rev |
line source |
nuclear@0
|
1 /*
|
nuclear@0
|
2 libvmath - a vector math library
|
nuclear@0
|
3 Copyright (C) 2004-2011 John Tsiombikas <nuclear@member.fsf.org>
|
nuclear@0
|
4
|
nuclear@0
|
5 This program is free software: you can redistribute it and/or modify
|
nuclear@0
|
6 it under the terms of the GNU Lesser General Public License as published
|
nuclear@0
|
7 by the Free Software Foundation, either version 3 of the License, or
|
nuclear@0
|
8 (at your option) any later version.
|
nuclear@0
|
9
|
nuclear@0
|
10 This program is distributed in the hope that it will be useful,
|
nuclear@0
|
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
nuclear@0
|
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
nuclear@0
|
13 GNU Lesser General Public License for more details.
|
nuclear@0
|
14
|
nuclear@0
|
15 You should have received a copy of the GNU Lesser General Public License
|
nuclear@0
|
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
nuclear@0
|
17 */
|
nuclear@0
|
18
|
nuclear@0
|
19 #include <math.h>
|
nuclear@0
|
20
|
nuclear@0
|
21 #ifdef __cplusplus
|
nuclear@0
|
22 extern "C" {
|
nuclear@0
|
23 #endif /* __cplusplus */
|
nuclear@0
|
24
|
nuclear@0
|
25 /* C 2D vector functions */
|
nuclear@0
|
26 static inline vec2_t v2_cons(scalar_t x, scalar_t y)
|
nuclear@0
|
27 {
|
nuclear@0
|
28 vec2_t v;
|
nuclear@0
|
29 v.x = x;
|
nuclear@0
|
30 v.y = y;
|
nuclear@0
|
31 return v;
|
nuclear@0
|
32 }
|
nuclear@0
|
33
|
nuclear@0
|
34 static inline void v2_print(FILE *fp, vec2_t v)
|
nuclear@0
|
35 {
|
nuclear@0
|
36 fprintf(fp, "[ %.4f %.4f ]", v.x, v.y);
|
nuclear@0
|
37 }
|
nuclear@0
|
38
|
nuclear@0
|
39 static inline vec2_t v2_add(vec2_t v1, vec2_t v2)
|
nuclear@0
|
40 {
|
nuclear@0
|
41 vec2_t res;
|
nuclear@0
|
42 res.x = v1.x + v2.x;
|
nuclear@0
|
43 res.y = v1.y + v2.y;
|
nuclear@0
|
44 return res;
|
nuclear@0
|
45 }
|
nuclear@0
|
46
|
nuclear@0
|
47 static inline vec2_t v2_sub(vec2_t v1, vec2_t v2)
|
nuclear@0
|
48 {
|
nuclear@0
|
49 vec2_t res;
|
nuclear@0
|
50 res.x = v1.x - v2.x;
|
nuclear@0
|
51 res.y = v1.y - v2.y;
|
nuclear@0
|
52 return res;
|
nuclear@0
|
53 }
|
nuclear@0
|
54
|
nuclear@0
|
55 static inline vec2_t v2_scale(vec2_t v, scalar_t s)
|
nuclear@0
|
56 {
|
nuclear@0
|
57 vec2_t res;
|
nuclear@0
|
58 res.x = v.x * s;
|
nuclear@0
|
59 res.y = v.y * s;
|
nuclear@0
|
60 return res;
|
nuclear@0
|
61 }
|
nuclear@0
|
62
|
nuclear@0
|
63 static inline scalar_t v2_dot(vec2_t v1, vec2_t v2)
|
nuclear@0
|
64 {
|
nuclear@0
|
65 return v1.x * v2.x + v1.y * v2.y;
|
nuclear@0
|
66 }
|
nuclear@0
|
67
|
nuclear@0
|
68 static inline scalar_t v2_length(vec2_t v)
|
nuclear@0
|
69 {
|
nuclear@0
|
70 return sqrt(v.x * v.x + v.y * v.y);
|
nuclear@0
|
71 }
|
nuclear@0
|
72
|
nuclear@0
|
73 static inline scalar_t v2_length_sq(vec2_t v)
|
nuclear@0
|
74 {
|
nuclear@0
|
75 return v.x * v.x + v.y * v.y;
|
nuclear@0
|
76 }
|
nuclear@0
|
77
|
nuclear@0
|
78 static inline vec2_t v2_normalize(vec2_t v)
|
nuclear@0
|
79 {
|
nuclear@0
|
80 scalar_t len = (scalar_t)sqrt(v.x * v.x + v.y * v.y);
|
nuclear@0
|
81 v.x /= len;
|
nuclear@0
|
82 v.y /= len;
|
nuclear@0
|
83 return v;
|
nuclear@0
|
84 }
|
nuclear@0
|
85
|
nuclear@0
|
86 static inline vec2_t v2_lerp(vec2_t v1, vec2_t v2, scalar_t t)
|
nuclear@0
|
87 {
|
nuclear@0
|
88 vec2_t res;
|
nuclear@0
|
89 res.x = v1.x + (v2.x - v1.x) * t;
|
nuclear@0
|
90 res.y = v1.y + (v2.y - v1.y) * t;
|
nuclear@0
|
91 return res;
|
nuclear@0
|
92 }
|
nuclear@0
|
93
|
nuclear@0
|
94
|
nuclear@0
|
95 /* C 3D vector functions */
|
nuclear@0
|
96 static inline vec3_t v3_cons(scalar_t x, scalar_t y, scalar_t z)
|
nuclear@0
|
97 {
|
nuclear@0
|
98 vec3_t v;
|
nuclear@0
|
99 v.x = x;
|
nuclear@0
|
100 v.y = y;
|
nuclear@0
|
101 v.z = z;
|
nuclear@0
|
102 return v;
|
nuclear@0
|
103 }
|
nuclear@0
|
104
|
nuclear@0
|
105 static inline void v3_print(FILE *fp, vec3_t v)
|
nuclear@0
|
106 {
|
nuclear@0
|
107 fprintf(fp, "[ %.4f %.4f %.4f ]", v.x, v.y, v.z);
|
nuclear@0
|
108 }
|
nuclear@0
|
109
|
nuclear@0
|
110 static inline vec3_t v3_add(vec3_t v1, vec3_t v2)
|
nuclear@0
|
111 {
|
nuclear@0
|
112 v1.x += v2.x;
|
nuclear@0
|
113 v1.y += v2.y;
|
nuclear@0
|
114 v1.z += v2.z;
|
nuclear@0
|
115 return v1;
|
nuclear@0
|
116 }
|
nuclear@0
|
117
|
nuclear@0
|
118 static inline vec3_t v3_sub(vec3_t v1, vec3_t v2)
|
nuclear@0
|
119 {
|
nuclear@0
|
120 v1.x -= v2.x;
|
nuclear@0
|
121 v1.y -= v2.y;
|
nuclear@0
|
122 v1.z -= v2.z;
|
nuclear@0
|
123 return v1;
|
nuclear@0
|
124 }
|
nuclear@0
|
125
|
nuclear@0
|
126 static inline vec3_t v3_neg(vec3_t v)
|
nuclear@0
|
127 {
|
nuclear@0
|
128 v.x = -v.x;
|
nuclear@0
|
129 v.y = -v.y;
|
nuclear@0
|
130 v.z = -v.z;
|
nuclear@0
|
131 return v;
|
nuclear@0
|
132 }
|
nuclear@0
|
133
|
nuclear@0
|
134 static inline vec3_t v3_mul(vec3_t v1, vec3_t v2)
|
nuclear@0
|
135 {
|
nuclear@0
|
136 v1.x *= v2.x;
|
nuclear@0
|
137 v1.y *= v2.y;
|
nuclear@0
|
138 v1.z *= v2.z;
|
nuclear@0
|
139 return v1;
|
nuclear@0
|
140 }
|
nuclear@0
|
141
|
nuclear@0
|
142 static inline vec3_t v3_scale(vec3_t v1, scalar_t s)
|
nuclear@0
|
143 {
|
nuclear@0
|
144 v1.x *= s;
|
nuclear@0
|
145 v1.y *= s;
|
nuclear@0
|
146 v1.z *= s;
|
nuclear@0
|
147 return v1;
|
nuclear@0
|
148 }
|
nuclear@0
|
149
|
nuclear@0
|
150 static inline scalar_t v3_dot(vec3_t v1, vec3_t v2)
|
nuclear@0
|
151 {
|
nuclear@0
|
152 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
nuclear@0
|
153 }
|
nuclear@0
|
154
|
nuclear@0
|
155 static inline vec3_t v3_cross(vec3_t v1, vec3_t v2)
|
nuclear@0
|
156 {
|
nuclear@0
|
157 vec3_t v;
|
nuclear@0
|
158 v.x = v1.y * v2.z - v1.z * v2.y;
|
nuclear@0
|
159 v.y = v1.z * v2.x - v1.x * v2.z;
|
nuclear@0
|
160 v.z = v1.x * v2.y - v1.y * v2.x;
|
nuclear@0
|
161 return v;
|
nuclear@0
|
162 }
|
nuclear@0
|
163
|
nuclear@0
|
164 static inline scalar_t v3_length(vec3_t v)
|
nuclear@0
|
165 {
|
nuclear@0
|
166 return sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
|
nuclear@0
|
167 }
|
nuclear@0
|
168
|
nuclear@0
|
169 static inline scalar_t v3_length_sq(vec3_t v)
|
nuclear@0
|
170 {
|
nuclear@0
|
171 return v.x * v.x + v.y * v.y + v.z * v.z;
|
nuclear@0
|
172 }
|
nuclear@0
|
173
|
nuclear@0
|
174 static inline vec3_t v3_normalize(vec3_t v)
|
nuclear@0
|
175 {
|
nuclear@0
|
176 scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
|
nuclear@0
|
177 v.x /= len;
|
nuclear@0
|
178 v.y /= len;
|
nuclear@0
|
179 v.z /= len;
|
nuclear@0
|
180 return v;
|
nuclear@0
|
181 }
|
nuclear@0
|
182
|
nuclear@0
|
183 static inline vec3_t v3_transform(vec3_t v, mat4_t m)
|
nuclear@0
|
184 {
|
nuclear@0
|
185 vec3_t res;
|
nuclear@0
|
186 res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3];
|
nuclear@0
|
187 res.y = m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3];
|
nuclear@0
|
188 res.z = m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3];
|
nuclear@0
|
189 return res;
|
nuclear@0
|
190 }
|
nuclear@0
|
191
|
nuclear@0
|
192 static inline vec3_t v3_rotate(vec3_t v, scalar_t x, scalar_t y, scalar_t z)
|
nuclear@0
|
193 {
|
nuclear@0
|
194 void m4_rotate(mat4_t, scalar_t, scalar_t, scalar_t);
|
nuclear@0
|
195
|
nuclear@0
|
196 mat4_t m = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
|
nuclear@0
|
197 m4_rotate(m, x, y, z);
|
nuclear@0
|
198 return v3_transform(v, m);
|
nuclear@0
|
199 }
|
nuclear@0
|
200
|
nuclear@0
|
201 static inline vec3_t v3_rotate_axis(vec3_t v, scalar_t angle, scalar_t x, scalar_t y, scalar_t z)
|
nuclear@0
|
202 {
|
nuclear@0
|
203 void m4_rotate_axis(mat4_t, scalar_t, scalar_t, scalar_t, scalar_t);
|
nuclear@0
|
204
|
nuclear@0
|
205 mat4_t m = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
|
nuclear@0
|
206 m4_rotate_axis(m, angle, x, y, z);
|
nuclear@0
|
207 return v3_transform(v, m);
|
nuclear@0
|
208 }
|
nuclear@0
|
209
|
nuclear@0
|
210 static inline vec3_t v3_rotate_quat(vec3_t v, quat_t q)
|
nuclear@0
|
211 {
|
nuclear@0
|
212 quat_t quat_rotate_quat(quat_t, quat_t);
|
nuclear@0
|
213
|
nuclear@0
|
214 quat_t vq = v4_cons(v.x, v.y, v.z, 0.0);
|
nuclear@0
|
215 quat_t res = quat_rotate_quat(vq, q);
|
nuclear@0
|
216 return v3_cons(res.x, res.y, res.z);
|
nuclear@0
|
217 }
|
nuclear@0
|
218
|
nuclear@0
|
219 static inline vec3_t v3_reflect(vec3_t v, vec3_t n)
|
nuclear@0
|
220 {
|
nuclear@0
|
221 scalar_t dot = v3_dot(v, n);
|
nuclear@0
|
222 return v3_sub(v3_scale(n, dot * 2.0), v);
|
nuclear@0
|
223 }
|
nuclear@0
|
224
|
nuclear@0
|
225 static inline vec3_t v3_lerp(vec3_t v1, vec3_t v2, scalar_t t)
|
nuclear@0
|
226 {
|
nuclear@0
|
227 v1.x += (v2.x - v1.x) * t;
|
nuclear@0
|
228 v1.y += (v2.y - v1.y) * t;
|
nuclear@0
|
229 v1.z += (v2.z - v1.z) * t;
|
nuclear@0
|
230 return v1;
|
nuclear@0
|
231 }
|
nuclear@0
|
232
|
nuclear@0
|
233 /* C 4D vector functions */
|
nuclear@0
|
234 static inline vec4_t v4_cons(scalar_t x, scalar_t y, scalar_t z, scalar_t w)
|
nuclear@0
|
235 {
|
nuclear@0
|
236 vec4_t v;
|
nuclear@0
|
237 v.x = x;
|
nuclear@0
|
238 v.y = y;
|
nuclear@0
|
239 v.z = z;
|
nuclear@0
|
240 v.w = w;
|
nuclear@0
|
241 return v;
|
nuclear@0
|
242 }
|
nuclear@0
|
243
|
nuclear@0
|
244 static inline void v4_print(FILE *fp, vec4_t v)
|
nuclear@0
|
245 {
|
nuclear@0
|
246 fprintf(fp, "[ %.4f %.4f %.4f %.4f ]", v.x, v.y, v.z, v.w);
|
nuclear@0
|
247 }
|
nuclear@0
|
248
|
nuclear@0
|
249 static inline vec4_t v4_add(vec4_t v1, vec4_t v2)
|
nuclear@0
|
250 {
|
nuclear@0
|
251 v1.x += v2.x;
|
nuclear@0
|
252 v1.y += v2.y;
|
nuclear@0
|
253 v1.z += v2.z;
|
nuclear@0
|
254 v1.w += v2.w;
|
nuclear@0
|
255 return v1;
|
nuclear@0
|
256 }
|
nuclear@0
|
257
|
nuclear@0
|
258 static inline vec4_t v4_sub(vec4_t v1, vec4_t v2)
|
nuclear@0
|
259 {
|
nuclear@0
|
260 v1.x -= v2.x;
|
nuclear@0
|
261 v1.y -= v2.y;
|
nuclear@0
|
262 v1.z -= v2.z;
|
nuclear@0
|
263 v1.w -= v2.w;
|
nuclear@0
|
264 return v1;
|
nuclear@0
|
265 }
|
nuclear@0
|
266
|
nuclear@0
|
267 static inline vec4_t v4_neg(vec4_t v)
|
nuclear@0
|
268 {
|
nuclear@0
|
269 v.x = -v.x;
|
nuclear@0
|
270 v.y = -v.y;
|
nuclear@0
|
271 v.z = -v.z;
|
nuclear@0
|
272 v.w = -v.w;
|
nuclear@0
|
273 return v;
|
nuclear@0
|
274 }
|
nuclear@0
|
275
|
nuclear@0
|
276 static inline vec4_t v4_mul(vec4_t v1, vec4_t v2)
|
nuclear@0
|
277 {
|
nuclear@0
|
278 v1.x *= v2.x;
|
nuclear@0
|
279 v1.y *= v2.y;
|
nuclear@0
|
280 v1.z *= v2.z;
|
nuclear@0
|
281 v1.w *= v2.w;
|
nuclear@0
|
282 return v1;
|
nuclear@0
|
283 }
|
nuclear@0
|
284
|
nuclear@0
|
285 static inline vec4_t v4_scale(vec4_t v, scalar_t s)
|
nuclear@0
|
286 {
|
nuclear@0
|
287 v.x *= s;
|
nuclear@0
|
288 v.y *= s;
|
nuclear@0
|
289 v.z *= s;
|
nuclear@0
|
290 v.w *= s;
|
nuclear@0
|
291 return v;
|
nuclear@0
|
292 }
|
nuclear@0
|
293
|
nuclear@0
|
294 static inline scalar_t v4_dot(vec4_t v1, vec4_t v2)
|
nuclear@0
|
295 {
|
nuclear@0
|
296 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w;
|
nuclear@0
|
297 }
|
nuclear@0
|
298
|
nuclear@0
|
299 static inline scalar_t v4_length(vec4_t v)
|
nuclear@0
|
300 {
|
nuclear@0
|
301 return sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
|
nuclear@0
|
302 }
|
nuclear@0
|
303
|
nuclear@0
|
304 static inline scalar_t v4_length_sq(vec4_t v)
|
nuclear@0
|
305 {
|
nuclear@0
|
306 return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
|
nuclear@0
|
307 }
|
nuclear@0
|
308
|
nuclear@0
|
309 static inline vec4_t v4_normalize(vec4_t v)
|
nuclear@0
|
310 {
|
nuclear@0
|
311 scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
|
nuclear@0
|
312 v.x /= len;
|
nuclear@0
|
313 v.y /= len;
|
nuclear@0
|
314 v.z /= len;
|
nuclear@0
|
315 v.w /= len;
|
nuclear@0
|
316 return v;
|
nuclear@0
|
317 }
|
nuclear@0
|
318
|
nuclear@0
|
319 static inline vec4_t v4_transform(vec4_t v, mat4_t m)
|
nuclear@0
|
320 {
|
nuclear@0
|
321 vec4_t res;
|
nuclear@0
|
322 res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w;
|
nuclear@0
|
323 res.y = m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w;
|
nuclear@0
|
324 res.z = m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w;
|
nuclear@0
|
325 res.w = m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w;
|
nuclear@0
|
326 return res;
|
nuclear@0
|
327 }
|
nuclear@0
|
328
|
nuclear@0
|
329 #ifdef __cplusplus
|
nuclear@0
|
330 } /* extern "C" */
|
nuclear@0
|
331
|
nuclear@0
|
332
|
nuclear@0
|
333 /* --------------- C++ part -------------- */
|
nuclear@0
|
334
|
nuclear@0
|
335 inline scalar_t &Vector2::operator [](int elem) {
|
nuclear@0
|
336 return elem ? y : x;
|
nuclear@0
|
337 }
|
nuclear@0
|
338
|
nuclear@0
|
339 inline const scalar_t &Vector2::operator [](int elem) const {
|
nuclear@0
|
340 return elem ? y : x;
|
nuclear@0
|
341 }
|
nuclear@0
|
342
|
nuclear@0
|
343 inline Vector2 operator -(const Vector2 &vec) {
|
nuclear@0
|
344 return Vector2(-vec.x, -vec.y);
|
nuclear@0
|
345 }
|
nuclear@0
|
346
|
nuclear@0
|
347 inline scalar_t dot_product(const Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
348 return v1.x * v2.x + v1.y * v2.y;
|
nuclear@0
|
349 }
|
nuclear@0
|
350
|
nuclear@0
|
351 inline Vector2 operator +(const Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
352 return Vector2(v1.x + v2.x, v1.y + v2.y);
|
nuclear@0
|
353 }
|
nuclear@0
|
354
|
nuclear@0
|
355 inline Vector2 operator -(const Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
356 return Vector2(v1.x - v2.x, v1.y - v2.y);
|
nuclear@0
|
357 }
|
nuclear@0
|
358
|
nuclear@0
|
359 inline Vector2 operator *(const Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
360 return Vector2(v1.x * v2.x, v1.y * v2.y);
|
nuclear@0
|
361 }
|
nuclear@0
|
362
|
nuclear@0
|
363 inline Vector2 operator /(const Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
364 return Vector2(v1.x / v2.x, v1.y / v2.y);
|
nuclear@0
|
365 }
|
nuclear@0
|
366
|
nuclear@0
|
367 inline bool operator ==(const Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
368 return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.x) < XSMALL_NUMBER);
|
nuclear@0
|
369 }
|
nuclear@0
|
370
|
nuclear@0
|
371 inline void operator +=(Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
372 v1.x += v2.x;
|
nuclear@0
|
373 v1.y += v2.y;
|
nuclear@0
|
374 }
|
nuclear@0
|
375
|
nuclear@0
|
376 inline void operator -=(Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
377 v1.x -= v2.x;
|
nuclear@0
|
378 v1.y -= v2.y;
|
nuclear@0
|
379 }
|
nuclear@0
|
380
|
nuclear@0
|
381 inline void operator *=(Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
382 v1.x *= v2.x;
|
nuclear@0
|
383 v1.y *= v2.y;
|
nuclear@0
|
384 }
|
nuclear@0
|
385
|
nuclear@0
|
386 inline void operator /=(Vector2 &v1, const Vector2 &v2) {
|
nuclear@0
|
387 v1.x /= v2.x;
|
nuclear@0
|
388 v1.y /= v2.y;
|
nuclear@0
|
389 }
|
nuclear@0
|
390
|
nuclear@0
|
391 inline Vector2 operator +(const Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
392 return Vector2(vec.x + scalar, vec.y + scalar);
|
nuclear@0
|
393 }
|
nuclear@0
|
394
|
nuclear@0
|
395 inline Vector2 operator +(scalar_t scalar, const Vector2 &vec) {
|
nuclear@0
|
396 return Vector2(vec.x + scalar, vec.y + scalar);
|
nuclear@0
|
397 }
|
nuclear@0
|
398
|
nuclear@0
|
399 inline Vector2 operator -(scalar_t scalar, const Vector2 &vec) {
|
nuclear@0
|
400 return Vector2(vec.x - scalar, vec.y - scalar);
|
nuclear@0
|
401 }
|
nuclear@0
|
402
|
nuclear@0
|
403 inline Vector2 operator *(const Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
404 return Vector2(vec.x * scalar, vec.y * scalar);
|
nuclear@0
|
405 }
|
nuclear@0
|
406
|
nuclear@0
|
407 inline Vector2 operator *(scalar_t scalar, const Vector2 &vec) {
|
nuclear@0
|
408 return Vector2(vec.x * scalar, vec.y * scalar);
|
nuclear@0
|
409 }
|
nuclear@0
|
410
|
nuclear@0
|
411 inline Vector2 operator /(const Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
412 return Vector2(vec.x / scalar, vec.y / scalar);
|
nuclear@0
|
413 }
|
nuclear@0
|
414
|
nuclear@0
|
415 inline void operator +=(Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
416 vec.x += scalar;
|
nuclear@0
|
417 vec.y += scalar;
|
nuclear@0
|
418 }
|
nuclear@0
|
419
|
nuclear@0
|
420 inline void operator -=(Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
421 vec.x -= scalar;
|
nuclear@0
|
422 vec.y -= scalar;
|
nuclear@0
|
423 }
|
nuclear@0
|
424
|
nuclear@0
|
425 inline void operator *=(Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
426 vec.x *= scalar;
|
nuclear@0
|
427 vec.y *= scalar;
|
nuclear@0
|
428 }
|
nuclear@0
|
429
|
nuclear@0
|
430 inline void operator /=(Vector2 &vec, scalar_t scalar) {
|
nuclear@0
|
431 vec.x /= scalar;
|
nuclear@0
|
432 vec.y /= scalar;
|
nuclear@0
|
433 }
|
nuclear@0
|
434
|
nuclear@0
|
435 inline scalar_t Vector2::length() const {
|
nuclear@0
|
436 return sqrt(x*x + y*y);
|
nuclear@0
|
437 }
|
nuclear@0
|
438
|
nuclear@0
|
439 inline scalar_t Vector2::length_sq() const {
|
nuclear@0
|
440 return x*x + y*y;
|
nuclear@0
|
441 }
|
nuclear@0
|
442
|
nuclear@0
|
443 inline Vector2 lerp(const Vector2 &a, const Vector2 &b, scalar_t t)
|
nuclear@0
|
444 {
|
nuclear@0
|
445 return a + (b - a) * t;
|
nuclear@0
|
446 }
|
nuclear@0
|
447
|
nuclear@0
|
448 inline Vector2 catmull_rom_spline(const Vector2 &v0, const Vector2 &v1,
|
nuclear@0
|
449 const Vector2 &v2, const Vector2 &v3, scalar_t t)
|
nuclear@0
|
450 {
|
nuclear@0
|
451 scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t);
|
nuclear@0
|
452 scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t);
|
nuclear@0
|
453 scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t);
|
nuclear@0
|
454 return Vector2(x, y);
|
nuclear@0
|
455 }
|
nuclear@0
|
456
|
nuclear@0
|
457
|
nuclear@0
|
458 /* ------------- Vector3 -------------- */
|
nuclear@0
|
459
|
nuclear@0
|
460 inline scalar_t &Vector3::operator [](int elem) {
|
nuclear@0
|
461 return elem ? (elem == 1 ? y : z) : x;
|
nuclear@0
|
462 }
|
nuclear@0
|
463
|
nuclear@0
|
464 inline const scalar_t &Vector3::operator [](int elem) const {
|
nuclear@0
|
465 return elem ? (elem == 1 ? y : z) : x;
|
nuclear@0
|
466 }
|
nuclear@0
|
467
|
nuclear@0
|
468 /* unary operations */
|
nuclear@0
|
469 inline Vector3 operator -(const Vector3 &vec) {
|
nuclear@0
|
470 return Vector3(-vec.x, -vec.y, -vec.z);
|
nuclear@0
|
471 }
|
nuclear@0
|
472
|
nuclear@0
|
473 /* binary vector (op) vector operations */
|
nuclear@0
|
474 inline scalar_t dot_product(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
475 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
nuclear@0
|
476 }
|
nuclear@0
|
477
|
nuclear@0
|
478 inline Vector3 cross_product(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
479 return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x);
|
nuclear@0
|
480 }
|
nuclear@0
|
481
|
nuclear@0
|
482
|
nuclear@0
|
483 inline Vector3 operator +(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
484 return Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
|
nuclear@0
|
485 }
|
nuclear@0
|
486
|
nuclear@0
|
487 inline Vector3 operator -(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
488 return Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
|
nuclear@0
|
489 }
|
nuclear@0
|
490
|
nuclear@0
|
491 inline Vector3 operator *(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
492 return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
|
nuclear@0
|
493 }
|
nuclear@0
|
494
|
nuclear@0
|
495 inline Vector3 operator /(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
496 return Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z);
|
nuclear@0
|
497 }
|
nuclear@0
|
498
|
nuclear@0
|
499 inline bool operator ==(const Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
500 return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.y) < XSMALL_NUMBER) && (fabs(v1.z - v2.z) < XSMALL_NUMBER);
|
nuclear@0
|
501 }
|
nuclear@0
|
502
|
nuclear@0
|
503 inline void operator +=(Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
504 v1.x += v2.x;
|
nuclear@0
|
505 v1.y += v2.y;
|
nuclear@0
|
506 v1.z += v2.z;
|
nuclear@0
|
507 }
|
nuclear@0
|
508
|
nuclear@0
|
509 inline void operator -=(Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
510 v1.x -= v2.x;
|
nuclear@0
|
511 v1.y -= v2.y;
|
nuclear@0
|
512 v1.z -= v2.z;
|
nuclear@0
|
513 }
|
nuclear@0
|
514
|
nuclear@0
|
515 inline void operator *=(Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
516 v1.x *= v2.x;
|
nuclear@0
|
517 v1.y *= v2.y;
|
nuclear@0
|
518 v1.z *= v2.z;
|
nuclear@0
|
519 }
|
nuclear@0
|
520
|
nuclear@0
|
521 inline void operator /=(Vector3 &v1, const Vector3 &v2) {
|
nuclear@0
|
522 v1.x /= v2.x;
|
nuclear@0
|
523 v1.y /= v2.y;
|
nuclear@0
|
524 v1.z /= v2.z;
|
nuclear@0
|
525 }
|
nuclear@0
|
526 /* binary vector (op) scalar and scalar (op) vector operations */
|
nuclear@0
|
527 inline Vector3 operator +(const Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
528 return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar);
|
nuclear@0
|
529 }
|
nuclear@0
|
530
|
nuclear@0
|
531 inline Vector3 operator +(scalar_t scalar, const Vector3 &vec) {
|
nuclear@0
|
532 return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar);
|
nuclear@0
|
533 }
|
nuclear@0
|
534
|
nuclear@0
|
535 inline Vector3 operator -(const Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
536 return Vector3(vec.x - scalar, vec.y - scalar, vec.z - scalar);
|
nuclear@0
|
537 }
|
nuclear@0
|
538
|
nuclear@0
|
539 inline Vector3 operator *(const Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
540 return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar);
|
nuclear@0
|
541 }
|
nuclear@0
|
542
|
nuclear@0
|
543 inline Vector3 operator *(scalar_t scalar, const Vector3 &vec) {
|
nuclear@0
|
544 return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar);
|
nuclear@0
|
545 }
|
nuclear@0
|
546
|
nuclear@0
|
547 inline Vector3 operator /(const Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
548 return Vector3(vec.x / scalar, vec.y / scalar, vec.z / scalar);
|
nuclear@0
|
549 }
|
nuclear@0
|
550
|
nuclear@0
|
551 inline void operator +=(Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
552 vec.x += scalar;
|
nuclear@0
|
553 vec.y += scalar;
|
nuclear@0
|
554 vec.z += scalar;
|
nuclear@0
|
555 }
|
nuclear@0
|
556
|
nuclear@0
|
557 inline void operator -=(Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
558 vec.x -= scalar;
|
nuclear@0
|
559 vec.y -= scalar;
|
nuclear@0
|
560 vec.z -= scalar;
|
nuclear@0
|
561 }
|
nuclear@0
|
562
|
nuclear@0
|
563 inline void operator *=(Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
564 vec.x *= scalar;
|
nuclear@0
|
565 vec.y *= scalar;
|
nuclear@0
|
566 vec.z *= scalar;
|
nuclear@0
|
567 }
|
nuclear@0
|
568
|
nuclear@0
|
569 inline void operator /=(Vector3 &vec, scalar_t scalar) {
|
nuclear@0
|
570 vec.x /= scalar;
|
nuclear@0
|
571 vec.y /= scalar;
|
nuclear@0
|
572 vec.z /= scalar;
|
nuclear@0
|
573 }
|
nuclear@0
|
574
|
nuclear@0
|
575 inline scalar_t Vector3::length() const {
|
nuclear@0
|
576 return sqrt(x*x + y*y + z*z);
|
nuclear@0
|
577 }
|
nuclear@0
|
578 inline scalar_t Vector3::length_sq() const {
|
nuclear@0
|
579 return x*x + y*y + z*z;
|
nuclear@0
|
580 }
|
nuclear@0
|
581
|
nuclear@0
|
582 inline Vector3 lerp(const Vector3 &a, const Vector3 &b, scalar_t t) {
|
nuclear@0
|
583 return a + (b - a) * t;
|
nuclear@0
|
584 }
|
nuclear@0
|
585
|
nuclear@0
|
586 inline Vector3 catmull_rom_spline(const Vector3 &v0, const Vector3 &v1,
|
nuclear@0
|
587 const Vector3 &v2, const Vector3 &v3, scalar_t t)
|
nuclear@0
|
588 {
|
nuclear@0
|
589 scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t);
|
nuclear@0
|
590 scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t);
|
nuclear@0
|
591 scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t);
|
nuclear@0
|
592 scalar_t z = spline(v0.z, v1.z, v2.z, v3.z, t);
|
nuclear@0
|
593 return Vector3(x, y, z);
|
nuclear@0
|
594 }
|
nuclear@0
|
595
|
nuclear@0
|
596 inline Vector3 faceforward(const Vector3 &v, const Vector3 &ref)
|
nuclear@0
|
597 {
|
nuclear@0
|
598 return dot_product(v, ref) >= 0.0 ? -v : v;
|
nuclear@0
|
599 }
|
nuclear@0
|
600
|
nuclear@0
|
601 /* ----------- Vector4 ----------------- */
|
nuclear@0
|
602
|
nuclear@0
|
603 inline scalar_t &Vector4::operator [](int elem) {
|
nuclear@0
|
604 return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x;
|
nuclear@0
|
605 }
|
nuclear@0
|
606
|
nuclear@0
|
607 inline const scalar_t &Vector4::operator [](int elem) const {
|
nuclear@0
|
608 return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x;
|
nuclear@0
|
609 }
|
nuclear@0
|
610
|
nuclear@0
|
611 inline Vector4 operator -(const Vector4 &vec) {
|
nuclear@0
|
612 return Vector4(-vec.x, -vec.y, -vec.z, -vec.w);
|
nuclear@0
|
613 }
|
nuclear@0
|
614
|
nuclear@0
|
615 inline scalar_t dot_product(const Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
616 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w;
|
nuclear@0
|
617 }
|
nuclear@0
|
618
|
nuclear@0
|
619 inline Vector4 cross_product(const Vector4 &v1, const Vector4 &v2, const Vector4 &v3) {
|
nuclear@0
|
620 scalar_t a, b, c, d, e, f; /* Intermediate Values */
|
nuclear@0
|
621 Vector4 result;
|
nuclear@0
|
622
|
nuclear@0
|
623 /* Calculate intermediate values. */
|
nuclear@0
|
624 a = (v2.x * v3.y) - (v2.y * v3.x);
|
nuclear@0
|
625 b = (v2.x * v3.z) - (v2.z * v3.x);
|
nuclear@0
|
626 c = (v2.x * v3.w) - (v2.w * v3.x);
|
nuclear@0
|
627 d = (v2.y * v3.z) - (v2.z * v3.y);
|
nuclear@0
|
628 e = (v2.y * v3.w) - (v2.w * v3.y);
|
nuclear@0
|
629 f = (v2.z * v3.w) - (v2.w * v3.z);
|
nuclear@0
|
630
|
nuclear@0
|
631 /* Calculate the result-vector components. */
|
nuclear@0
|
632 result.x = (v1.y * f) - (v1.z * e) + (v1.w * d);
|
nuclear@0
|
633 result.y = - (v1.x * f) + (v1.z * c) - (v1.w * b);
|
nuclear@0
|
634 result.z = (v1.x * e) - (v1.y * c) + (v1.w * a);
|
nuclear@0
|
635 result.w = - (v1.x * d) + (v1.y * b) - (v1.z * a);
|
nuclear@0
|
636 return result;
|
nuclear@0
|
637 }
|
nuclear@0
|
638
|
nuclear@0
|
639 inline Vector4 operator +(const Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
640 return Vector4(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w);
|
nuclear@0
|
641 }
|
nuclear@0
|
642
|
nuclear@0
|
643 inline Vector4 operator -(const Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
644 return Vector4(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w);
|
nuclear@0
|
645 }
|
nuclear@0
|
646
|
nuclear@0
|
647 inline Vector4 operator *(const Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
648 return Vector4(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z, v1.w * v2.w);
|
nuclear@0
|
649 }
|
nuclear@0
|
650
|
nuclear@0
|
651 inline Vector4 operator /(const Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
652 return Vector4(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z, v1.w / v2.w);
|
nuclear@0
|
653 }
|
nuclear@0
|
654
|
nuclear@0
|
655 inline bool operator ==(const Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
656 return (fabs(v1.x - v2.x) < XSMALL_NUMBER) &&
|
nuclear@0
|
657 (fabs(v1.y - v2.y) < XSMALL_NUMBER) &&
|
nuclear@0
|
658 (fabs(v1.z - v2.z) < XSMALL_NUMBER) &&
|
nuclear@0
|
659 (fabs(v1.w - v2.w) < XSMALL_NUMBER);
|
nuclear@0
|
660 }
|
nuclear@0
|
661
|
nuclear@0
|
662 inline void operator +=(Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
663 v1.x += v2.x;
|
nuclear@0
|
664 v1.y += v2.y;
|
nuclear@0
|
665 v1.z += v2.z;
|
nuclear@0
|
666 v1.w += v2.w;
|
nuclear@0
|
667 }
|
nuclear@0
|
668
|
nuclear@0
|
669 inline void operator -=(Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
670 v1.x -= v2.x;
|
nuclear@0
|
671 v1.y -= v2.y;
|
nuclear@0
|
672 v1.z -= v2.z;
|
nuclear@0
|
673 v1.w -= v2.w;
|
nuclear@0
|
674 }
|
nuclear@0
|
675
|
nuclear@0
|
676 inline void operator *=(Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
677 v1.x *= v2.x;
|
nuclear@0
|
678 v1.y *= v2.y;
|
nuclear@0
|
679 v1.z *= v2.z;
|
nuclear@0
|
680 v1.w *= v2.w;
|
nuclear@0
|
681 }
|
nuclear@0
|
682
|
nuclear@0
|
683 inline void operator /=(Vector4 &v1, const Vector4 &v2) {
|
nuclear@0
|
684 v1.x /= v2.x;
|
nuclear@0
|
685 v1.y /= v2.y;
|
nuclear@0
|
686 v1.z /= v2.z;
|
nuclear@0
|
687 v1.w /= v2.w;
|
nuclear@0
|
688 }
|
nuclear@0
|
689
|
nuclear@0
|
690 /* binary vector (op) scalar and scalar (op) vector operations */
|
nuclear@0
|
691 inline Vector4 operator +(const Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
692 return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar);
|
nuclear@0
|
693 }
|
nuclear@0
|
694
|
nuclear@0
|
695 inline Vector4 operator +(scalar_t scalar, const Vector4 &vec) {
|
nuclear@0
|
696 return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar);
|
nuclear@0
|
697 }
|
nuclear@0
|
698
|
nuclear@0
|
699 inline Vector4 operator -(const Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
700 return Vector4(vec.x - scalar, vec.y - scalar, vec.z - scalar, vec.w - scalar);
|
nuclear@0
|
701 }
|
nuclear@0
|
702
|
nuclear@0
|
703 inline Vector4 operator *(const Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
704 return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar);
|
nuclear@0
|
705 }
|
nuclear@0
|
706
|
nuclear@0
|
707 inline Vector4 operator *(scalar_t scalar, const Vector4 &vec) {
|
nuclear@0
|
708 return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar);
|
nuclear@0
|
709 }
|
nuclear@0
|
710
|
nuclear@0
|
711 inline Vector4 operator /(const Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
712 return Vector4(vec.x / scalar, vec.y / scalar, vec.z / scalar, vec.w / scalar);
|
nuclear@0
|
713 }
|
nuclear@0
|
714
|
nuclear@0
|
715 inline void operator +=(Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
716 vec.x += scalar;
|
nuclear@0
|
717 vec.y += scalar;
|
nuclear@0
|
718 vec.z += scalar;
|
nuclear@0
|
719 vec.w += scalar;
|
nuclear@0
|
720 }
|
nuclear@0
|
721
|
nuclear@0
|
722 inline void operator -=(Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
723 vec.x -= scalar;
|
nuclear@0
|
724 vec.y -= scalar;
|
nuclear@0
|
725 vec.z -= scalar;
|
nuclear@0
|
726 vec.w -= scalar;
|
nuclear@0
|
727 }
|
nuclear@0
|
728
|
nuclear@0
|
729 inline void operator *=(Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
730 vec.x *= scalar;
|
nuclear@0
|
731 vec.y *= scalar;
|
nuclear@0
|
732 vec.z *= scalar;
|
nuclear@0
|
733 vec.w *= scalar;
|
nuclear@0
|
734 }
|
nuclear@0
|
735
|
nuclear@0
|
736 inline void operator /=(Vector4 &vec, scalar_t scalar) {
|
nuclear@0
|
737 vec.x /= scalar;
|
nuclear@0
|
738 vec.y /= scalar;
|
nuclear@0
|
739 vec.z /= scalar;
|
nuclear@0
|
740 vec.w /= scalar;
|
nuclear@0
|
741 }
|
nuclear@0
|
742
|
nuclear@0
|
743 inline scalar_t Vector4::length() const {
|
nuclear@0
|
744 return sqrt(x*x + y*y + z*z + w*w);
|
nuclear@0
|
745 }
|
nuclear@0
|
746 inline scalar_t Vector4::length_sq() const {
|
nuclear@0
|
747 return x*x + y*y + z*z + w*w;
|
nuclear@0
|
748 }
|
nuclear@0
|
749
|
nuclear@0
|
750 inline Vector4 lerp(const Vector4 &v0, const Vector4 &v1, scalar_t t)
|
nuclear@0
|
751 {
|
nuclear@0
|
752 return v0 + (v1 - v0) * t;
|
nuclear@0
|
753 }
|
nuclear@0
|
754
|
nuclear@0
|
755 inline Vector4 catmull_rom_spline(const Vector4 &v0, const Vector4 &v1,
|
nuclear@0
|
756 const Vector4 &v2, const Vector4 &v3, scalar_t t)
|
nuclear@0
|
757 {
|
nuclear@0
|
758 scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t);
|
nuclear@0
|
759 scalar_t x = spline(v0.x, v1.x, v2.x, v3.x, t);
|
nuclear@0
|
760 scalar_t y = spline(v0.y, v1.y, v2.y, v3.y, t);
|
nuclear@0
|
761 scalar_t z = spline(v0.z, v1.z, v2.z, v3.z, t);
|
nuclear@0
|
762 scalar_t w = spline(v0.w, v1.w, v2.w, v3.w, t);
|
nuclear@0
|
763 return Vector4(x, y, z, w);
|
nuclear@0
|
764 }
|
nuclear@0
|
765
|
nuclear@0
|
766 #endif /* __cplusplus */
|