rev |
line source |
nuclear@0
|
1 #include "quat.h"
|
nuclear@0
|
2 #include "vmath.h"
|
nuclear@0
|
3
|
nuclear@0
|
4 Quaternion::Quaternion() {
|
nuclear@0
|
5 s = 1.0;
|
nuclear@0
|
6 v.x = v.y = v.z = 0.0;
|
nuclear@0
|
7 }
|
nuclear@0
|
8
|
nuclear@0
|
9 Quaternion::Quaternion(scalar_t s, const Vector3 &v) {
|
nuclear@0
|
10 this->s = s;
|
nuclear@0
|
11 this->v = v;
|
nuclear@0
|
12 }
|
nuclear@0
|
13
|
nuclear@0
|
14 Quaternion::Quaternion(scalar_t s, scalar_t x, scalar_t y, scalar_t z) {
|
nuclear@0
|
15 v.x = x;
|
nuclear@0
|
16 v.y = y;
|
nuclear@0
|
17 v.z = z;
|
nuclear@0
|
18 this->s = s;
|
nuclear@0
|
19 }
|
nuclear@0
|
20
|
nuclear@0
|
21 Quaternion::Quaternion(const Vector3 &axis, scalar_t angle) {
|
nuclear@0
|
22 set_rotation(axis, angle);
|
nuclear@0
|
23 }
|
nuclear@0
|
24
|
nuclear@0
|
25 Quaternion::Quaternion(const quat_t &quat)
|
nuclear@0
|
26 {
|
nuclear@0
|
27 v.x = quat.x;
|
nuclear@0
|
28 v.y = quat.y;
|
nuclear@0
|
29 v.z = quat.z;
|
nuclear@0
|
30 s = quat.w;
|
nuclear@0
|
31 }
|
nuclear@0
|
32
|
nuclear@0
|
33 Quaternion Quaternion::operator +(const Quaternion &quat) const
|
nuclear@0
|
34 {
|
nuclear@0
|
35 return Quaternion(s + quat.s, v + quat.v);
|
nuclear@0
|
36 }
|
nuclear@0
|
37
|
nuclear@0
|
38 Quaternion Quaternion::operator -(const Quaternion &quat) const
|
nuclear@0
|
39 {
|
nuclear@0
|
40 return Quaternion(s - quat.s, v - quat.v);
|
nuclear@0
|
41 }
|
nuclear@0
|
42
|
nuclear@0
|
43 Quaternion Quaternion::operator -() const
|
nuclear@0
|
44 {
|
nuclear@0
|
45 return Quaternion(-s, -v);
|
nuclear@0
|
46 }
|
nuclear@0
|
47
|
nuclear@0
|
48 /** Quaternion Multiplication:
|
nuclear@0
|
49 * Q1*Q2 = [s1*s2 - v1.v2, s1*v2 + s2*v1 + v1(x)v2]
|
nuclear@0
|
50 */
|
nuclear@0
|
51 Quaternion Quaternion::operator *(const Quaternion &quat) const {
|
nuclear@0
|
52 Quaternion newq;
|
nuclear@0
|
53 newq.s = s * quat.s - dot_product(v, quat.v);
|
nuclear@0
|
54 newq.v = quat.v * s + v * quat.s + cross_product(v, quat.v);
|
nuclear@0
|
55 return newq;
|
nuclear@0
|
56 }
|
nuclear@0
|
57
|
nuclear@0
|
58 void Quaternion::operator +=(const Quaternion &quat) {
|
nuclear@0
|
59 *this = Quaternion(s + quat.s, v + quat.v);
|
nuclear@0
|
60 }
|
nuclear@0
|
61
|
nuclear@0
|
62 void Quaternion::operator -=(const Quaternion &quat) {
|
nuclear@0
|
63 *this = Quaternion(s - quat.s, v - quat.v);
|
nuclear@0
|
64 }
|
nuclear@0
|
65
|
nuclear@0
|
66 void Quaternion::operator *=(const Quaternion &quat) {
|
nuclear@0
|
67 *this = *this * quat;
|
nuclear@0
|
68 }
|
nuclear@0
|
69
|
nuclear@0
|
70 void Quaternion::reset_identity() {
|
nuclear@0
|
71 s = 1.0;
|
nuclear@0
|
72 v.x = v.y = v.z = 0.0;
|
nuclear@0
|
73 }
|
nuclear@0
|
74
|
nuclear@0
|
75 Quaternion Quaternion::conjugate() const {
|
nuclear@0
|
76 return Quaternion(s, -v);
|
nuclear@0
|
77 }
|
nuclear@0
|
78
|
nuclear@0
|
79 scalar_t Quaternion::length() const {
|
nuclear@0
|
80 return (scalar_t)sqrt(v.x*v.x + v.y*v.y + v.z*v.z + s*s);
|
nuclear@0
|
81 }
|
nuclear@0
|
82
|
nuclear@0
|
83 /** Q * ~Q = ||Q||^2 */
|
nuclear@0
|
84 scalar_t Quaternion::length_sq() const {
|
nuclear@0
|
85 return v.x*v.x + v.y*v.y + v.z*v.z + s*s;
|
nuclear@0
|
86 }
|
nuclear@0
|
87
|
nuclear@0
|
88 void Quaternion::normalize() {
|
nuclear@0
|
89 scalar_t len = (scalar_t)sqrt(v.x*v.x + v.y*v.y + v.z*v.z + s*s);
|
nuclear@0
|
90 v.x /= len;
|
nuclear@0
|
91 v.y /= len;
|
nuclear@0
|
92 v.z /= len;
|
nuclear@0
|
93 s /= len;
|
nuclear@0
|
94 }
|
nuclear@0
|
95
|
nuclear@0
|
96 Quaternion Quaternion::normalized() const {
|
nuclear@0
|
97 Quaternion nq = *this;
|
nuclear@0
|
98 scalar_t len = (scalar_t)sqrt(v.x*v.x + v.y*v.y + v.z*v.z + s*s);
|
nuclear@0
|
99 nq.v.x /= len;
|
nuclear@0
|
100 nq.v.y /= len;
|
nuclear@0
|
101 nq.v.z /= len;
|
nuclear@0
|
102 nq.s /= len;
|
nuclear@0
|
103 return nq;
|
nuclear@0
|
104 }
|
nuclear@0
|
105
|
nuclear@0
|
106 /** Quaternion Inversion: Q^-1 = ~Q / ||Q||^2 */
|
nuclear@0
|
107 Quaternion Quaternion::inverse() const {
|
nuclear@0
|
108 Quaternion inv = conjugate();
|
nuclear@0
|
109 scalar_t lensq = length_sq();
|
nuclear@0
|
110 inv.v /= lensq;
|
nuclear@0
|
111 inv.s /= lensq;
|
nuclear@0
|
112
|
nuclear@0
|
113 return inv;
|
nuclear@0
|
114 }
|
nuclear@0
|
115
|
nuclear@0
|
116
|
nuclear@0
|
117 void Quaternion::set_rotation(const Vector3 &axis, scalar_t angle) {
|
nuclear@0
|
118 scalar_t half_angle = angle / 2.0;
|
nuclear@0
|
119 s = cos(half_angle);
|
nuclear@0
|
120 v = axis * sin(half_angle);
|
nuclear@0
|
121 }
|
nuclear@0
|
122
|
nuclear@0
|
123 void Quaternion::rotate(const Vector3 &axis, scalar_t angle) {
|
nuclear@0
|
124 Quaternion q;
|
nuclear@0
|
125 scalar_t half_angle = angle / 2.0;
|
nuclear@0
|
126 q.s = cos(half_angle);
|
nuclear@0
|
127 q.v = axis * sin(half_angle);
|
nuclear@0
|
128
|
nuclear@0
|
129 *this *= q;
|
nuclear@0
|
130 }
|
nuclear@0
|
131
|
nuclear@0
|
132 void Quaternion::rotate(const Quaternion &q) {
|
nuclear@0
|
133 *this = q * *this * q.conjugate();
|
nuclear@0
|
134 }
|
nuclear@0
|
135
|
nuclear@0
|
136 Matrix3x3 Quaternion::get_rotation_matrix() const {
|
nuclear@0
|
137 return Matrix3x3(
|
nuclear@0
|
138 1.0 - 2.0 * v.y*v.y - 2.0 * v.z*v.z, 2.0 * v.x * v.y - 2.0 * s * v.z, 2.0 * v.z * v.x + 2.0 * s * v.y,
|
nuclear@0
|
139 2.0 * v.x * v.y + 2.0 * s * v.z, 1.0 - 2.0 * v.x*v.x - 2.0 * v.z*v.z, 2.0 * v.y * v.z - 2.0 * s * v.x,
|
nuclear@0
|
140 2.0 * v.z * v.x - 2.0 * s * v.y, 2.0 * v.y * v.z + 2.0 * s * v.x, 1.0 - 2.0 * v.x*v.x - 2.0 * v.y*v.y);
|
nuclear@0
|
141 }
|
nuclear@0
|
142
|
nuclear@0
|
143
|
nuclear@0
|
144 /** Spherical linear interpolation (slerp) */
|
nuclear@0
|
145 Quaternion slerp(const Quaternion &quat1, const Quaternion &q2, scalar_t t) {
|
nuclear@0
|
146 Quaternion q1;
|
nuclear@0
|
147 scalar_t dot = q1.s * q2.s + q1.v.x * q2.v.x + q1.v.y * q2.v.y + q1.v.z * q2.v.z;
|
nuclear@0
|
148
|
nuclear@0
|
149 if(dot < 0.0) {
|
nuclear@0
|
150 /* make sure we interpolate across the shortest arc */
|
nuclear@0
|
151 q1 = -quat1;
|
nuclear@0
|
152 dot = -dot;
|
nuclear@0
|
153 } else {
|
nuclear@0
|
154 q1 = quat1;
|
nuclear@0
|
155 }
|
nuclear@0
|
156
|
nuclear@0
|
157 /* clamp dot to [-1, 1] in order to avoid domain errors in acos due to
|
nuclear@0
|
158 * floating point imprecisions
|
nuclear@0
|
159 */
|
nuclear@0
|
160 if(dot < -1.0) dot = -1.0;
|
nuclear@0
|
161 if(dot > 1.0) dot = 1.0;
|
nuclear@0
|
162
|
nuclear@0
|
163 scalar_t angle = acos(dot);
|
nuclear@0
|
164 scalar_t a, b;
|
nuclear@0
|
165
|
nuclear@0
|
166 scalar_t sin_angle = sin(angle);
|
nuclear@0
|
167 if(fabs(sin_angle) < SMALL_NUMBER) {
|
nuclear@0
|
168 /* for very small angles or completely opposite orientations
|
nuclear@0
|
169 * use linear interpolation to avoid div/zero (in the first case it makes sense,
|
nuclear@0
|
170 * the second case is pretty much undefined anyway I guess ...
|
nuclear@0
|
171 */
|
nuclear@0
|
172 a = 1.0f - t;
|
nuclear@0
|
173 b = t;
|
nuclear@0
|
174 } else {
|
nuclear@0
|
175 a = sin((1.0f - t) * angle) / sin_angle;
|
nuclear@0
|
176 b = sin(t * angle) / sin_angle;
|
nuclear@0
|
177 }
|
nuclear@0
|
178
|
nuclear@0
|
179 scalar_t x = q1.v.x * a + q2.v.x * b;
|
nuclear@0
|
180 scalar_t y = q1.v.y * a + q2.v.y * b;
|
nuclear@0
|
181 scalar_t z = q1.v.z * a + q2.v.z * b;
|
nuclear@0
|
182 scalar_t s = q1.s * a + q2.s * b;
|
nuclear@0
|
183
|
nuclear@0
|
184 return Quaternion(s, Vector3(x, y, z));
|
nuclear@0
|
185 }
|
nuclear@0
|
186
|
nuclear@0
|
187
|
nuclear@0
|
188 std::ostream &operator <<(std::ostream &out, const Quaternion &q) {
|
nuclear@0
|
189 out << "(" << q.s << ", " << q.v << ")";
|
nuclear@0
|
190 return out;
|
nuclear@0
|
191 }
|