rev |
line source |
nuclear@0
|
1 #include "vector.h"
|
nuclear@0
|
2 #include "vmath.h"
|
nuclear@0
|
3
|
nuclear@0
|
4 // ---------- Vector2 -----------
|
nuclear@0
|
5
|
nuclear@0
|
6 Vector2::Vector2(scalar_t x, scalar_t y)
|
nuclear@0
|
7 {
|
nuclear@0
|
8 this->x = x;
|
nuclear@0
|
9 this->y = y;
|
nuclear@0
|
10 }
|
nuclear@0
|
11
|
nuclear@0
|
12 Vector2::Vector2(const vec2_t &vec)
|
nuclear@0
|
13 {
|
nuclear@0
|
14 x = vec.x;
|
nuclear@0
|
15 y = vec.y;
|
nuclear@0
|
16 }
|
nuclear@0
|
17
|
nuclear@0
|
18 Vector2::Vector2(const Vector3 &vec)
|
nuclear@0
|
19 {
|
nuclear@0
|
20 x = vec.x;
|
nuclear@0
|
21 y = vec.y;
|
nuclear@0
|
22 }
|
nuclear@0
|
23
|
nuclear@0
|
24 Vector2::Vector2(const Vector4 &vec)
|
nuclear@0
|
25 {
|
nuclear@0
|
26 x = vec.x;
|
nuclear@0
|
27 y = vec.y;
|
nuclear@0
|
28 }
|
nuclear@0
|
29
|
nuclear@0
|
30 void Vector2::normalize()
|
nuclear@0
|
31 {
|
nuclear@0
|
32 scalar_t len = length();
|
nuclear@0
|
33 x /= len;
|
nuclear@0
|
34 y /= len;
|
nuclear@0
|
35 }
|
nuclear@0
|
36
|
nuclear@0
|
37 Vector2 Vector2::normalized() const
|
nuclear@0
|
38 {
|
nuclear@0
|
39 scalar_t len = length();
|
nuclear@0
|
40 return Vector2(x / len, y / len);
|
nuclear@0
|
41 }
|
nuclear@0
|
42
|
nuclear@0
|
43 void Vector2::transform(const Matrix3x3 &mat)
|
nuclear@0
|
44 {
|
nuclear@0
|
45 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2];
|
nuclear@0
|
46 y = mat[1][0] * x + mat[1][1] * y + mat[1][2];
|
nuclear@0
|
47 x = nx;
|
nuclear@0
|
48 }
|
nuclear@0
|
49
|
nuclear@0
|
50 Vector2 Vector2::transformed(const Matrix3x3 &mat) const
|
nuclear@0
|
51 {
|
nuclear@0
|
52 Vector2 vec;
|
nuclear@0
|
53 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2];
|
nuclear@0
|
54 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2];
|
nuclear@0
|
55 return vec;
|
nuclear@0
|
56 }
|
nuclear@0
|
57
|
nuclear@0
|
58 void Vector2::rotate(scalar_t angle)
|
nuclear@0
|
59 {
|
nuclear@0
|
60 *this = Vector2(cos(angle) * x - sin(angle) * y, sin(angle) * x + cos(angle) * y);
|
nuclear@0
|
61 }
|
nuclear@0
|
62
|
nuclear@0
|
63 Vector2 Vector2::rotated(scalar_t angle) const
|
nuclear@0
|
64 {
|
nuclear@0
|
65 return Vector2(cos(angle) * x - sin(angle) * y, sin(angle) * x + cos(angle) * y);
|
nuclear@0
|
66 }
|
nuclear@0
|
67
|
nuclear@0
|
68 Vector2 Vector2::reflection(const Vector2 &normal) const
|
nuclear@0
|
69 {
|
nuclear@0
|
70 return 2.0 * dot_product(*this, normal) * normal - *this;
|
nuclear@0
|
71 }
|
nuclear@0
|
72
|
nuclear@0
|
73 Vector2 Vector2::refraction(const Vector2 &normal, scalar_t src_ior, scalar_t dst_ior) const
|
nuclear@0
|
74 {
|
nuclear@0
|
75 // quick and dirty implementation :)
|
nuclear@0
|
76 Vector3 v3refr = Vector3(this->x, this->y, 1.0).refraction(Vector3(this->x, this->y, 1), src_ior, dst_ior);
|
nuclear@0
|
77 return Vector2(v3refr.x, v3refr.y);
|
nuclear@0
|
78 }
|
nuclear@0
|
79
|
nuclear@0
|
80 std::ostream &operator <<(std::ostream &out, const Vector2 &vec)
|
nuclear@0
|
81 {
|
nuclear@0
|
82 out << "[" << vec.x << " " << vec.y << "]";
|
nuclear@0
|
83 return out;
|
nuclear@0
|
84 }
|
nuclear@0
|
85
|
nuclear@0
|
86
|
nuclear@0
|
87
|
nuclear@0
|
88 // --------- Vector3 ----------
|
nuclear@0
|
89
|
nuclear@0
|
90 Vector3::Vector3(scalar_t x, scalar_t y, scalar_t z)
|
nuclear@0
|
91 {
|
nuclear@0
|
92 this->x = x;
|
nuclear@0
|
93 this->y = y;
|
nuclear@0
|
94 this->z = z;
|
nuclear@0
|
95 }
|
nuclear@0
|
96
|
nuclear@0
|
97 Vector3::Vector3(const vec3_t &vec)
|
nuclear@0
|
98 {
|
nuclear@0
|
99 x = vec.x;
|
nuclear@0
|
100 y = vec.y;
|
nuclear@0
|
101 z = vec.z;
|
nuclear@0
|
102 }
|
nuclear@0
|
103
|
nuclear@0
|
104 Vector3::Vector3(const Vector2 &vec)
|
nuclear@0
|
105 {
|
nuclear@0
|
106 x = vec.x;
|
nuclear@0
|
107 y = vec.y;
|
nuclear@0
|
108 z = 1;
|
nuclear@0
|
109 }
|
nuclear@0
|
110
|
nuclear@0
|
111 Vector3::Vector3(const Vector4 &vec)
|
nuclear@0
|
112 {
|
nuclear@0
|
113 x = vec.x;
|
nuclear@0
|
114 y = vec.y;
|
nuclear@0
|
115 z = vec.z;
|
nuclear@0
|
116 }
|
nuclear@0
|
117
|
nuclear@0
|
118 void Vector3::normalize()
|
nuclear@0
|
119 {
|
nuclear@0
|
120 scalar_t len = length();
|
nuclear@0
|
121 x /= len;
|
nuclear@0
|
122 y /= len;
|
nuclear@0
|
123 z /= len;
|
nuclear@0
|
124 }
|
nuclear@0
|
125
|
nuclear@0
|
126 Vector3 Vector3::normalized() const
|
nuclear@0
|
127 {
|
nuclear@0
|
128 scalar_t len = length();
|
nuclear@0
|
129 return Vector3(x / len, y / len, z / len);
|
nuclear@0
|
130 }
|
nuclear@0
|
131
|
nuclear@0
|
132 Vector3 Vector3::reflection(const Vector3 &normal) const
|
nuclear@0
|
133 {
|
nuclear@0
|
134 return 2.0 * dot_product(*this, normal) * normal - *this;
|
nuclear@0
|
135 }
|
nuclear@0
|
136
|
nuclear@0
|
137 Vector3 Vector3::refraction(const Vector3 &normal, scalar_t src_ior, scalar_t dst_ior) const
|
nuclear@0
|
138 {
|
nuclear@0
|
139 return refraction(normal, src_ior / dst_ior);
|
nuclear@0
|
140 }
|
nuclear@0
|
141
|
nuclear@0
|
142 Vector3 Vector3::refraction(const Vector3 &normal, scalar_t ior) const
|
nuclear@0
|
143 {
|
nuclear@0
|
144 scalar_t cos_inc = dot_product(*this, -normal);
|
nuclear@0
|
145
|
nuclear@0
|
146 scalar_t radical = 1.0 + SQ(ior) * (SQ(cos_inc) - 1.0);
|
nuclear@0
|
147
|
nuclear@0
|
148 if(radical < 0.0) { // total internal reflection
|
nuclear@0
|
149 return -reflection(normal);
|
nuclear@0
|
150 }
|
nuclear@0
|
151
|
nuclear@0
|
152 scalar_t beta = ior * cos_inc - sqrt(radical);
|
nuclear@0
|
153
|
nuclear@0
|
154 return *this * ior + normal * beta;
|
nuclear@0
|
155 }
|
nuclear@0
|
156
|
nuclear@0
|
157 void Vector3::transform(const Matrix3x3 &mat)
|
nuclear@0
|
158 {
|
nuclear@0
|
159 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z;
|
nuclear@0
|
160 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z;
|
nuclear@0
|
161 z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z;
|
nuclear@0
|
162 x = nx;
|
nuclear@0
|
163 y = ny;
|
nuclear@0
|
164 }
|
nuclear@0
|
165
|
nuclear@0
|
166 Vector3 Vector3::transformed(const Matrix3x3 &mat) const
|
nuclear@0
|
167 {
|
nuclear@0
|
168 Vector3 vec;
|
nuclear@0
|
169 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z;
|
nuclear@0
|
170 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z;
|
nuclear@0
|
171 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z;
|
nuclear@0
|
172 return vec;
|
nuclear@0
|
173 }
|
nuclear@0
|
174
|
nuclear@0
|
175 void Vector3::transform(const Matrix4x4 &mat)
|
nuclear@0
|
176 {
|
nuclear@0
|
177 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3];
|
nuclear@0
|
178 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3];
|
nuclear@0
|
179 z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3];
|
nuclear@0
|
180 x = nx;
|
nuclear@0
|
181 y = ny;
|
nuclear@0
|
182 }
|
nuclear@0
|
183
|
nuclear@0
|
184 Vector3 Vector3::transformed(const Matrix4x4 &mat) const
|
nuclear@0
|
185 {
|
nuclear@0
|
186 Vector3 vec;
|
nuclear@0
|
187 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3];
|
nuclear@0
|
188 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3];
|
nuclear@0
|
189 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3];
|
nuclear@0
|
190 return vec;
|
nuclear@0
|
191 }
|
nuclear@0
|
192
|
nuclear@0
|
193 void Vector3::transform(const Quaternion &quat)
|
nuclear@0
|
194 {
|
nuclear@0
|
195 Quaternion vq(0.0f, *this);
|
nuclear@0
|
196 vq = quat * vq * quat.inverse();
|
nuclear@0
|
197 *this = vq.v;
|
nuclear@0
|
198 }
|
nuclear@0
|
199
|
nuclear@0
|
200 Vector3 Vector3::transformed(const Quaternion &quat) const
|
nuclear@0
|
201 {
|
nuclear@0
|
202 Quaternion vq(0.0f, *this);
|
nuclear@0
|
203 vq = quat * vq * quat.inverse();
|
nuclear@0
|
204 return vq.v;
|
nuclear@0
|
205 }
|
nuclear@0
|
206
|
nuclear@0
|
207 void Vector3::rotate(const Vector3 &euler)
|
nuclear@0
|
208 {
|
nuclear@0
|
209 Matrix4x4 rot;
|
nuclear@0
|
210 rot.set_rotation(euler);
|
nuclear@0
|
211 transform(rot);
|
nuclear@0
|
212 }
|
nuclear@0
|
213
|
nuclear@0
|
214 Vector3 Vector3::rotated(const Vector3 &euler) const
|
nuclear@0
|
215 {
|
nuclear@0
|
216 Matrix4x4 rot;
|
nuclear@0
|
217 rot.set_rotation(euler);
|
nuclear@0
|
218 return transformed(rot);
|
nuclear@0
|
219 }
|
nuclear@0
|
220
|
nuclear@0
|
221 std::ostream &operator <<(std::ostream &out, const Vector3 &vec)
|
nuclear@0
|
222 {
|
nuclear@0
|
223 out << "[" << vec.x << " " << vec.y << " " << vec.z << "]";
|
nuclear@0
|
224 return out;
|
nuclear@0
|
225 }
|
nuclear@0
|
226
|
nuclear@0
|
227
|
nuclear@0
|
228 // -------------- Vector4 --------------
|
nuclear@0
|
229 Vector4::Vector4(scalar_t x, scalar_t y, scalar_t z, scalar_t w)
|
nuclear@0
|
230 {
|
nuclear@0
|
231 this->x = x;
|
nuclear@0
|
232 this->y = y;
|
nuclear@0
|
233 this->z = z;
|
nuclear@0
|
234 this->w = w;
|
nuclear@0
|
235 }
|
nuclear@0
|
236
|
nuclear@0
|
237 Vector4::Vector4(const vec4_t &vec)
|
nuclear@0
|
238 {
|
nuclear@0
|
239 x = vec.x;
|
nuclear@0
|
240 y = vec.y;
|
nuclear@0
|
241 z = vec.z;
|
nuclear@0
|
242 w = vec.w;
|
nuclear@0
|
243 }
|
nuclear@0
|
244
|
nuclear@0
|
245 Vector4::Vector4(const Vector2 &vec)
|
nuclear@0
|
246 {
|
nuclear@0
|
247 x = vec.x;
|
nuclear@0
|
248 y = vec.y;
|
nuclear@0
|
249 z = 1;
|
nuclear@0
|
250 w = 1;
|
nuclear@0
|
251 }
|
nuclear@0
|
252
|
nuclear@0
|
253 Vector4::Vector4(const Vector3 &vec)
|
nuclear@0
|
254 {
|
nuclear@0
|
255 x = vec.x;
|
nuclear@0
|
256 y = vec.y;
|
nuclear@0
|
257 z = vec.z;
|
nuclear@0
|
258 w = 1;
|
nuclear@0
|
259 }
|
nuclear@0
|
260
|
nuclear@0
|
261 void Vector4::normalize()
|
nuclear@0
|
262 {
|
nuclear@0
|
263 scalar_t len = (scalar_t)sqrt(x*x + y*y + z*z + w*w);
|
nuclear@0
|
264 x /= len;
|
nuclear@0
|
265 y /= len;
|
nuclear@0
|
266 z /= len;
|
nuclear@0
|
267 w /= len;
|
nuclear@0
|
268 }
|
nuclear@0
|
269
|
nuclear@0
|
270 Vector4 Vector4::normalized() const
|
nuclear@0
|
271 {
|
nuclear@0
|
272 scalar_t len = (scalar_t)sqrt(x*x + y*y + z*z + w*w);
|
nuclear@0
|
273 return Vector4(x / len, y / len, z / len, w / len);
|
nuclear@0
|
274 }
|
nuclear@0
|
275
|
nuclear@0
|
276 void Vector4::transform(const Matrix4x4 &mat)
|
nuclear@0
|
277 {
|
nuclear@0
|
278 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3] * w;
|
nuclear@0
|
279 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3] * w;
|
nuclear@0
|
280 scalar_t nz = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3] * w;
|
nuclear@0
|
281 w = mat[3][0] * x + mat[3][1] * y + mat[3][2] * z + mat[3][3] * w;
|
nuclear@0
|
282 x = nx;
|
nuclear@0
|
283 y = ny;
|
nuclear@0
|
284 z = nz;
|
nuclear@0
|
285 }
|
nuclear@0
|
286
|
nuclear@0
|
287 Vector4 Vector4::transformed(const Matrix4x4 &mat) const
|
nuclear@0
|
288 {
|
nuclear@0
|
289 Vector4 vec;
|
nuclear@0
|
290 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3] * w;
|
nuclear@0
|
291 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3] * w;
|
nuclear@0
|
292 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3] * w;
|
nuclear@0
|
293 vec.w = mat[3][0] * x + mat[3][1] * y + mat[3][2] * z + mat[3][3] * w;
|
nuclear@0
|
294 return vec;
|
nuclear@0
|
295 }
|
nuclear@0
|
296
|
nuclear@0
|
297 // TODO: implement 4D vector reflection
|
nuclear@0
|
298 Vector4 Vector4::reflection(const Vector4 &normal) const
|
nuclear@0
|
299 {
|
nuclear@0
|
300 return *this;
|
nuclear@0
|
301 }
|
nuclear@0
|
302
|
nuclear@0
|
303 // TODO: implement 4D vector refraction
|
nuclear@0
|
304 Vector4 Vector4::refraction(const Vector4 &normal, scalar_t src_ior, scalar_t dst_ior) const
|
nuclear@0
|
305 {
|
nuclear@0
|
306 return *this;
|
nuclear@0
|
307 }
|
nuclear@0
|
308
|
nuclear@0
|
309 std::ostream &operator <<(std::ostream &out, const Vector4 &vec)
|
nuclear@0
|
310 {
|
nuclear@0
|
311 out << "[" << vec.x << " " << vec.y << " " << vec.z << " " << vec.w << "]";
|
nuclear@0
|
312 return out;
|
nuclear@0
|
313 }
|