rev |
line source |
nuclear@2
|
1 /*
|
nuclear@2
|
2 * jfdctfst.c
|
nuclear@2
|
3 *
|
nuclear@2
|
4 * Copyright (C) 1994-1996, Thomas G. Lane.
|
nuclear@2
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@2
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@2
|
7 *
|
nuclear@2
|
8 * This file contains a fast, not so accurate integer implementation of the
|
nuclear@2
|
9 * forward DCT (Discrete Cosine Transform).
|
nuclear@2
|
10 *
|
nuclear@2
|
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
nuclear@2
|
12 * on each column. Direct algorithms are also available, but they are
|
nuclear@2
|
13 * much more complex and seem not to be any faster when reduced to code.
|
nuclear@2
|
14 *
|
nuclear@2
|
15 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
nuclear@2
|
16 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
nuclear@2
|
17 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
nuclear@2
|
18 * JPEG textbook (see REFERENCES section in file README). The following code
|
nuclear@2
|
19 * is based directly on figure 4-8 in P&M.
|
nuclear@2
|
20 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
nuclear@2
|
21 * possible to arrange the computation so that many of the multiplies are
|
nuclear@2
|
22 * simple scalings of the final outputs. These multiplies can then be
|
nuclear@2
|
23 * folded into the multiplications or divisions by the JPEG quantization
|
nuclear@2
|
24 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
nuclear@2
|
25 * to be done in the DCT itself.
|
nuclear@2
|
26 * The primary disadvantage of this method is that with fixed-point math,
|
nuclear@2
|
27 * accuracy is lost due to imprecise representation of the scaled
|
nuclear@2
|
28 * quantization values. The smaller the quantization table entry, the less
|
nuclear@2
|
29 * precise the scaled value, so this implementation does worse with high-
|
nuclear@2
|
30 * quality-setting files than with low-quality ones.
|
nuclear@2
|
31 */
|
nuclear@2
|
32
|
nuclear@2
|
33 #define JPEG_INTERNALS
|
nuclear@2
|
34 #include "jinclude.h"
|
nuclear@2
|
35 #include "jpeglib.h"
|
nuclear@2
|
36 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@2
|
37
|
nuclear@2
|
38 #ifdef DCT_IFAST_SUPPORTED
|
nuclear@2
|
39
|
nuclear@2
|
40
|
nuclear@2
|
41 /*
|
nuclear@2
|
42 * This module is specialized to the case DCTSIZE = 8.
|
nuclear@2
|
43 */
|
nuclear@2
|
44
|
nuclear@2
|
45 #if DCTSIZE != 8
|
nuclear@2
|
46 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
nuclear@2
|
47 #endif
|
nuclear@2
|
48
|
nuclear@2
|
49
|
nuclear@2
|
50 /* Scaling decisions are generally the same as in the LL&M algorithm;
|
nuclear@2
|
51 * see jfdctint.c for more details. However, we choose to descale
|
nuclear@2
|
52 * (right shift) multiplication products as soon as they are formed,
|
nuclear@2
|
53 * rather than carrying additional fractional bits into subsequent additions.
|
nuclear@2
|
54 * This compromises accuracy slightly, but it lets us save a few shifts.
|
nuclear@2
|
55 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
nuclear@2
|
56 * everywhere except in the multiplications proper; this saves a good deal
|
nuclear@2
|
57 * of work on 16-bit-int machines.
|
nuclear@2
|
58 *
|
nuclear@2
|
59 * Again to save a few shifts, the intermediate results between pass 1 and
|
nuclear@2
|
60 * pass 2 are not upscaled, but are represented only to integral precision.
|
nuclear@2
|
61 *
|
nuclear@2
|
62 * A final compromise is to represent the multiplicative constants to only
|
nuclear@2
|
63 * 8 fractional bits, rather than 13. This saves some shifting work on some
|
nuclear@2
|
64 * machines, and may also reduce the cost of multiplication (since there
|
nuclear@2
|
65 * are fewer one-bits in the constants).
|
nuclear@2
|
66 */
|
nuclear@2
|
67
|
nuclear@2
|
68 #define CONST_BITS 8
|
nuclear@2
|
69
|
nuclear@2
|
70
|
nuclear@2
|
71 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
nuclear@2
|
72 * causing a lot of useless floating-point operations at run time.
|
nuclear@2
|
73 * To get around this we use the following pre-calculated constants.
|
nuclear@2
|
74 * If you change CONST_BITS you may want to add appropriate values.
|
nuclear@2
|
75 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
nuclear@2
|
76 */
|
nuclear@2
|
77
|
nuclear@2
|
78 #if CONST_BITS == 8
|
nuclear@2
|
79 #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
nuclear@2
|
80 #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
nuclear@2
|
81 #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
nuclear@2
|
82 #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
nuclear@2
|
83 #else
|
nuclear@2
|
84 #define FIX_0_382683433 FIX(0.382683433)
|
nuclear@2
|
85 #define FIX_0_541196100 FIX(0.541196100)
|
nuclear@2
|
86 #define FIX_0_707106781 FIX(0.707106781)
|
nuclear@2
|
87 #define FIX_1_306562965 FIX(1.306562965)
|
nuclear@2
|
88 #endif
|
nuclear@2
|
89
|
nuclear@2
|
90
|
nuclear@2
|
91 /* We can gain a little more speed, with a further compromise in accuracy,
|
nuclear@2
|
92 * by omitting the addition in a descaling shift. This yields an incorrectly
|
nuclear@2
|
93 * rounded result half the time...
|
nuclear@2
|
94 */
|
nuclear@2
|
95
|
nuclear@2
|
96 #ifndef USE_ACCURATE_ROUNDING
|
nuclear@2
|
97 #undef DESCALE
|
nuclear@2
|
98 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
nuclear@2
|
99 #endif
|
nuclear@2
|
100
|
nuclear@2
|
101
|
nuclear@2
|
102 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
nuclear@2
|
103 * descale to yield a DCTELEM result.
|
nuclear@2
|
104 */
|
nuclear@2
|
105
|
nuclear@2
|
106 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
nuclear@2
|
107
|
nuclear@2
|
108
|
nuclear@2
|
109 /*
|
nuclear@2
|
110 * Perform the forward DCT on one block of samples.
|
nuclear@2
|
111 */
|
nuclear@2
|
112
|
nuclear@2
|
113 GLOBAL(void)
|
nuclear@2
|
114 jpeg_fdct_ifast (DCTELEM * data)
|
nuclear@2
|
115 {
|
nuclear@2
|
116 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
nuclear@2
|
117 DCTELEM tmp10, tmp11, tmp12, tmp13;
|
nuclear@2
|
118 DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
nuclear@2
|
119 DCTELEM *dataptr;
|
nuclear@2
|
120 int ctr;
|
nuclear@2
|
121 SHIFT_TEMPS
|
nuclear@2
|
122
|
nuclear@2
|
123 /* Pass 1: process rows. */
|
nuclear@2
|
124
|
nuclear@2
|
125 dataptr = data;
|
nuclear@2
|
126 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
nuclear@2
|
127 tmp0 = dataptr[0] + dataptr[7];
|
nuclear@2
|
128 tmp7 = dataptr[0] - dataptr[7];
|
nuclear@2
|
129 tmp1 = dataptr[1] + dataptr[6];
|
nuclear@2
|
130 tmp6 = dataptr[1] - dataptr[6];
|
nuclear@2
|
131 tmp2 = dataptr[2] + dataptr[5];
|
nuclear@2
|
132 tmp5 = dataptr[2] - dataptr[5];
|
nuclear@2
|
133 tmp3 = dataptr[3] + dataptr[4];
|
nuclear@2
|
134 tmp4 = dataptr[3] - dataptr[4];
|
nuclear@2
|
135
|
nuclear@2
|
136 /* Even part */
|
nuclear@2
|
137
|
nuclear@2
|
138 tmp10 = tmp0 + tmp3; /* phase 2 */
|
nuclear@2
|
139 tmp13 = tmp0 - tmp3;
|
nuclear@2
|
140 tmp11 = tmp1 + tmp2;
|
nuclear@2
|
141 tmp12 = tmp1 - tmp2;
|
nuclear@2
|
142
|
nuclear@2
|
143 dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
nuclear@2
|
144 dataptr[4] = tmp10 - tmp11;
|
nuclear@2
|
145
|
nuclear@2
|
146 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
nuclear@2
|
147 dataptr[2] = tmp13 + z1; /* phase 5 */
|
nuclear@2
|
148 dataptr[6] = tmp13 - z1;
|
nuclear@2
|
149
|
nuclear@2
|
150 /* Odd part */
|
nuclear@2
|
151
|
nuclear@2
|
152 tmp10 = tmp4 + tmp5; /* phase 2 */
|
nuclear@2
|
153 tmp11 = tmp5 + tmp6;
|
nuclear@2
|
154 tmp12 = tmp6 + tmp7;
|
nuclear@2
|
155
|
nuclear@2
|
156 /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
nuclear@2
|
157 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
nuclear@2
|
158 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
nuclear@2
|
159 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
nuclear@2
|
160 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
nuclear@2
|
161
|
nuclear@2
|
162 z11 = tmp7 + z3; /* phase 5 */
|
nuclear@2
|
163 z13 = tmp7 - z3;
|
nuclear@2
|
164
|
nuclear@2
|
165 dataptr[5] = z13 + z2; /* phase 6 */
|
nuclear@2
|
166 dataptr[3] = z13 - z2;
|
nuclear@2
|
167 dataptr[1] = z11 + z4;
|
nuclear@2
|
168 dataptr[7] = z11 - z4;
|
nuclear@2
|
169
|
nuclear@2
|
170 dataptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@2
|
171 }
|
nuclear@2
|
172
|
nuclear@2
|
173 /* Pass 2: process columns. */
|
nuclear@2
|
174
|
nuclear@2
|
175 dataptr = data;
|
nuclear@2
|
176 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
nuclear@2
|
177 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
nuclear@2
|
178 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
nuclear@2
|
179 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
nuclear@2
|
180 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
nuclear@2
|
181 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
nuclear@2
|
182 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
nuclear@2
|
183 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
nuclear@2
|
184 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
nuclear@2
|
185
|
nuclear@2
|
186 /* Even part */
|
nuclear@2
|
187
|
nuclear@2
|
188 tmp10 = tmp0 + tmp3; /* phase 2 */
|
nuclear@2
|
189 tmp13 = tmp0 - tmp3;
|
nuclear@2
|
190 tmp11 = tmp1 + tmp2;
|
nuclear@2
|
191 tmp12 = tmp1 - tmp2;
|
nuclear@2
|
192
|
nuclear@2
|
193 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
nuclear@2
|
194 dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
nuclear@2
|
195
|
nuclear@2
|
196 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
nuclear@2
|
197 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
nuclear@2
|
198 dataptr[DCTSIZE*6] = tmp13 - z1;
|
nuclear@2
|
199
|
nuclear@2
|
200 /* Odd part */
|
nuclear@2
|
201
|
nuclear@2
|
202 tmp10 = tmp4 + tmp5; /* phase 2 */
|
nuclear@2
|
203 tmp11 = tmp5 + tmp6;
|
nuclear@2
|
204 tmp12 = tmp6 + tmp7;
|
nuclear@2
|
205
|
nuclear@2
|
206 /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
nuclear@2
|
207 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
nuclear@2
|
208 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
nuclear@2
|
209 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
nuclear@2
|
210 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
nuclear@2
|
211
|
nuclear@2
|
212 z11 = tmp7 + z3; /* phase 5 */
|
nuclear@2
|
213 z13 = tmp7 - z3;
|
nuclear@2
|
214
|
nuclear@2
|
215 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
nuclear@2
|
216 dataptr[DCTSIZE*3] = z13 - z2;
|
nuclear@2
|
217 dataptr[DCTSIZE*1] = z11 + z4;
|
nuclear@2
|
218 dataptr[DCTSIZE*7] = z11 - z4;
|
nuclear@2
|
219
|
nuclear@2
|
220 dataptr++; /* advance pointer to next column */
|
nuclear@2
|
221 }
|
nuclear@2
|
222 }
|
nuclear@2
|
223
|
nuclear@2
|
224 #endif /* DCT_IFAST_SUPPORTED */
|