nuclear@26: /* nuclear@26: * jddctmgr.c nuclear@26: * nuclear@26: * Copyright (C) 1994-1996, Thomas G. Lane. nuclear@26: * This file is part of the Independent JPEG Group's software. nuclear@26: * For conditions of distribution and use, see the accompanying README file. nuclear@26: * nuclear@26: * This file contains the inverse-DCT management logic. nuclear@26: * This code selects a particular IDCT implementation to be used, nuclear@26: * and it performs related housekeeping chores. No code in this file nuclear@26: * is executed per IDCT step, only during output pass setup. nuclear@26: * nuclear@26: * Note that the IDCT routines are responsible for performing coefficient nuclear@26: * dequantization as well as the IDCT proper. This module sets up the nuclear@26: * dequantization multiplier table needed by the IDCT routine. nuclear@26: */ nuclear@26: nuclear@26: #define JPEG_INTERNALS nuclear@26: #include "jinclude.h" nuclear@26: #include "jpeglib.h" nuclear@26: #include "jdct.h" /* Private declarations for DCT subsystem */ nuclear@26: nuclear@26: nuclear@26: /* nuclear@26: * The decompressor input side (jdinput.c) saves away the appropriate nuclear@26: * quantization table for each component at the start of the first scan nuclear@26: * involving that component. (This is necessary in order to correctly nuclear@26: * decode files that reuse Q-table slots.) nuclear@26: * When we are ready to make an output pass, the saved Q-table is converted nuclear@26: * to a multiplier table that will actually be used by the IDCT routine. nuclear@26: * The multiplier table contents are IDCT-method-dependent. To support nuclear@26: * application changes in IDCT method between scans, we can remake the nuclear@26: * multiplier tables if necessary. nuclear@26: * In buffered-image mode, the first output pass may occur before any data nuclear@26: * has been seen for some components, and thus before their Q-tables have nuclear@26: * been saved away. To handle this case, multiplier tables are preset nuclear@26: * to zeroes; the result of the IDCT will be a neutral gray level. nuclear@26: */ nuclear@26: nuclear@26: nuclear@26: /* Private subobject for this module */ nuclear@26: nuclear@26: typedef struct { nuclear@26: struct jpeg_inverse_dct pub; /* public fields */ nuclear@26: nuclear@26: /* This array contains the IDCT method code that each multiplier table nuclear@26: * is currently set up for, or -1 if it's not yet set up. nuclear@26: * The actual multiplier tables are pointed to by dct_table in the nuclear@26: * per-component comp_info structures. nuclear@26: */ nuclear@26: int cur_method[MAX_COMPONENTS]; nuclear@26: } my_idct_controller; nuclear@26: nuclear@26: typedef my_idct_controller * my_idct_ptr; nuclear@26: nuclear@26: nuclear@26: /* Allocated multiplier tables: big enough for any supported variant */ nuclear@26: nuclear@26: typedef union { nuclear@26: ISLOW_MULT_TYPE islow_array[DCTSIZE2]; nuclear@26: #ifdef DCT_IFAST_SUPPORTED nuclear@26: IFAST_MULT_TYPE ifast_array[DCTSIZE2]; nuclear@26: #endif nuclear@26: #ifdef DCT_FLOAT_SUPPORTED nuclear@26: FLOAT_MULT_TYPE float_array[DCTSIZE2]; nuclear@26: #endif nuclear@26: } multiplier_table; nuclear@26: nuclear@26: nuclear@26: /* The current scaled-IDCT routines require ISLOW-style multiplier tables, nuclear@26: * so be sure to compile that code if either ISLOW or SCALING is requested. nuclear@26: */ nuclear@26: #ifdef DCT_ISLOW_SUPPORTED nuclear@26: #define PROVIDE_ISLOW_TABLES nuclear@26: #else nuclear@26: #ifdef IDCT_SCALING_SUPPORTED nuclear@26: #define PROVIDE_ISLOW_TABLES nuclear@26: #endif nuclear@26: #endif nuclear@26: nuclear@26: nuclear@26: /* nuclear@26: * Prepare for an output pass. nuclear@26: * Here we select the proper IDCT routine for each component and build nuclear@26: * a matching multiplier table. nuclear@26: */ nuclear@26: nuclear@26: METHODDEF(void) nuclear@26: start_pass (j_decompress_ptr cinfo) nuclear@26: { nuclear@26: my_idct_ptr idct = (my_idct_ptr) cinfo->idct; nuclear@26: int ci, i; nuclear@26: jpeg_component_info *compptr; nuclear@26: int method = 0; nuclear@26: inverse_DCT_method_ptr method_ptr = NULL; nuclear@26: JQUANT_TBL * qtbl; nuclear@26: nuclear@26: for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; nuclear@26: ci++, compptr++) { nuclear@26: /* Select the proper IDCT routine for this component's scaling */ nuclear@26: switch (compptr->DCT_scaled_size) { nuclear@26: #ifdef IDCT_SCALING_SUPPORTED nuclear@26: case 1: nuclear@26: method_ptr = jpeg_idct_1x1; nuclear@26: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@26: break; nuclear@26: case 2: nuclear@26: method_ptr = jpeg_idct_2x2; nuclear@26: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@26: break; nuclear@26: case 4: nuclear@26: method_ptr = jpeg_idct_4x4; nuclear@26: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@26: break; nuclear@26: #endif nuclear@26: case DCTSIZE: nuclear@26: switch (cinfo->dct_method) { nuclear@26: #ifdef DCT_ISLOW_SUPPORTED nuclear@26: case JDCT_ISLOW: nuclear@26: method_ptr = jpeg_idct_islow; nuclear@26: method = JDCT_ISLOW; nuclear@26: break; nuclear@26: #endif nuclear@26: #ifdef DCT_IFAST_SUPPORTED nuclear@26: case JDCT_IFAST: nuclear@26: method_ptr = jpeg_idct_ifast; nuclear@26: method = JDCT_IFAST; nuclear@26: break; nuclear@26: #endif nuclear@26: #ifdef DCT_FLOAT_SUPPORTED nuclear@26: case JDCT_FLOAT: nuclear@26: method_ptr = jpeg_idct_float; nuclear@26: method = JDCT_FLOAT; nuclear@26: break; nuclear@26: #endif nuclear@26: default: nuclear@26: ERREXIT(cinfo, JERR_NOT_COMPILED); nuclear@26: break; nuclear@26: } nuclear@26: break; nuclear@26: default: nuclear@26: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); nuclear@26: break; nuclear@26: } nuclear@26: idct->pub.inverse_DCT[ci] = method_ptr; nuclear@26: /* Create multiplier table from quant table. nuclear@26: * However, we can skip this if the component is uninteresting nuclear@26: * or if we already built the table. Also, if no quant table nuclear@26: * has yet been saved for the component, we leave the nuclear@26: * multiplier table all-zero; we'll be reading zeroes from the nuclear@26: * coefficient controller's buffer anyway. nuclear@26: */ nuclear@26: if (! compptr->component_needed || idct->cur_method[ci] == method) nuclear@26: continue; nuclear@26: qtbl = compptr->quant_table; nuclear@26: if (qtbl == NULL) /* happens if no data yet for component */ nuclear@26: continue; nuclear@26: idct->cur_method[ci] = method; nuclear@26: switch (method) { nuclear@26: #ifdef PROVIDE_ISLOW_TABLES nuclear@26: case JDCT_ISLOW: nuclear@26: { nuclear@26: /* For LL&M IDCT method, multipliers are equal to raw quantization nuclear@26: * coefficients, but are stored as ints to ensure access efficiency. nuclear@26: */ nuclear@26: ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; nuclear@26: for (i = 0; i < DCTSIZE2; i++) { nuclear@26: ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; nuclear@26: } nuclear@26: } nuclear@26: break; nuclear@26: #endif nuclear@26: #ifdef DCT_IFAST_SUPPORTED nuclear@26: case JDCT_IFAST: nuclear@26: { nuclear@26: /* For AA&N IDCT method, multipliers are equal to quantization nuclear@26: * coefficients scaled by scalefactor[row]*scalefactor[col], where nuclear@26: * scalefactor[0] = 1 nuclear@26: * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 nuclear@26: * For integer operation, the multiplier table is to be scaled by nuclear@26: * IFAST_SCALE_BITS. nuclear@26: */ nuclear@26: IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; nuclear@26: #define CONST_BITS 14 nuclear@26: static const INT16 aanscales[DCTSIZE2] = { nuclear@26: /* precomputed values scaled up by 14 bits */ nuclear@26: 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, nuclear@26: 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, nuclear@26: 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, nuclear@26: 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, nuclear@26: 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, nuclear@26: 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, nuclear@26: 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, nuclear@26: 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 nuclear@26: }; nuclear@26: SHIFT_TEMPS nuclear@26: nuclear@26: for (i = 0; i < DCTSIZE2; i++) { nuclear@26: ifmtbl[i] = (IFAST_MULT_TYPE) nuclear@26: DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], nuclear@26: (INT32) aanscales[i]), nuclear@26: CONST_BITS-IFAST_SCALE_BITS); nuclear@26: } nuclear@26: } nuclear@26: break; nuclear@26: #endif nuclear@26: #ifdef DCT_FLOAT_SUPPORTED nuclear@26: case JDCT_FLOAT: nuclear@26: { nuclear@26: /* For float AA&N IDCT method, multipliers are equal to quantization nuclear@26: * coefficients scaled by scalefactor[row]*scalefactor[col], where nuclear@26: * scalefactor[0] = 1 nuclear@26: * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 nuclear@26: */ nuclear@26: FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; nuclear@26: int row, col; nuclear@26: static const double aanscalefactor[DCTSIZE] = { nuclear@26: 1.0, 1.387039845, 1.306562965, 1.175875602, nuclear@26: 1.0, 0.785694958, 0.541196100, 0.275899379 nuclear@26: }; nuclear@26: nuclear@26: i = 0; nuclear@26: for (row = 0; row < DCTSIZE; row++) { nuclear@26: for (col = 0; col < DCTSIZE; col++) { nuclear@26: fmtbl[i] = (FLOAT_MULT_TYPE) nuclear@26: ((double) qtbl->quantval[i] * nuclear@26: aanscalefactor[row] * aanscalefactor[col]); nuclear@26: i++; nuclear@26: } nuclear@26: } nuclear@26: } nuclear@26: break; nuclear@26: #endif nuclear@26: default: nuclear@26: ERREXIT(cinfo, JERR_NOT_COMPILED); nuclear@26: break; nuclear@26: } nuclear@26: } nuclear@26: } nuclear@26: nuclear@26: nuclear@26: /* nuclear@26: * Initialize IDCT manager. nuclear@26: */ nuclear@26: nuclear@26: GLOBAL(void) nuclear@26: jinit_inverse_dct (j_decompress_ptr cinfo) nuclear@26: { nuclear@26: my_idct_ptr idct; nuclear@26: int ci; nuclear@26: jpeg_component_info *compptr; nuclear@26: nuclear@26: idct = (my_idct_ptr) nuclear@26: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, nuclear@26: SIZEOF(my_idct_controller)); nuclear@26: cinfo->idct = (struct jpeg_inverse_dct *) idct; nuclear@26: idct->pub.start_pass = start_pass; nuclear@26: nuclear@26: for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; nuclear@26: ci++, compptr++) { nuclear@26: /* Allocate and pre-zero a multiplier table for each component */ nuclear@26: compptr->dct_table = nuclear@26: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, nuclear@26: SIZEOF(multiplier_table)); nuclear@26: MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); nuclear@26: /* Mark multiplier table not yet set up for any method */ nuclear@26: idct->cur_method[ci] = -1; nuclear@26: } nuclear@26: }