gpuray_glsl
diff vmath/vector.inl @ 0:f234630e38ff
initial commit
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 09 Nov 2014 13:03:36 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/vmath/vector.inl Sun Nov 09 13:03:36 2014 +0200 1.3 @@ -0,0 +1,766 @@ 1.4 +/* 1.5 +libvmath - a vector math library 1.6 +Copyright (C) 2004-2011 John Tsiombikas <nuclear@member.fsf.org> 1.7 + 1.8 +This program is free software: you can redistribute it and/or modify 1.9 +it under the terms of the GNU Lesser General Public License as published 1.10 +by the Free Software Foundation, either version 3 of the License, or 1.11 +(at your option) any later version. 1.12 + 1.13 +This program is distributed in the hope that it will be useful, 1.14 +but WITHOUT ANY WARRANTY; without even the implied warranty of 1.15 +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 1.16 +GNU Lesser General Public License for more details. 1.17 + 1.18 +You should have received a copy of the GNU Lesser General Public License 1.19 +along with this program. If not, see <http://www.gnu.org/licenses/>. 1.20 +*/ 1.21 + 1.22 +#include <math.h> 1.23 + 1.24 +#ifdef __cplusplus 1.25 +extern "C" { 1.26 +#endif /* __cplusplus */ 1.27 + 1.28 +/* C 2D vector functions */ 1.29 +static inline vec2_t v2_cons(scalar_t x, scalar_t y) 1.30 +{ 1.31 + vec2_t v; 1.32 + v.x = x; 1.33 + v.y = y; 1.34 + return v; 1.35 +} 1.36 + 1.37 +static inline void v2_print(FILE *fp, vec2_t v) 1.38 +{ 1.39 + fprintf(fp, "[ %.4f %.4f ]", v.x, v.y); 1.40 +} 1.41 + 1.42 +static inline vec2_t v2_add(vec2_t v1, vec2_t v2) 1.43 +{ 1.44 + vec2_t res; 1.45 + res.x = v1.x + v2.x; 1.46 + res.y = v1.y + v2.y; 1.47 + return res; 1.48 +} 1.49 + 1.50 +static inline vec2_t v2_sub(vec2_t v1, vec2_t v2) 1.51 +{ 1.52 + vec2_t res; 1.53 + res.x = v1.x - v2.x; 1.54 + res.y = v1.y - v2.y; 1.55 + return res; 1.56 +} 1.57 + 1.58 +static inline vec2_t v2_scale(vec2_t v, scalar_t s) 1.59 +{ 1.60 + vec2_t res; 1.61 + res.x = v.x * s; 1.62 + res.y = v.y * s; 1.63 + return res; 1.64 +} 1.65 + 1.66 +static inline scalar_t v2_dot(vec2_t v1, vec2_t v2) 1.67 +{ 1.68 + return v1.x * v2.x + v1.y * v2.y; 1.69 +} 1.70 + 1.71 +static inline scalar_t v2_length(vec2_t v) 1.72 +{ 1.73 + return sqrt(v.x * v.x + v.y * v.y); 1.74 +} 1.75 + 1.76 +static inline scalar_t v2_length_sq(vec2_t v) 1.77 +{ 1.78 + return v.x * v.x + v.y * v.y; 1.79 +} 1.80 + 1.81 +static inline vec2_t v2_normalize(vec2_t v) 1.82 +{ 1.83 + scalar_t len = (scalar_t)sqrt(v.x * v.x + v.y * v.y); 1.84 + v.x /= len; 1.85 + v.y /= len; 1.86 + return v; 1.87 +} 1.88 + 1.89 +static inline vec2_t v2_lerp(vec2_t v1, vec2_t v2, scalar_t t) 1.90 +{ 1.91 + vec2_t res; 1.92 + res.x = v1.x + (v2.x - v1.x) * t; 1.93 + res.y = v1.y + (v2.y - v1.y) * t; 1.94 + return res; 1.95 +} 1.96 + 1.97 + 1.98 +/* C 3D vector functions */ 1.99 +static inline vec3_t v3_cons(scalar_t x, scalar_t y, scalar_t z) 1.100 +{ 1.101 + vec3_t v; 1.102 + v.x = x; 1.103 + v.y = y; 1.104 + v.z = z; 1.105 + return v; 1.106 +} 1.107 + 1.108 +static inline void v3_print(FILE *fp, vec3_t v) 1.109 +{ 1.110 + fprintf(fp, "[ %.4f %.4f %.4f ]", v.x, v.y, v.z); 1.111 +} 1.112 + 1.113 +static inline vec3_t v3_add(vec3_t v1, vec3_t v2) 1.114 +{ 1.115 + v1.x += v2.x; 1.116 + v1.y += v2.y; 1.117 + v1.z += v2.z; 1.118 + return v1; 1.119 +} 1.120 + 1.121 +static inline vec3_t v3_sub(vec3_t v1, vec3_t v2) 1.122 +{ 1.123 + v1.x -= v2.x; 1.124 + v1.y -= v2.y; 1.125 + v1.z -= v2.z; 1.126 + return v1; 1.127 +} 1.128 + 1.129 +static inline vec3_t v3_neg(vec3_t v) 1.130 +{ 1.131 + v.x = -v.x; 1.132 + v.y = -v.y; 1.133 + v.z = -v.z; 1.134 + return v; 1.135 +} 1.136 + 1.137 +static inline vec3_t v3_mul(vec3_t v1, vec3_t v2) 1.138 +{ 1.139 + v1.x *= v2.x; 1.140 + v1.y *= v2.y; 1.141 + v1.z *= v2.z; 1.142 + return v1; 1.143 +} 1.144 + 1.145 +static inline vec3_t v3_scale(vec3_t v1, scalar_t s) 1.146 +{ 1.147 + v1.x *= s; 1.148 + v1.y *= s; 1.149 + v1.z *= s; 1.150 + return v1; 1.151 +} 1.152 + 1.153 +static inline scalar_t v3_dot(vec3_t v1, vec3_t v2) 1.154 +{ 1.155 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; 1.156 +} 1.157 + 1.158 +static inline vec3_t v3_cross(vec3_t v1, vec3_t v2) 1.159 +{ 1.160 + vec3_t v; 1.161 + v.x = v1.y * v2.z - v1.z * v2.y; 1.162 + v.y = v1.z * v2.x - v1.x * v2.z; 1.163 + v.z = v1.x * v2.y - v1.y * v2.x; 1.164 + return v; 1.165 +} 1.166 + 1.167 +static inline scalar_t v3_length(vec3_t v) 1.168 +{ 1.169 + return sqrt(v.x * v.x + v.y * v.y + v.z * v.z); 1.170 +} 1.171 + 1.172 +static inline scalar_t v3_length_sq(vec3_t v) 1.173 +{ 1.174 + return v.x * v.x + v.y * v.y + v.z * v.z; 1.175 +} 1.176 + 1.177 +static inline vec3_t v3_normalize(vec3_t v) 1.178 +{ 1.179 + scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z); 1.180 + v.x /= len; 1.181 + v.y /= len; 1.182 + v.z /= len; 1.183 + return v; 1.184 +} 1.185 + 1.186 +static inline vec3_t v3_transform(vec3_t v, mat4_t m) 1.187 +{ 1.188 + vec3_t res; 1.189 + res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3]; 1.190 + res.y = m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3]; 1.191 + res.z = m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]; 1.192 + return res; 1.193 +} 1.194 + 1.195 +static inline vec3_t v3_rotate(vec3_t v, scalar_t x, scalar_t y, scalar_t z) 1.196 +{ 1.197 + void m4_rotate(mat4_t, scalar_t, scalar_t, scalar_t); 1.198 + 1.199 + mat4_t m = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; 1.200 + m4_rotate(m, x, y, z); 1.201 + return v3_transform(v, m); 1.202 +} 1.203 + 1.204 +static inline vec3_t v3_rotate_axis(vec3_t v, scalar_t angle, scalar_t x, scalar_t y, scalar_t z) 1.205 +{ 1.206 + void m4_rotate_axis(mat4_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.207 + 1.208 + mat4_t m = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; 1.209 + m4_rotate_axis(m, angle, x, y, z); 1.210 + return v3_transform(v, m); 1.211 +} 1.212 + 1.213 +static inline vec3_t v3_rotate_quat(vec3_t v, quat_t q) 1.214 +{ 1.215 + quat_t quat_rotate_quat(quat_t, quat_t); 1.216 + 1.217 + quat_t vq = v4_cons(v.x, v.y, v.z, 0.0); 1.218 + quat_t res = quat_rotate_quat(vq, q); 1.219 + return v3_cons(res.x, res.y, res.z); 1.220 +} 1.221 + 1.222 +static inline vec3_t v3_reflect(vec3_t v, vec3_t n) 1.223 +{ 1.224 + scalar_t dot = v3_dot(v, n); 1.225 + return v3_sub(v3_scale(n, dot * 2.0), v); 1.226 +} 1.227 + 1.228 +static inline vec3_t v3_lerp(vec3_t v1, vec3_t v2, scalar_t t) 1.229 +{ 1.230 + v1.x += (v2.x - v1.x) * t; 1.231 + v1.y += (v2.y - v1.y) * t; 1.232 + v1.z += (v2.z - v1.z) * t; 1.233 + return v1; 1.234 +} 1.235 + 1.236 +/* C 4D vector functions */ 1.237 +static inline vec4_t v4_cons(scalar_t x, scalar_t y, scalar_t z, scalar_t w) 1.238 +{ 1.239 + vec4_t v; 1.240 + v.x = x; 1.241 + v.y = y; 1.242 + v.z = z; 1.243 + v.w = w; 1.244 + return v; 1.245 +} 1.246 + 1.247 +static inline void v4_print(FILE *fp, vec4_t v) 1.248 +{ 1.249 + fprintf(fp, "[ %.4f %.4f %.4f %.4f ]", v.x, v.y, v.z, v.w); 1.250 +} 1.251 + 1.252 +static inline vec4_t v4_add(vec4_t v1, vec4_t v2) 1.253 +{ 1.254 + v1.x += v2.x; 1.255 + v1.y += v2.y; 1.256 + v1.z += v2.z; 1.257 + v1.w += v2.w; 1.258 + return v1; 1.259 +} 1.260 + 1.261 +static inline vec4_t v4_sub(vec4_t v1, vec4_t v2) 1.262 +{ 1.263 + v1.x -= v2.x; 1.264 + v1.y -= v2.y; 1.265 + v1.z -= v2.z; 1.266 + v1.w -= v2.w; 1.267 + return v1; 1.268 +} 1.269 + 1.270 +static inline vec4_t v4_neg(vec4_t v) 1.271 +{ 1.272 + v.x = -v.x; 1.273 + v.y = -v.y; 1.274 + v.z = -v.z; 1.275 + v.w = -v.w; 1.276 + return v; 1.277 +} 1.278 + 1.279 +static inline vec4_t v4_mul(vec4_t v1, vec4_t v2) 1.280 +{ 1.281 + v1.x *= v2.x; 1.282 + v1.y *= v2.y; 1.283 + v1.z *= v2.z; 1.284 + v1.w *= v2.w; 1.285 + return v1; 1.286 +} 1.287 + 1.288 +static inline vec4_t v4_scale(vec4_t v, scalar_t s) 1.289 +{ 1.290 + v.x *= s; 1.291 + v.y *= s; 1.292 + v.z *= s; 1.293 + v.w *= s; 1.294 + return v; 1.295 +} 1.296 + 1.297 +static inline scalar_t v4_dot(vec4_t v1, vec4_t v2) 1.298 +{ 1.299 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; 1.300 +} 1.301 + 1.302 +static inline scalar_t v4_length(vec4_t v) 1.303 +{ 1.304 + return sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); 1.305 +} 1.306 + 1.307 +static inline scalar_t v4_length_sq(vec4_t v) 1.308 +{ 1.309 + return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; 1.310 +} 1.311 + 1.312 +static inline vec4_t v4_normalize(vec4_t v) 1.313 +{ 1.314 + scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); 1.315 + v.x /= len; 1.316 + v.y /= len; 1.317 + v.z /= len; 1.318 + v.w /= len; 1.319 + return v; 1.320 +} 1.321 + 1.322 +static inline vec4_t v4_transform(vec4_t v, mat4_t m) 1.323 +{ 1.324 + vec4_t res; 1.325 + res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w; 1.326 + res.y = m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w; 1.327 + res.z = m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w; 1.328 + res.w = m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w; 1.329 + return res; 1.330 +} 1.331 + 1.332 +#ifdef __cplusplus 1.333 +} /* extern "C" */ 1.334 + 1.335 + 1.336 +/* --------------- C++ part -------------- */ 1.337 + 1.338 +inline scalar_t &Vector2::operator [](int elem) { 1.339 + return elem ? y : x; 1.340 +} 1.341 + 1.342 +inline const scalar_t &Vector2::operator [](int elem) const { 1.343 + return elem ? y : x; 1.344 +} 1.345 + 1.346 +inline Vector2 operator -(const Vector2 &vec) { 1.347 + return Vector2(-vec.x, -vec.y); 1.348 +} 1.349 + 1.350 +inline scalar_t dot_product(const Vector2 &v1, const Vector2 &v2) { 1.351 + return v1.x * v2.x + v1.y * v2.y; 1.352 +} 1.353 + 1.354 +inline Vector2 operator +(const Vector2 &v1, const Vector2 &v2) { 1.355 + return Vector2(v1.x + v2.x, v1.y + v2.y); 1.356 +} 1.357 + 1.358 +inline Vector2 operator -(const Vector2 &v1, const Vector2 &v2) { 1.359 + return Vector2(v1.x - v2.x, v1.y - v2.y); 1.360 +} 1.361 + 1.362 +inline Vector2 operator *(const Vector2 &v1, const Vector2 &v2) { 1.363 + return Vector2(v1.x * v2.x, v1.y * v2.y); 1.364 +} 1.365 + 1.366 +inline Vector2 operator /(const Vector2 &v1, const Vector2 &v2) { 1.367 + return Vector2(v1.x / v2.x, v1.y / v2.y); 1.368 +} 1.369 + 1.370 +inline bool operator ==(const Vector2 &v1, const Vector2 &v2) { 1.371 + return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.x) < XSMALL_NUMBER); 1.372 +} 1.373 + 1.374 +inline void operator +=(Vector2 &v1, const Vector2 &v2) { 1.375 + v1.x += v2.x; 1.376 + v1.y += v2.y; 1.377 +} 1.378 + 1.379 +inline void operator -=(Vector2 &v1, const Vector2 &v2) { 1.380 + v1.x -= v2.x; 1.381 + v1.y -= v2.y; 1.382 +} 1.383 + 1.384 +inline void operator *=(Vector2 &v1, const Vector2 &v2) { 1.385 + v1.x *= v2.x; 1.386 + v1.y *= v2.y; 1.387 +} 1.388 + 1.389 +inline void operator /=(Vector2 &v1, const Vector2 &v2) { 1.390 + v1.x /= v2.x; 1.391 + v1.y /= v2.y; 1.392 +} 1.393 + 1.394 +inline Vector2 operator +(const Vector2 &vec, scalar_t scalar) { 1.395 + return Vector2(vec.x + scalar, vec.y + scalar); 1.396 +} 1.397 + 1.398 +inline Vector2 operator +(scalar_t scalar, const Vector2 &vec) { 1.399 + return Vector2(vec.x + scalar, vec.y + scalar); 1.400 +} 1.401 + 1.402 +inline Vector2 operator -(scalar_t scalar, const Vector2 &vec) { 1.403 + return Vector2(vec.x - scalar, vec.y - scalar); 1.404 +} 1.405 + 1.406 +inline Vector2 operator *(const Vector2 &vec, scalar_t scalar) { 1.407 + return Vector2(vec.x * scalar, vec.y * scalar); 1.408 +} 1.409 + 1.410 +inline Vector2 operator *(scalar_t scalar, const Vector2 &vec) { 1.411 + return Vector2(vec.x * scalar, vec.y * scalar); 1.412 +} 1.413 + 1.414 +inline Vector2 operator /(const Vector2 &vec, scalar_t scalar) { 1.415 + return Vector2(vec.x / scalar, vec.y / scalar); 1.416 +} 1.417 + 1.418 +inline void operator +=(Vector2 &vec, scalar_t scalar) { 1.419 + vec.x += scalar; 1.420 + vec.y += scalar; 1.421 +} 1.422 + 1.423 +inline void operator -=(Vector2 &vec, scalar_t scalar) { 1.424 + vec.x -= scalar; 1.425 + vec.y -= scalar; 1.426 +} 1.427 + 1.428 +inline void operator *=(Vector2 &vec, scalar_t scalar) { 1.429 + vec.x *= scalar; 1.430 + vec.y *= scalar; 1.431 +} 1.432 + 1.433 +inline void operator /=(Vector2 &vec, scalar_t scalar) { 1.434 + vec.x /= scalar; 1.435 + vec.y /= scalar; 1.436 +} 1.437 + 1.438 +inline scalar_t Vector2::length() const { 1.439 + return sqrt(x*x + y*y); 1.440 +} 1.441 + 1.442 +inline scalar_t Vector2::length_sq() const { 1.443 + return x*x + y*y; 1.444 +} 1.445 + 1.446 +inline Vector2 lerp(const Vector2 &a, const Vector2 &b, scalar_t t) 1.447 +{ 1.448 + return a + (b - a) * t; 1.449 +} 1.450 + 1.451 +inline Vector2 catmull_rom_spline(const Vector2 &v0, const Vector2 &v1, 1.452 + const Vector2 &v2, const Vector2 &v3, scalar_t t) 1.453 +{ 1.454 + scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.455 + scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t); 1.456 + scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t); 1.457 + return Vector2(x, y); 1.458 +} 1.459 + 1.460 + 1.461 +/* ------------- Vector3 -------------- */ 1.462 + 1.463 +inline scalar_t &Vector3::operator [](int elem) { 1.464 + return elem ? (elem == 1 ? y : z) : x; 1.465 +} 1.466 + 1.467 +inline const scalar_t &Vector3::operator [](int elem) const { 1.468 + return elem ? (elem == 1 ? y : z) : x; 1.469 +} 1.470 + 1.471 +/* unary operations */ 1.472 +inline Vector3 operator -(const Vector3 &vec) { 1.473 + return Vector3(-vec.x, -vec.y, -vec.z); 1.474 +} 1.475 + 1.476 +/* binary vector (op) vector operations */ 1.477 +inline scalar_t dot_product(const Vector3 &v1, const Vector3 &v2) { 1.478 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; 1.479 +} 1.480 + 1.481 +inline Vector3 cross_product(const Vector3 &v1, const Vector3 &v2) { 1.482 + return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x); 1.483 +} 1.484 + 1.485 + 1.486 +inline Vector3 operator +(const Vector3 &v1, const Vector3 &v2) { 1.487 + return Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z); 1.488 +} 1.489 + 1.490 +inline Vector3 operator -(const Vector3 &v1, const Vector3 &v2) { 1.491 + return Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z); 1.492 +} 1.493 + 1.494 +inline Vector3 operator *(const Vector3 &v1, const Vector3 &v2) { 1.495 + return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); 1.496 +} 1.497 + 1.498 +inline Vector3 operator /(const Vector3 &v1, const Vector3 &v2) { 1.499 + return Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z); 1.500 +} 1.501 + 1.502 +inline bool operator ==(const Vector3 &v1, const Vector3 &v2) { 1.503 + return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.y) < XSMALL_NUMBER) && (fabs(v1.z - v2.z) < XSMALL_NUMBER); 1.504 +} 1.505 + 1.506 +inline void operator +=(Vector3 &v1, const Vector3 &v2) { 1.507 + v1.x += v2.x; 1.508 + v1.y += v2.y; 1.509 + v1.z += v2.z; 1.510 +} 1.511 + 1.512 +inline void operator -=(Vector3 &v1, const Vector3 &v2) { 1.513 + v1.x -= v2.x; 1.514 + v1.y -= v2.y; 1.515 + v1.z -= v2.z; 1.516 +} 1.517 + 1.518 +inline void operator *=(Vector3 &v1, const Vector3 &v2) { 1.519 + v1.x *= v2.x; 1.520 + v1.y *= v2.y; 1.521 + v1.z *= v2.z; 1.522 +} 1.523 + 1.524 +inline void operator /=(Vector3 &v1, const Vector3 &v2) { 1.525 + v1.x /= v2.x; 1.526 + v1.y /= v2.y; 1.527 + v1.z /= v2.z; 1.528 +} 1.529 +/* binary vector (op) scalar and scalar (op) vector operations */ 1.530 +inline Vector3 operator +(const Vector3 &vec, scalar_t scalar) { 1.531 + return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar); 1.532 +} 1.533 + 1.534 +inline Vector3 operator +(scalar_t scalar, const Vector3 &vec) { 1.535 + return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar); 1.536 +} 1.537 + 1.538 +inline Vector3 operator -(const Vector3 &vec, scalar_t scalar) { 1.539 + return Vector3(vec.x - scalar, vec.y - scalar, vec.z - scalar); 1.540 +} 1.541 + 1.542 +inline Vector3 operator *(const Vector3 &vec, scalar_t scalar) { 1.543 + return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar); 1.544 +} 1.545 + 1.546 +inline Vector3 operator *(scalar_t scalar, const Vector3 &vec) { 1.547 + return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar); 1.548 +} 1.549 + 1.550 +inline Vector3 operator /(const Vector3 &vec, scalar_t scalar) { 1.551 + return Vector3(vec.x / scalar, vec.y / scalar, vec.z / scalar); 1.552 +} 1.553 + 1.554 +inline void operator +=(Vector3 &vec, scalar_t scalar) { 1.555 + vec.x += scalar; 1.556 + vec.y += scalar; 1.557 + vec.z += scalar; 1.558 +} 1.559 + 1.560 +inline void operator -=(Vector3 &vec, scalar_t scalar) { 1.561 + vec.x -= scalar; 1.562 + vec.y -= scalar; 1.563 + vec.z -= scalar; 1.564 +} 1.565 + 1.566 +inline void operator *=(Vector3 &vec, scalar_t scalar) { 1.567 + vec.x *= scalar; 1.568 + vec.y *= scalar; 1.569 + vec.z *= scalar; 1.570 +} 1.571 + 1.572 +inline void operator /=(Vector3 &vec, scalar_t scalar) { 1.573 + vec.x /= scalar; 1.574 + vec.y /= scalar; 1.575 + vec.z /= scalar; 1.576 +} 1.577 + 1.578 +inline scalar_t Vector3::length() const { 1.579 + return sqrt(x*x + y*y + z*z); 1.580 +} 1.581 +inline scalar_t Vector3::length_sq() const { 1.582 + return x*x + y*y + z*z; 1.583 +} 1.584 + 1.585 +inline Vector3 lerp(const Vector3 &a, const Vector3 &b, scalar_t t) { 1.586 + return a + (b - a) * t; 1.587 +} 1.588 + 1.589 +inline Vector3 catmull_rom_spline(const Vector3 &v0, const Vector3 &v1, 1.590 + const Vector3 &v2, const Vector3 &v3, scalar_t t) 1.591 +{ 1.592 + scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.593 + scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t); 1.594 + scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t); 1.595 + scalar_t z = spline(v0.z, v1.z, v2.z, v3.z, t); 1.596 + return Vector3(x, y, z); 1.597 +} 1.598 + 1.599 +inline Vector3 faceforward(const Vector3 &v, const Vector3 &ref) 1.600 +{ 1.601 + return dot_product(v, ref) >= 0.0 ? -v : v; 1.602 +} 1.603 + 1.604 +/* ----------- Vector4 ----------------- */ 1.605 + 1.606 +inline scalar_t &Vector4::operator [](int elem) { 1.607 + return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x; 1.608 +} 1.609 + 1.610 +inline const scalar_t &Vector4::operator [](int elem) const { 1.611 + return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x; 1.612 +} 1.613 + 1.614 +inline Vector4 operator -(const Vector4 &vec) { 1.615 + return Vector4(-vec.x, -vec.y, -vec.z, -vec.w); 1.616 +} 1.617 + 1.618 +inline scalar_t dot_product(const Vector4 &v1, const Vector4 &v2) { 1.619 + return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; 1.620 +} 1.621 + 1.622 +inline Vector4 cross_product(const Vector4 &v1, const Vector4 &v2, const Vector4 &v3) { 1.623 + scalar_t a, b, c, d, e, f; /* Intermediate Values */ 1.624 + Vector4 result; 1.625 + 1.626 + /* Calculate intermediate values. */ 1.627 + a = (v2.x * v3.y) - (v2.y * v3.x); 1.628 + b = (v2.x * v3.z) - (v2.z * v3.x); 1.629 + c = (v2.x * v3.w) - (v2.w * v3.x); 1.630 + d = (v2.y * v3.z) - (v2.z * v3.y); 1.631 + e = (v2.y * v3.w) - (v2.w * v3.y); 1.632 + f = (v2.z * v3.w) - (v2.w * v3.z); 1.633 + 1.634 + /* Calculate the result-vector components. */ 1.635 + result.x = (v1.y * f) - (v1.z * e) + (v1.w * d); 1.636 + result.y = - (v1.x * f) + (v1.z * c) - (v1.w * b); 1.637 + result.z = (v1.x * e) - (v1.y * c) + (v1.w * a); 1.638 + result.w = - (v1.x * d) + (v1.y * b) - (v1.z * a); 1.639 + return result; 1.640 +} 1.641 + 1.642 +inline Vector4 operator +(const Vector4 &v1, const Vector4 &v2) { 1.643 + return Vector4(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w); 1.644 +} 1.645 + 1.646 +inline Vector4 operator -(const Vector4 &v1, const Vector4 &v2) { 1.647 + return Vector4(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w); 1.648 +} 1.649 + 1.650 +inline Vector4 operator *(const Vector4 &v1, const Vector4 &v2) { 1.651 + return Vector4(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z, v1.w * v2.w); 1.652 +} 1.653 + 1.654 +inline Vector4 operator /(const Vector4 &v1, const Vector4 &v2) { 1.655 + return Vector4(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z, v1.w / v2.w); 1.656 +} 1.657 + 1.658 +inline bool operator ==(const Vector4 &v1, const Vector4 &v2) { 1.659 + return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && 1.660 + (fabs(v1.y - v2.y) < XSMALL_NUMBER) && 1.661 + (fabs(v1.z - v2.z) < XSMALL_NUMBER) && 1.662 + (fabs(v1.w - v2.w) < XSMALL_NUMBER); 1.663 +} 1.664 + 1.665 +inline void operator +=(Vector4 &v1, const Vector4 &v2) { 1.666 + v1.x += v2.x; 1.667 + v1.y += v2.y; 1.668 + v1.z += v2.z; 1.669 + v1.w += v2.w; 1.670 +} 1.671 + 1.672 +inline void operator -=(Vector4 &v1, const Vector4 &v2) { 1.673 + v1.x -= v2.x; 1.674 + v1.y -= v2.y; 1.675 + v1.z -= v2.z; 1.676 + v1.w -= v2.w; 1.677 +} 1.678 + 1.679 +inline void operator *=(Vector4 &v1, const Vector4 &v2) { 1.680 + v1.x *= v2.x; 1.681 + v1.y *= v2.y; 1.682 + v1.z *= v2.z; 1.683 + v1.w *= v2.w; 1.684 +} 1.685 + 1.686 +inline void operator /=(Vector4 &v1, const Vector4 &v2) { 1.687 + v1.x /= v2.x; 1.688 + v1.y /= v2.y; 1.689 + v1.z /= v2.z; 1.690 + v1.w /= v2.w; 1.691 +} 1.692 + 1.693 +/* binary vector (op) scalar and scalar (op) vector operations */ 1.694 +inline Vector4 operator +(const Vector4 &vec, scalar_t scalar) { 1.695 + return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar); 1.696 +} 1.697 + 1.698 +inline Vector4 operator +(scalar_t scalar, const Vector4 &vec) { 1.699 + return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar); 1.700 +} 1.701 + 1.702 +inline Vector4 operator -(const Vector4 &vec, scalar_t scalar) { 1.703 + return Vector4(vec.x - scalar, vec.y - scalar, vec.z - scalar, vec.w - scalar); 1.704 +} 1.705 + 1.706 +inline Vector4 operator *(const Vector4 &vec, scalar_t scalar) { 1.707 + return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar); 1.708 +} 1.709 + 1.710 +inline Vector4 operator *(scalar_t scalar, const Vector4 &vec) { 1.711 + return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar); 1.712 +} 1.713 + 1.714 +inline Vector4 operator /(const Vector4 &vec, scalar_t scalar) { 1.715 + return Vector4(vec.x / scalar, vec.y / scalar, vec.z / scalar, vec.w / scalar); 1.716 +} 1.717 + 1.718 +inline void operator +=(Vector4 &vec, scalar_t scalar) { 1.719 + vec.x += scalar; 1.720 + vec.y += scalar; 1.721 + vec.z += scalar; 1.722 + vec.w += scalar; 1.723 +} 1.724 + 1.725 +inline void operator -=(Vector4 &vec, scalar_t scalar) { 1.726 + vec.x -= scalar; 1.727 + vec.y -= scalar; 1.728 + vec.z -= scalar; 1.729 + vec.w -= scalar; 1.730 +} 1.731 + 1.732 +inline void operator *=(Vector4 &vec, scalar_t scalar) { 1.733 + vec.x *= scalar; 1.734 + vec.y *= scalar; 1.735 + vec.z *= scalar; 1.736 + vec.w *= scalar; 1.737 +} 1.738 + 1.739 +inline void operator /=(Vector4 &vec, scalar_t scalar) { 1.740 + vec.x /= scalar; 1.741 + vec.y /= scalar; 1.742 + vec.z /= scalar; 1.743 + vec.w /= scalar; 1.744 +} 1.745 + 1.746 +inline scalar_t Vector4::length() const { 1.747 + return sqrt(x*x + y*y + z*z + w*w); 1.748 +} 1.749 +inline scalar_t Vector4::length_sq() const { 1.750 + return x*x + y*y + z*z + w*w; 1.751 +} 1.752 + 1.753 +inline Vector4 lerp(const Vector4 &v0, const Vector4 &v1, scalar_t t) 1.754 +{ 1.755 + return v0 + (v1 - v0) * t; 1.756 +} 1.757 + 1.758 +inline Vector4 catmull_rom_spline(const Vector4 &v0, const Vector4 &v1, 1.759 + const Vector4 &v2, const Vector4 &v3, scalar_t t) 1.760 +{ 1.761 + scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.762 + scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t); 1.763 + scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t); 1.764 + scalar_t z = spline(v0.z, v1.z, v2.z, v3.z, t); 1.765 + scalar_t w = spline(v0.w, v1.w, v2.w, v3.w, t); 1.766 + return Vector4(x, y, z, w); 1.767 +} 1.768 + 1.769 +#endif /* __cplusplus */