. Lane.
|
nuclear@2
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@2
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@2
|
7 *
|
nuclear@2
|
8 * This file contains inverse-DCT routines that produce reduced-size output:
|
nuclear@2
|
9 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
|
nuclear@2
|
10 *
|
nuclear@2
|
11 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
|
nuclear@2
|
12 * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
|
nuclear@2
|
13 * with an 8-to-4 step that produces the four averages of two adjacent outputs
|
nuclear@2
|
14 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
|
nuclear@2
|
15 * These steps were derived by computing the corresponding values at the end
|
nuclear@2
|
16 * of the normal LL&M code, then simplifying as much as possible.
|
nuclear@2
|
17 *
|
nuclear@2
|
18 * 1x1 is trivial: just take the DC coefficient divided by 8.
|
nuclear@2
|
19 *
|
nuclear@2
|
20 * See jidctint.c for additional comments.
|
nuclear@2
|
21 */
|
nuclear@2
|
22
|
nuclear@2
|
23 #define JPEG_INTERNALS
|
nuclear@2
|
24 #include "jinclude.h"
|
nuclear@2
|
25 #include "jpeglib.h"
|
nuclear@2
|
26 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@2
|
27
|
nuclear@2
|
28 #ifdef IDCT_SCALING_SUPPORTED
|
nuclear@2
|
29
|
nuclear@2
|
30
|
nuclear@2
|
31 /*
|
nuclear@2
|
32 * This module is specialized to the case DCTSIZE = 8.
|
nuclear@2
|
33 */
|
nuclear@2
|
34
|
nuclear@2
|
35 #if DCTSIZE != 8
|
nuclear@2
|
36 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
nuclear@2
|
37 #endif
|
nuclear@2
|
38
|
nuclear@2
|
39
|
nuclear@2
|
40 /* Scaling is the same as in jidctint.c. */
|
nuclear@2
|
41
|
nuclear@2
|
42 #if BITS_IN_JSAMPLE == 8
|
nuclear@2
|
43 #define CONST_BITS 13
|
nuclear@2
|
44 #define PASS1_BITS 2
|
nuclear@2
|
45 #else
|
nuclear@2
|
46 #define CONST_BITS 13
|
nuclear@2
|
47 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
nuclear@2
|
48 #endif
|
nuclear@2
|
49
|
nuclear@2
|
50 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
nuclear@2
|
51 * causing a lot of useless floating-point operations at run time.
|
nuclear@2
|
52 * To get around this we use the following pre-calculated constants.
|
nuclear@2
|
53 * If you change CONST_BITS you may want to add appropriate values.
|
nuclear@2
|
54 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
nuclear@2
|
55 */
|
nuclear@2
|
56
|
nuclear@2
|
57 #if CONST_BITS == 13
|
nuclear@2
|
58 #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
|
nuclear@2
|
59 #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
|
nuclear@2
|
60 #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
|
nuclear@2
|
61 #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
|
nuclear@2
|
62 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
nuclear@2
|
63 #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
|
nuclear@2
|
64 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
nuclear@2
|
65 #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
|
nuclear@2
|
66 #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
|
nuclear@2
|
67 #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
|
nuclear@2
|
68 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
nuclear@2
|
69 #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
|
nuclear@2
|
70 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
nuclear@2
|
71 #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
|
nuclear@2
|
72 #else
|
nuclear@2
|
73 #define FIX_0_211164243 FIX(0.211164243)
|
nuclear@2
|
74 #define FIX_0_509795579 FIX(0.509795579)
|
nuclear@2
|
75 #define FIX_0_601344887 FIX(0.601344887)
|
nuclear@2
|
76 #define FIX_0_720959822 FIX(0.720959822)
|
nuclear@2
|
77 #define FIX_0_765366865 FIX(0.765366865)
|
nuclear@2
|
78 #define FIX_0_850430095 FIX(0.850430095)
|
nuclear@2
|
79 #define FIX_0_899976223 FIX(0.899976223)
|
nuclear@2
|
80 #define FIX_1_061594337 FIX(1.061594337)
|
nuclear@2
|
81 #define FIX_1_272758580 FIX(1.272758580)
|
nuclear@2
|
82 #define FIX_1_451774981 FIX(1.451774981)
|
nuclear@2
|
83 #define FIX_1_847759065 FIX(1.847759065)
|
nuclear@2
|
84 #define FIX_2_172734803 FIX(2.172734803)
|
nuclear@2
|
85 #define FIX_2_562915447 FIX(2.562915447)
|
nuclear@2
|
86 #define FIX_3_624509785 FIX(3.624509785)
|
nuclear@2
|
87 #endif
|
nuclear@2
|
88
|
nuclear@2
|
89
|
nuclear@2
|
90 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
nuclear@2
|
91 * For 8-bit samples with the recommended scaling, all the variable
|
nuclear@2
|
92 * and constant values involved are no more than 16 bits wide, so a
|
nuclear@2
|
93 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
nuclear@2
|
94 * For 12-bit samples, a full 32-bit multiplication will be needed.
|
nuclear@2
|
95 */
|
nuclear@2
|
96
|
nuclear@2
|
97 #if BITS_IN_JSAMPLE == 8
|
nuclear@2
|
98 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
nuclear@2
|
99 #else
|
nuclear@2
|
100 #define MULTIPLY(var,const) ((var) * (const))
|
nuclear@2
|
101 #endif
|
nuclear@2
|
102
|
nuclear@2
|
103
|
nuclear@2
|
104 /* Dequantize a coefficient by multiplying it by the multiplier-table
|
nuclear@2
|
105 * entry; produce an int result. In this module, both inputs and result
|
nuclear@2
|
106 * are 16 bits or less, so either int or short multiply will work.
|
nuclear@2
|
107 */
|
nuclear@2
|
108
|
nuclear@2
|
109 #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
nuclear@2
|
110
|
nuclear@2
|
111
|
nuclear@2
|
112 /*
|
nuclear@2
|
113 * Perform dequantization and inverse DCT on one block of coefficients,
|
nuclear@2
|
114 * producing a reduced-size 4x4 output block.
|
nuclear@2
|
115 */
|
nuclear@2
|
116
|
nuclear@2
|
117 GLOBAL(void)
|
nuclear@2
|
118 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@2
|
119 JCOEFPTR coef_block,
|
nuclear@2
|
120 JSAMPARRAY output_buf, JDIMENSION output_col)
|
nuclear@2
|
121 {
|
nuclear@2
|
122 INT32 tmp0, tmp2, tmp10, tmp12;
|
nuclear@2
|
123 INT32 z1, z2, z3, z4;
|
nuclear@2
|
124 JCOEFPTR inptr;
|
nuclear@2
|
125 ISLOW_MULT_TYPE * quantptr;
|
nuclear@2
|
126 int * wsptr;
|
nuclear@2
|
127 JSAMPROW outptr;
|
nuclear@2
|
128 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
nuclear@2
|
129 int ctr;
|
nuclear@2
|
130 int workspace[DCTSIZE*4]; /* buffers data between passes */
|
nuclear@2
|
131 SHIFT_TEMPS
|
nuclear@2
|
132
|
nuclear@2
|
133 /* Pass 1: process columns from input, store into work array. */
|
nuclear@2
|
134
|
nuclear@2
|
135 inptr = coef_block;
|
nuclear@2
|
136 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
nuclear@2
|
137 wsptr = workspace;
|
nuclear@2
|
138 for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
nuclear@2
|
139 /* Don't bother to process column 4, because second pass won't use it */
|
nuclear@2
|
140 if (ctr == DCTSIZE-4)
|
nuclear@2
|
141 continue;
|
nuclear@2
|
142 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
nuclear@2
|
143 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
|
nuclear@2
|
144 inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
|
nuclear@2
|
145 /* AC terms all zero; we need not examine term 4 for 4x4 output */
|
nuclear@2
|
146 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
nuclear@2
|
147
|
nuclear@2
|
148 wsptr[DCTSIZE*0] = dcval;
|
nuclear@2
|
149 wsptr[DCTSIZE*1] = dcval;
|
nuclear@2
|
150 wsptr[DCTSIZE*2] = dcval;
|
nuclear@2
|
151 wsptr[DCTSIZE*3] = dcval;
|
nuclear@2
|
152
|
nuclear@2
|
153 continue;
|
nuclear@2
|
154 }
|
nuclear@2
|
155
|
nuclear@2
|
156 /* Even part */
|
nuclear@2
|
157
|
nuclear@2
|
158 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
nuclear@2
|
159 tmp0 <<= (CONST_BITS+1);
|
nuclear@2
|
160
|
nuclear@2
|
161 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
nuclear@2
|
162 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
nuclear@2
|
163
|
nuclear@2
|
164 tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
|
nuclear@2
|
165
|
nuclear@2
|
166 tmp10 = tmp0 + tmp2;
|
nuclear@2
|
167 tmp12 = tmp0 - tmp2;
|
nuclear@2
|
168
|
nuclear@2
|
169 /* Odd part */
|
nuclear@2
|
170
|
nuclear@2
|
171 z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
nuclear@2
|
172 z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
nuclear@2
|
173 z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
nuclear@2
|
174 z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
nuclear@2
|
175
|
nuclear@2
|
176 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
nuclear@2
|
177 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
nuclear@2
|
178 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
nuclear@2
|
179 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
nuclear@2
|
180
|
nuclear@2
|
181 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
nuclear@2
|
182 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
nuclear@2
|
183 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
nuclear@2
|
184 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
nuclear@2
|
185
|
nuclear@2
|
186 /* Final output stage */
|
nuclear@2
|
187
|
nuclear@2
|
188 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
|
nuclear@2
|
189 wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
|
nuclear@2
|
190 wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
|
nuclear@2
|
191 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
|
nuclear@2
|
192 }
|
nuclear@2
|
193
|
nuclear@2
|
194 /* Pass 2: process 4 rows from work array, store into output array. */
|
nuclear@2
|
195
|
nuclear@2
|
196 wsptr = workspace;
|
nuclear@2
|
197 for (ctr = 0; ctr < 4; ctr++) {
|
nuclear@2
|
198 outptr = output_buf[ctr] + output_col;
|
nuclear@2
|
199 /* It's not clear whether a zero row test is worthwhile here ... */
|
nuclear@2
|
200
|
nuclear@2
|
201 #ifndef NO_ZERO_ROW_TEST
|
nuclear@2
|
202 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
|
nuclear@2
|
203 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
nuclear@2
|
204 /* AC terms all zero */
|
nuclear@2
|
205 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
nuclear@2
|
206 & RANGE_MASK];
|
nuclear@2
|
207
|
nuclear@2
|
208 outptr[0] = dcval;
|
nuclear@2
|
209 outptr[1] = dcval;
|
nuclear@2
|
210 outptr[2] = dcval;
|
nuclear@2
|
211 outptr[3] = dcval;
|
nuclear@2
|
212
|
nuclear@2
|
213 wsptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@2
|
214 continue;
|
nuclear@2
|
215 }
|
nuclear@2
|
216 #endif
|
nuclear@2
|
217
|
nuclear@2
|
218 /* Even part */
|
nuclear@2
|
219
|
nuclear@2
|
220 tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
|
nuclear@2
|
221
|
nuclear@2
|
222 tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
|
nuclear@2
|
223 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
|
nuclear@2
|
224
|
nuclear@2
|
225 tmp10 = tmp0 + tmp2;
|
nuclear@2
|
226 tmp12 = tmp0 - tmp2;
|
nuclear@2
|
227
|
nuclear@2
|
228 /* Odd part */
|
nuclear@2
|
229
|
nuclear@2
|
230 z1 = (INT32) wsptr[7];
|
nuclear@2
|
231 z2 = (INT32) wsptr[5];
|
nuclear@2
|
232 z3 = (INT32) wsptr[3];
|
nuclear@2
|
233 z4 = (INT32) wsptr[1];
|
nuclear@2
|
234
|
nuclear@2
|
235 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
nuclear@2
|
236 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
nuclear@2
|
237 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
nuclear@2
|
238 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
nuclear@2
|
239
|
nuclear@2
|
240 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
nuclear@2
|
241 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
nuclear@2
|
242 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
nuclear@2
|
243 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
nuclear@2
|
244
|
nuclear@2
|
245 /* Final output stage */
|
nuclear@2
|
246
|
nuclear@2
|
247 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
|
nuclear@2
|
248 CONST_BITS+PASS1_BITS+3+1)
|
nuclear@2
|
249 & RANGE_MASK];
|
nuclear@2
|
250 outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
|
nuclear@2
|
251 CONST_BITS+PASS1_BITS+3+1)
|
nuclear@2
|
252 & RANGE_MASK];
|
nuclear@2
|
253 outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
|
nuclear@2
|
254 CONST_BITS+PASS1_BITS+3+1)
|
nuclear@2
|
255 & RANGE_MASK];
|
nuclear@2
|
256 outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
|
nuclear@2
|
257 CONST_BITS+PASS1_BITS+3+1)
|
nuclear@2
|
258 & RANGE_MASK];
|
nuclear@2
|
259
|
nuclear@2
|
260 wsptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@2
|
261 }
|
nuclear@2
|
262 }
|
nuclear@2
|
263
|
nuclear@2
|
264
|
nuclear@2
|
265 /*
|
nuclear@2
|
266 * Perform dequantization and inverse DCT on one block of coefficients,
|
nuclear@2
|
267 * producing a reduced-size 2x2 output block.
|
nuclear@2
|
268 */
|
nuclear@2
|
269
|
nuclear@2
|
270 GLOBAL(void)
|
nuclear@2
|
271 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@2
|
272 JCOEFPTR coef_block,
|
nuclear@2
|
273 JSAMPARRAY output_buf, JDIMENSION output_col)
|
nuclear@2
|
274 {
|
nuclear@2
|
275 INT32 tmp0, tmp10, z1;
|
nuclear@2
|
276 JCOEFPTR inptr;
|
nuclear@2
|
277 ISLOW_MULT_TYPE * quantptr;
|
nuclear@2
|
278 int * wsptr;
|
nuclear@2
|
279 JSAMPROW outptr;
|
nuclear@2
|
280 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
nuclear@2
|
281 int ctr;
|
nuclear@2
|
282 int workspace[DCTSIZE*2]; /* buffers data between passes */
|
nuclear@2
|
283 SHIFT_TEMPS
|
nuclear@2
|
284
|
nuclear@2
|
285 /* Pass 1: process columns from input, store into work array. */
|
nuclear@2
|
286
|
nuclear@2
|
287 inptr = coef_block;
|
nuclear@2
|
288 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
nuclear@2
|
289 wsptr = workspace;
|
nuclear@2
|
290 for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
nuclear@2
|
291 /* Don't bother to process columns 2,4,6 */
|
nuclear@2
|
292 if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
|
nuclear@2
|
293 continue;
|
nuclear@2
|
294 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
|
nuclear@2
|
295 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
|
nuclear@2
|
296 /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
|
nuclear@2
|
297 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
nuclear@2
|
298
|
nuclear@2
|
299 wsptr[DCTSIZE*0] = dcval;
|
nuclear@2
|
300 wsptr[DCTSIZE*1] = dcval;
|
nuclear@2
|
301
|
nuclear@2
|
302 continue;
|
nuclear@2
|
303 }
|
nuclear@2
|
304
|
nuclear@2
|
305 /* Even part */
|
nuclear@2
|
306
|
nuclear@2
|
307 z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
nuclear@2
|
308 tmp10 = z1 << (CONST_BITS+2);
|
nuclear@2
|
309
|
nuclear@2
|
310 /* Odd part */
|
nuclear@2
|
311
|
nuclear@2
|
312 z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
nuclear@2
|
313 tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
|
nuclear@2
|
314 z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
nuclear@2
|
315 tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
|
nuclear@2
|
316 z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
nuclear@2
|
317 tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
|
nuclear@2
|
318 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
nuclear@2
|
319 tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
nuclear@2
|
320
|
nuclear@2
|
321 /* Final output stage */
|
nuclear@2
|
322
|
nuclear@2
|
323 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
|
nuclear@2
|
324 wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
|
nuclear@2
|
325 }
|
nuclear@2
|
326
|
nuclear@2
|
327 /* Pass 2: process 2 rows from work array, store into output array. */
|
nuclear@2
|
328
|
nuclear@2
|
329 wsptr = workspace;
|
nuclear@2
|
330 for (ctr = 0; ctr < 2; ctr++) {
|
nuclear@2
|
331 outptr = output_buf[ctr] + output_col;
|
nuclear@2
|
332 /* It's not clear whether a zero row test is worthwhile here ... */
|
nuclear@2
|
333
|
nuclear@2
|
334 #ifndef NO_ZERO_ROW_TEST
|
nuclear@2
|
335 if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
|
nuclear@2
|
336 /* AC terms all zero */
|
nuclear@2
|
337 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
nuclear@2
|
338 & RANGE_MASK];
|
nuclear@2
|
339
|
nuclear@2
|
340 outptr[0] = dcval;
|
nuclear@2
|
341 outptr[1] = dcval;
|
nuclear@2
|
342
|
nuclear@2
|
343 wsptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@2
|
344 continue;
|
nuclear@2
|
345 }
|
nuclear@2
|
346 #endif
|
nuclear@2
|
347
|
nuclear@2
|
348 /* Even part */
|
nuclear@2
|
349
|
nuclear@2
|
350 tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
|
nuclear@2
|
351
|
nuclear@2
|
352 /* Odd part */
|
nuclear@2
|
353
|
nuclear@2
|
354 tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
|
nuclear@2
|
355 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
|
nuclear@2
|
356 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
|
nuclear@2
|
357 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
nuclear@2
|
358
|
nuclear@2
|
359 /* Final output stage */
|
nuclear@2
|
360
|
nuclear@2
|
361 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
|
nuclear@2
|
362 CONST_BITS+PASS1_BITS+3+2)
|
nuclear@2
|
363 & RANGE_MASK];
|
nuclear@2
|
364 outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
|
nuclear@2
|
365 CONST_BITS+PASS1_BITS+3+2)
|
nuclear@2
|
366 & RANGE_MASK];
|
nuclear@2
|
367
|
nuclear@2
|
368 wsptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@2
|
369 }
|
nuclear@2
|
370 }
|
nuclear@2
|
371
|
nuclear@2
|
372
|
nuclear@2
|
373 /*
|
nuclear@2
|
374 * Perform dequantization and inverse DCT on one block of coefficients,
|
nuclear@2
|
375 * producing a reduced-size 1x1 output block.
|
nuclear@2
|
376 */
|
nuclear@2
|
377
|
nuclear@2
|
378 GLOBAL(void)
|
nuclear@2
|
379 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@2
|
380 JCOEFPTR coef_block,
|
nuclear@2
|
381 JSAMPARRAY output_buf, JDIMENSION output_col)
|
nuclear@2
|
382 {
|
nuclear@2
|
383 int dcval;
|
nuclear@2
|
384 ISLOW_MULT_TYPE * quantptr;
|
nuclear@2
|
385 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
nuclear@2
|
386 SHIFT_TEMPS
|
nuclear@2
|
387
|
nuclear@2
|
388 /* We hardly need an inverse DCT routine for this: just take the
|
nuclear@2
|
389 * average pixel value, which is one-eighth of the DC coefficient.
|
nuclear@2
|
390 */
|
nuclear@2
|
391 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
nuclear@2
|
392 dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
nuclear@2
|
393 dcval = (int) DESCALE((INT32) dcval, 3);
|
nuclear@2
|
394
|
nuclear@2
|
395 output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
|
nuclear@2
|
396 }
|
nuclear@2
|
397
|
nuclear@2
|
398 #endif /* IDCT_SCALING_SUPPORTED */
|