rev |
line source |
nuclear@0
|
1 #include <cstdio>
|
nuclear@0
|
2 #include <cmath>
|
nuclear@0
|
3 #include "matrix.h"
|
nuclear@0
|
4 #include "vector.h"
|
nuclear@0
|
5 #include "quat.h"
|
nuclear@0
|
6
|
nuclear@0
|
7 using namespace std;
|
nuclear@0
|
8
|
nuclear@0
|
9 // ----------- Matrix3x3 --------------
|
nuclear@0
|
10
|
nuclear@0
|
11 Matrix3x3 Matrix3x3::identity = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
nuclear@0
|
12
|
nuclear@0
|
13 Matrix3x3::Matrix3x3()
|
nuclear@0
|
14 {
|
nuclear@0
|
15 *this = identity;
|
nuclear@0
|
16 }
|
nuclear@0
|
17
|
nuclear@0
|
18 Matrix3x3::Matrix3x3( scalar_t m11, scalar_t m12, scalar_t m13,
|
nuclear@0
|
19 scalar_t m21, scalar_t m22, scalar_t m23,
|
nuclear@0
|
20 scalar_t m31, scalar_t m32, scalar_t m33)
|
nuclear@0
|
21 {
|
nuclear@0
|
22 m[0][0] = m11; m[0][1] = m12; m[0][2] = m13;
|
nuclear@0
|
23 m[1][0] = m21; m[1][1] = m22; m[1][2] = m23;
|
nuclear@0
|
24 m[2][0] = m31; m[2][1] = m32; m[2][2] = m33;
|
nuclear@0
|
25 }
|
nuclear@0
|
26
|
nuclear@0
|
27 Matrix3x3::Matrix3x3(const Vector3 &ivec, const Vector3 &jvec, const Vector3 &kvec)
|
nuclear@0
|
28 {
|
nuclear@0
|
29 set_row_vector(ivec, 0);
|
nuclear@0
|
30 set_row_vector(jvec, 1);
|
nuclear@0
|
31 set_row_vector(kvec, 2);
|
nuclear@0
|
32 }
|
nuclear@0
|
33
|
nuclear@0
|
34 Matrix3x3::Matrix3x3(const mat3_t cmat)
|
nuclear@0
|
35 {
|
nuclear@0
|
36 memcpy(m, cmat, sizeof(mat3_t));
|
nuclear@0
|
37 }
|
nuclear@0
|
38
|
nuclear@0
|
39 Matrix3x3::Matrix3x3(const Matrix4x4 &mat4x4)
|
nuclear@0
|
40 {
|
nuclear@0
|
41 for(int i=0; i<3; i++) {
|
nuclear@0
|
42 for(int j=0; j<3; j++) {
|
nuclear@0
|
43 m[i][j] = mat4x4[i][j];
|
nuclear@0
|
44 }
|
nuclear@0
|
45 }
|
nuclear@0
|
46 }
|
nuclear@0
|
47
|
nuclear@0
|
48 Matrix3x3 operator +(const Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@0
|
49 {
|
nuclear@0
|
50 Matrix3x3 res;
|
nuclear@0
|
51 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@0
|
52 scalar_t *dest = res.m[0];
|
nuclear@0
|
53
|
nuclear@0
|
54 for(int i=0; i<9; i++) {
|
nuclear@0
|
55 *dest++ = *op1++ + *op2++;
|
nuclear@0
|
56 }
|
nuclear@0
|
57 return res;
|
nuclear@0
|
58 }
|
nuclear@0
|
59
|
nuclear@0
|
60 Matrix3x3 operator -(const Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@0
|
61 {
|
nuclear@0
|
62 Matrix3x3 res;
|
nuclear@0
|
63 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@0
|
64 scalar_t *dest = res.m[0];
|
nuclear@0
|
65
|
nuclear@0
|
66 for(int i=0; i<9; i++) {
|
nuclear@0
|
67 *dest++ = *op1++ - *op2++;
|
nuclear@0
|
68 }
|
nuclear@0
|
69 return res;
|
nuclear@0
|
70 }
|
nuclear@0
|
71
|
nuclear@0
|
72 Matrix3x3 operator *(const Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@0
|
73 {
|
nuclear@0
|
74 Matrix3x3 res;
|
nuclear@0
|
75 for(int i=0; i<3; i++) {
|
nuclear@0
|
76 for(int j=0; j<3; j++) {
|
nuclear@0
|
77 res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j];
|
nuclear@0
|
78 }
|
nuclear@0
|
79 }
|
nuclear@0
|
80 return res;
|
nuclear@0
|
81 }
|
nuclear@0
|
82
|
nuclear@0
|
83 void operator +=(Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@0
|
84 {
|
nuclear@0
|
85 scalar_t *op1 = m1.m[0];
|
nuclear@0
|
86 const scalar_t *op2 = m2.m[0];
|
nuclear@0
|
87
|
nuclear@0
|
88 for(int i=0; i<9; i++) {
|
nuclear@0
|
89 *op1++ += *op2++;
|
nuclear@0
|
90 }
|
nuclear@0
|
91 }
|
nuclear@0
|
92
|
nuclear@0
|
93 void operator -=(Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@0
|
94 {
|
nuclear@0
|
95 scalar_t *op1 = m1.m[0];
|
nuclear@0
|
96 const scalar_t *op2 = m2.m[0];
|
nuclear@0
|
97
|
nuclear@0
|
98 for(int i=0; i<9; i++) {
|
nuclear@0
|
99 *op1++ -= *op2++;
|
nuclear@0
|
100 }
|
nuclear@0
|
101 }
|
nuclear@0
|
102
|
nuclear@0
|
103 void operator *=(Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@0
|
104 {
|
nuclear@0
|
105 Matrix3x3 res;
|
nuclear@0
|
106 for(int i=0; i<3; i++) {
|
nuclear@0
|
107 for(int j=0; j<3; j++) {
|
nuclear@0
|
108 res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j];
|
nuclear@0
|
109 }
|
nuclear@0
|
110 }
|
nuclear@0
|
111 memcpy(m1.m, res.m, 9 * sizeof(scalar_t));
|
nuclear@0
|
112 }
|
nuclear@0
|
113
|
nuclear@0
|
114 Matrix3x3 operator *(const Matrix3x3 &mat, scalar_t scalar)
|
nuclear@0
|
115 {
|
nuclear@0
|
116 Matrix3x3 res;
|
nuclear@0
|
117 const scalar_t *mptr = mat.m[0];
|
nuclear@0
|
118 scalar_t *dptr = res.m[0];
|
nuclear@0
|
119
|
nuclear@0
|
120 for(int i=0; i<9; i++) {
|
nuclear@0
|
121 *dptr++ = *mptr++ * scalar;
|
nuclear@0
|
122 }
|
nuclear@0
|
123 return res;
|
nuclear@0
|
124 }
|
nuclear@0
|
125
|
nuclear@0
|
126 Matrix3x3 operator *(scalar_t scalar, const Matrix3x3 &mat)
|
nuclear@0
|
127 {
|
nuclear@0
|
128 Matrix3x3 res;
|
nuclear@0
|
129 const scalar_t *mptr = mat.m[0];
|
nuclear@0
|
130 scalar_t *dptr = res.m[0];
|
nuclear@0
|
131
|
nuclear@0
|
132 for(int i=0; i<9; i++) {
|
nuclear@0
|
133 *dptr++ = *mptr++ * scalar;
|
nuclear@0
|
134 }
|
nuclear@0
|
135 return res;
|
nuclear@0
|
136 }
|
nuclear@0
|
137
|
nuclear@0
|
138 void operator *=(Matrix3x3 &mat, scalar_t scalar)
|
nuclear@0
|
139 {
|
nuclear@0
|
140 scalar_t *mptr = mat.m[0];
|
nuclear@0
|
141
|
nuclear@0
|
142 for(int i=0; i<9; i++) {
|
nuclear@0
|
143 *mptr++ *= scalar;
|
nuclear@0
|
144 }
|
nuclear@0
|
145 }
|
nuclear@0
|
146
|
nuclear@0
|
147 void Matrix3x3::translate(const Vector2 &trans)
|
nuclear@0
|
148 {
|
nuclear@0
|
149 Matrix3x3 tmat(1, 0, trans.x, 0, 1, trans.y, 0, 0, 1);
|
nuclear@0
|
150 *this *= tmat;
|
nuclear@0
|
151 }
|
nuclear@0
|
152
|
nuclear@0
|
153 void Matrix3x3::set_translation(const Vector2 &trans)
|
nuclear@0
|
154 {
|
nuclear@0
|
155 *this = Matrix3x3(1, 0, trans.x, 0, 1, trans.y, 0, 0, 1);
|
nuclear@0
|
156 }
|
nuclear@0
|
157
|
nuclear@0
|
158 void Matrix3x3::rotate(scalar_t angle)
|
nuclear@0
|
159 {
|
nuclear@0
|
160 scalar_t cos_a = cos(angle);
|
nuclear@0
|
161 scalar_t sin_a = sin(angle);
|
nuclear@0
|
162 Matrix3x3 rmat( cos_a, -sin_a, 0,
|
nuclear@0
|
163 sin_a, cos_a, 0,
|
nuclear@0
|
164 0, 0, 1);
|
nuclear@0
|
165 *this *= rmat;
|
nuclear@0
|
166 }
|
nuclear@0
|
167
|
nuclear@0
|
168 void Matrix3x3::set_rotation(scalar_t angle)
|
nuclear@0
|
169 {
|
nuclear@0
|
170 scalar_t cos_a = cos(angle);
|
nuclear@0
|
171 scalar_t sin_a = sin(angle);
|
nuclear@0
|
172 *this = Matrix3x3(cos_a, -sin_a, 0, sin_a, cos_a, 0, 0, 0, 1);
|
nuclear@0
|
173 }
|
nuclear@0
|
174
|
nuclear@0
|
175 void Matrix3x3::rotate(const Vector3 &euler_angles)
|
nuclear@0
|
176 {
|
nuclear@0
|
177 Matrix3x3 xrot, yrot, zrot;
|
nuclear@0
|
178
|
nuclear@0
|
179 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@0
|
180 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@0
|
181 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@0
|
182
|
nuclear@0
|
183 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@0
|
184 0, 1, 0,
|
nuclear@0
|
185 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@0
|
186
|
nuclear@0
|
187 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@0
|
188 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@0
|
189 0, 0, 1);
|
nuclear@0
|
190
|
nuclear@0
|
191 *this *= xrot * yrot * zrot;
|
nuclear@0
|
192 }
|
nuclear@0
|
193
|
nuclear@0
|
194 void Matrix3x3::set_rotation(const Vector3 &euler_angles)
|
nuclear@0
|
195 {
|
nuclear@0
|
196 Matrix3x3 xrot, yrot, zrot;
|
nuclear@0
|
197
|
nuclear@0
|
198 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@0
|
199 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@0
|
200 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@0
|
201
|
nuclear@0
|
202 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@0
|
203 0, 1, 0,
|
nuclear@0
|
204 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@0
|
205
|
nuclear@0
|
206 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@0
|
207 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@0
|
208 0, 0, 1);
|
nuclear@0
|
209
|
nuclear@0
|
210 *this = xrot * yrot * zrot;
|
nuclear@0
|
211 }
|
nuclear@0
|
212
|
nuclear@0
|
213 void Matrix3x3::rotate(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
214 {
|
nuclear@0
|
215 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@0
|
216 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@0
|
217 scalar_t invcosa = 1-cosa;
|
nuclear@0
|
218 scalar_t nxsq = axis.x * axis.x;
|
nuclear@0
|
219 scalar_t nysq = axis.y * axis.y;
|
nuclear@0
|
220 scalar_t nzsq = axis.z * axis.z;
|
nuclear@0
|
221
|
nuclear@0
|
222 Matrix3x3 xform;
|
nuclear@0
|
223 xform.m[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@0
|
224 xform.m[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@0
|
225 xform.m[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@0
|
226
|
nuclear@0
|
227 xform.m[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@0
|
228 xform.m[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@0
|
229 xform.m[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@0
|
230
|
nuclear@0
|
231 xform.m[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@0
|
232 xform.m[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@0
|
233 xform.m[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@0
|
234
|
nuclear@0
|
235 *this *= xform;
|
nuclear@0
|
236 }
|
nuclear@0
|
237
|
nuclear@0
|
238 void Matrix3x3::set_rotation(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
239 {
|
nuclear@0
|
240 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@0
|
241 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@0
|
242 scalar_t invcosa = 1-cosa;
|
nuclear@0
|
243 scalar_t nxsq = axis.x * axis.x;
|
nuclear@0
|
244 scalar_t nysq = axis.y * axis.y;
|
nuclear@0
|
245 scalar_t nzsq = axis.z * axis.z;
|
nuclear@0
|
246
|
nuclear@0
|
247 reset_identity();
|
nuclear@0
|
248 m[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@0
|
249 m[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@0
|
250 m[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@0
|
251 m[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@0
|
252 m[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@0
|
253 m[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@0
|
254 m[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@0
|
255 m[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@0
|
256 m[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@0
|
257 }
|
nuclear@0
|
258
|
nuclear@0
|
259 // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
|
nuclear@0
|
260 // article "Quaternion Calculus and Fast Animation".
|
nuclear@0
|
261 // adapted from: http://www.geometrictools.com/LibMathematics/Algebra/Wm5Quaternion.inl
|
nuclear@0
|
262 Quaternion Matrix3x3::get_rotation_quat() const
|
nuclear@0
|
263 {
|
nuclear@0
|
264 static const int next[3] = {1, 2, 0};
|
nuclear@0
|
265
|
nuclear@0
|
266 float quat[4];
|
nuclear@0
|
267
|
nuclear@0
|
268 scalar_t trace = m[0][0] + m[1][1] + m[2][2];
|
nuclear@0
|
269 scalar_t root;
|
nuclear@0
|
270
|
nuclear@0
|
271 if(trace > 0.0f) {
|
nuclear@0
|
272 // |w| > 1/2
|
nuclear@0
|
273 root = sqrt(trace + 1.0f); // 2w
|
nuclear@0
|
274 quat[0] = 0.5f * root;
|
nuclear@0
|
275 root = 0.5f / root; // 1 / 4w
|
nuclear@0
|
276 quat[1] = (m[2][1] - m[1][2]) * root;
|
nuclear@0
|
277 quat[2] = (m[0][2] - m[2][0]) * root;
|
nuclear@0
|
278 quat[3] = (m[1][0] - m[0][1]) * root;
|
nuclear@0
|
279 } else {
|
nuclear@0
|
280 // |w| <= 1/2
|
nuclear@0
|
281 int i = 0;
|
nuclear@0
|
282 if(m[1][1] > m[0][0]) {
|
nuclear@0
|
283 i = 1;
|
nuclear@0
|
284 }
|
nuclear@0
|
285 if(m[2][2] > m[i][i]) {
|
nuclear@0
|
286 i = 2;
|
nuclear@0
|
287 }
|
nuclear@0
|
288 int j = next[i];
|
nuclear@0
|
289 int k = next[j];
|
nuclear@0
|
290
|
nuclear@0
|
291 root = sqrt(m[i][i] - m[j][j] - m[k][k] + 1.0f);
|
nuclear@0
|
292 quat[i + 1] = 0.5f * root;
|
nuclear@0
|
293 root = 0.5f / root;
|
nuclear@0
|
294 quat[0] = (m[k][j] - m[j][k]) * root;
|
nuclear@0
|
295 quat[j + 1] = (m[j][i] - m[i][j]) * root;
|
nuclear@0
|
296 quat[k + 1] = (m[k][i] - m[i][k]) * root;
|
nuclear@0
|
297 }
|
nuclear@0
|
298 return Quaternion(quat[0], quat[1], quat[2], quat[3]);
|
nuclear@0
|
299 }
|
nuclear@0
|
300
|
nuclear@0
|
301 void Matrix3x3::scale(const Vector3 &scale_vec)
|
nuclear@0
|
302 {
|
nuclear@0
|
303 Matrix3x3 smat( scale_vec.x, 0, 0,
|
nuclear@0
|
304 0, scale_vec.y, 0,
|
nuclear@0
|
305 0, 0, scale_vec.z);
|
nuclear@0
|
306 *this *= smat;
|
nuclear@0
|
307 }
|
nuclear@0
|
308
|
nuclear@0
|
309 void Matrix3x3::set_scaling(const Vector3 &scale_vec)
|
nuclear@0
|
310 {
|
nuclear@0
|
311 *this = Matrix3x3( scale_vec.x, 0, 0,
|
nuclear@0
|
312 0, scale_vec.y, 0,
|
nuclear@0
|
313 0, 0, scale_vec.z);
|
nuclear@0
|
314 }
|
nuclear@0
|
315
|
nuclear@0
|
316 void Matrix3x3::set_column_vector(const Vector3 &vec, unsigned int col_index)
|
nuclear@0
|
317 {
|
nuclear@0
|
318 m[0][col_index] = vec.x;
|
nuclear@0
|
319 m[1][col_index] = vec.y;
|
nuclear@0
|
320 m[2][col_index] = vec.z;
|
nuclear@0
|
321 }
|
nuclear@0
|
322
|
nuclear@0
|
323 void Matrix3x3::set_row_vector(const Vector3 &vec, unsigned int row_index)
|
nuclear@0
|
324 {
|
nuclear@0
|
325 m[row_index][0] = vec.x;
|
nuclear@0
|
326 m[row_index][1] = vec.y;
|
nuclear@0
|
327 m[row_index][2] = vec.z;
|
nuclear@0
|
328 }
|
nuclear@0
|
329
|
nuclear@0
|
330 Vector3 Matrix3x3::get_column_vector(unsigned int col_index) const
|
nuclear@0
|
331 {
|
nuclear@0
|
332 return Vector3(m[0][col_index], m[1][col_index], m[2][col_index]);
|
nuclear@0
|
333 }
|
nuclear@0
|
334
|
nuclear@0
|
335 Vector3 Matrix3x3::get_row_vector(unsigned int row_index) const
|
nuclear@0
|
336 {
|
nuclear@0
|
337 return Vector3(m[row_index][0], m[row_index][1], m[row_index][2]);
|
nuclear@0
|
338 }
|
nuclear@0
|
339
|
nuclear@0
|
340 void Matrix3x3::transpose()
|
nuclear@0
|
341 {
|
nuclear@0
|
342 Matrix3x3 tmp = *this;
|
nuclear@0
|
343 for(int i=0; i<3; i++) {
|
nuclear@0
|
344 for(int j=0; j<3; j++) {
|
nuclear@0
|
345 m[i][j] = tmp[j][i];
|
nuclear@0
|
346 }
|
nuclear@0
|
347 }
|
nuclear@0
|
348 }
|
nuclear@0
|
349
|
nuclear@0
|
350 Matrix3x3 Matrix3x3::transposed() const
|
nuclear@0
|
351 {
|
nuclear@0
|
352 Matrix3x3 res;
|
nuclear@0
|
353 for(int i=0; i<3; i++) {
|
nuclear@0
|
354 for(int j=0; j<3; j++) {
|
nuclear@0
|
355 res[i][j] = m[j][i];
|
nuclear@0
|
356 }
|
nuclear@0
|
357 }
|
nuclear@0
|
358 return res;
|
nuclear@0
|
359 }
|
nuclear@0
|
360
|
nuclear@0
|
361 scalar_t Matrix3x3::determinant() const
|
nuclear@0
|
362 {
|
nuclear@0
|
363 return m[0][0] * (m[1][1]*m[2][2] - m[1][2]*m[2][1]) -
|
nuclear@0
|
364 m[0][1] * (m[1][0]*m[2][2] - m[1][2]*m[2][0]) +
|
nuclear@0
|
365 m[0][2] * (m[1][0]*m[2][1] - m[1][1]*m[2][0]);
|
nuclear@0
|
366 }
|
nuclear@0
|
367
|
nuclear@0
|
368 Matrix3x3 Matrix3x3::inverse() const
|
nuclear@0
|
369 {
|
nuclear@0
|
370 // TODO: implement 3x3 inverse
|
nuclear@0
|
371 return *this;
|
nuclear@0
|
372 }
|
nuclear@0
|
373
|
nuclear@0
|
374 ostream &operator <<(ostream &out, const Matrix3x3 &mat)
|
nuclear@0
|
375 {
|
nuclear@0
|
376 for(int i=0; i<3; i++) {
|
nuclear@0
|
377 char str[100];
|
nuclear@0
|
378 sprintf(str, "[ %12.5f %12.5f %12.5f ]\n", (float)mat.m[i][0], (float)mat.m[i][1], (float)mat.m[i][2]);
|
nuclear@0
|
379 out << str;
|
nuclear@0
|
380 }
|
nuclear@0
|
381 return out;
|
nuclear@0
|
382 }
|
nuclear@0
|
383
|
nuclear@0
|
384
|
nuclear@0
|
385
|
nuclear@0
|
386 /* ----------------- Matrix4x4 implementation --------------- */
|
nuclear@0
|
387
|
nuclear@0
|
388 Matrix4x4 Matrix4x4::identity = Matrix4x4(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
|
nuclear@0
|
389
|
nuclear@0
|
390 Matrix4x4::Matrix4x4()
|
nuclear@0
|
391 {
|
nuclear@0
|
392 *this = identity;
|
nuclear@0
|
393 }
|
nuclear@0
|
394
|
nuclear@0
|
395 Matrix4x4::Matrix4x4( scalar_t m11, scalar_t m12, scalar_t m13, scalar_t m14,
|
nuclear@0
|
396 scalar_t m21, scalar_t m22, scalar_t m23, scalar_t m24,
|
nuclear@0
|
397 scalar_t m31, scalar_t m32, scalar_t m33, scalar_t m34,
|
nuclear@0
|
398 scalar_t m41, scalar_t m42, scalar_t m43, scalar_t m44)
|
nuclear@0
|
399 {
|
nuclear@0
|
400 m[0][0] = m11; m[0][1] = m12; m[0][2] = m13; m[0][3] = m14;
|
nuclear@0
|
401 m[1][0] = m21; m[1][1] = m22; m[1][2] = m23; m[1][3] = m24;
|
nuclear@0
|
402 m[2][0] = m31; m[2][1] = m32; m[2][2] = m33; m[2][3] = m34;
|
nuclear@0
|
403 m[3][0] = m41; m[3][1] = m42; m[3][2] = m43; m[3][3] = m44;
|
nuclear@0
|
404 }
|
nuclear@0
|
405
|
nuclear@0
|
406 Matrix4x4::Matrix4x4(const mat4_t cmat)
|
nuclear@0
|
407 {
|
nuclear@0
|
408 memcpy(m, cmat, sizeof(mat4_t));
|
nuclear@0
|
409 }
|
nuclear@0
|
410
|
nuclear@0
|
411 Matrix4x4::Matrix4x4(const Matrix3x3 &mat3x3)
|
nuclear@0
|
412 {
|
nuclear@0
|
413 reset_identity();
|
nuclear@0
|
414 for(int i=0; i<3; i++) {
|
nuclear@0
|
415 for(int j=0; j<3; j++) {
|
nuclear@0
|
416 m[i][j] = mat3x3[i][j];
|
nuclear@0
|
417 }
|
nuclear@0
|
418 }
|
nuclear@0
|
419 }
|
nuclear@0
|
420
|
nuclear@0
|
421 Matrix4x4 operator +(const Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@0
|
422 {
|
nuclear@0
|
423 Matrix4x4 res;
|
nuclear@0
|
424 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@0
|
425 scalar_t *dest = res.m[0];
|
nuclear@0
|
426
|
nuclear@0
|
427 for(int i=0; i<16; i++) {
|
nuclear@0
|
428 *dest++ = *op1++ + *op2++;
|
nuclear@0
|
429 }
|
nuclear@0
|
430 return res;
|
nuclear@0
|
431 }
|
nuclear@0
|
432
|
nuclear@0
|
433 Matrix4x4 operator -(const Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@0
|
434 {
|
nuclear@0
|
435 Matrix4x4 res;
|
nuclear@0
|
436 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@0
|
437 scalar_t *dest = res.m[0];
|
nuclear@0
|
438
|
nuclear@0
|
439 for(int i=0; i<16; i++) {
|
nuclear@0
|
440 *dest++ = *op1++ - *op2++;
|
nuclear@0
|
441 }
|
nuclear@0
|
442 return res;
|
nuclear@0
|
443 }
|
nuclear@0
|
444
|
nuclear@0
|
445 void operator +=(Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@0
|
446 {
|
nuclear@0
|
447 scalar_t *op1 = m1.m[0];
|
nuclear@0
|
448 const scalar_t *op2 = m2.m[0];
|
nuclear@0
|
449
|
nuclear@0
|
450 for(int i=0; i<16; i++) {
|
nuclear@0
|
451 *op1++ += *op2++;
|
nuclear@0
|
452 }
|
nuclear@0
|
453 }
|
nuclear@0
|
454
|
nuclear@0
|
455 void operator -=(Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@0
|
456 {
|
nuclear@0
|
457 scalar_t *op1 = m1.m[0];
|
nuclear@0
|
458 const scalar_t *op2 = m2.m[0];
|
nuclear@0
|
459
|
nuclear@0
|
460 for(int i=0; i<16; i++) {
|
nuclear@0
|
461 *op1++ -= *op2++;
|
nuclear@0
|
462 }
|
nuclear@0
|
463 }
|
nuclear@0
|
464
|
nuclear@0
|
465 Matrix4x4 operator *(const Matrix4x4 &mat, scalar_t scalar)
|
nuclear@0
|
466 {
|
nuclear@0
|
467 Matrix4x4 res;
|
nuclear@0
|
468 const scalar_t *mptr = mat.m[0];
|
nuclear@0
|
469 scalar_t *dptr = res.m[0];
|
nuclear@0
|
470
|
nuclear@0
|
471 for(int i=0; i<16; i++) {
|
nuclear@0
|
472 *dptr++ = *mptr++ * scalar;
|
nuclear@0
|
473 }
|
nuclear@0
|
474 return res;
|
nuclear@0
|
475 }
|
nuclear@0
|
476
|
nuclear@0
|
477 Matrix4x4 operator *(scalar_t scalar, const Matrix4x4 &mat)
|
nuclear@0
|
478 {
|
nuclear@0
|
479 Matrix4x4 res;
|
nuclear@0
|
480 const scalar_t *mptr = mat.m[0];
|
nuclear@0
|
481 scalar_t *dptr = res.m[0];
|
nuclear@0
|
482
|
nuclear@0
|
483 for(int i=0; i<16; i++) {
|
nuclear@0
|
484 *dptr++ = *mptr++ * scalar;
|
nuclear@0
|
485 }
|
nuclear@0
|
486 return res;
|
nuclear@0
|
487 }
|
nuclear@0
|
488
|
nuclear@0
|
489 void operator *=(Matrix4x4 &mat, scalar_t scalar)
|
nuclear@0
|
490 {
|
nuclear@0
|
491 scalar_t *mptr = mat.m[0];
|
nuclear@0
|
492
|
nuclear@0
|
493 for(int i=0; i<16; i++) {
|
nuclear@0
|
494 *mptr++ *= scalar;
|
nuclear@0
|
495 }
|
nuclear@0
|
496 }
|
nuclear@0
|
497
|
nuclear@0
|
498 void Matrix4x4::translate(const Vector3 &trans)
|
nuclear@0
|
499 {
|
nuclear@0
|
500 Matrix4x4 tmat(1, 0, 0, trans.x, 0, 1, 0, trans.y, 0, 0, 1, trans.z, 0, 0, 0, 1);
|
nuclear@0
|
501 *this *= tmat;
|
nuclear@0
|
502 }
|
nuclear@0
|
503
|
nuclear@0
|
504 void Matrix4x4::set_translation(const Vector3 &trans)
|
nuclear@0
|
505 {
|
nuclear@0
|
506 *this = Matrix4x4(1, 0, 0, trans.x, 0, 1, 0, trans.y, 0, 0, 1, trans.z, 0, 0, 0, 1);
|
nuclear@0
|
507 }
|
nuclear@0
|
508
|
nuclear@0
|
509 Vector3 Matrix4x4::get_translation() const
|
nuclear@0
|
510 {
|
nuclear@0
|
511 return Vector3(m[0][3], m[1][3], m[2][3]);
|
nuclear@0
|
512 }
|
nuclear@0
|
513
|
nuclear@0
|
514 void Matrix4x4::rotate(const Vector3 &euler_angles)
|
nuclear@0
|
515 {
|
nuclear@0
|
516 Matrix3x3 xrot, yrot, zrot;
|
nuclear@0
|
517
|
nuclear@0
|
518 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@0
|
519 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@0
|
520 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@0
|
521
|
nuclear@0
|
522 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@0
|
523 0, 1, 0,
|
nuclear@0
|
524 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@0
|
525
|
nuclear@0
|
526 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@0
|
527 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@0
|
528 0, 0, 1);
|
nuclear@0
|
529
|
nuclear@0
|
530 *this *= Matrix4x4(xrot * yrot * zrot);
|
nuclear@0
|
531 }
|
nuclear@0
|
532
|
nuclear@0
|
533 void Matrix4x4::set_rotation(const Vector3 &euler_angles)
|
nuclear@0
|
534 {
|
nuclear@0
|
535 Matrix3x3 xrot, yrot, zrot;
|
nuclear@0
|
536
|
nuclear@0
|
537 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@0
|
538 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@0
|
539 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@0
|
540
|
nuclear@0
|
541 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@0
|
542 0, 1, 0,
|
nuclear@0
|
543 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@0
|
544
|
nuclear@0
|
545 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@0
|
546 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@0
|
547 0, 0, 1);
|
nuclear@0
|
548
|
nuclear@0
|
549 *this = Matrix4x4(xrot * yrot * zrot);
|
nuclear@0
|
550 }
|
nuclear@0
|
551
|
nuclear@0
|
552 void Matrix4x4::rotate(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
553 {
|
nuclear@0
|
554 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@0
|
555 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@0
|
556 scalar_t invcosa = 1-cosa;
|
nuclear@0
|
557 scalar_t nxsq = axis.x * axis.x;
|
nuclear@0
|
558 scalar_t nysq = axis.y * axis.y;
|
nuclear@0
|
559 scalar_t nzsq = axis.z * axis.z;
|
nuclear@0
|
560
|
nuclear@0
|
561 Matrix4x4 xform;
|
nuclear@0
|
562 xform[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@0
|
563 xform[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@0
|
564 xform[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@0
|
565 xform[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@0
|
566 xform[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@0
|
567 xform[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@0
|
568 xform[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@0
|
569 xform[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@0
|
570 xform[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@0
|
571
|
nuclear@0
|
572 *this *= xform;
|
nuclear@0
|
573 }
|
nuclear@0
|
574
|
nuclear@0
|
575 void Matrix4x4::set_rotation(const Vector3 &axis, scalar_t angle)
|
nuclear@0
|
576 {
|
nuclear@0
|
577 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@0
|
578 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@0
|
579 scalar_t invcosa = 1-cosa;
|
nuclear@0
|
580 scalar_t nxsq = axis.x * axis.x;
|
nuclear@0
|
581 scalar_t nysq = axis.y * axis.y;
|
nuclear@0
|
582 scalar_t nzsq = axis.z * axis.z;
|
nuclear@0
|
583
|
nuclear@0
|
584 reset_identity();
|
nuclear@0
|
585 m[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@0
|
586 m[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@0
|
587 m[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@0
|
588 m[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@0
|
589 m[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@0
|
590 m[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@0
|
591 m[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@0
|
592 m[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@0
|
593 m[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@0
|
594 }
|
nuclear@0
|
595
|
nuclear@0
|
596 void Matrix4x4::rotate(const Quaternion &quat)
|
nuclear@0
|
597 {
|
nuclear@0
|
598 *this *= quat.get_rotation_matrix();
|
nuclear@0
|
599 }
|
nuclear@0
|
600
|
nuclear@0
|
601 void Matrix4x4::set_rotation(const Quaternion &quat)
|
nuclear@0
|
602 {
|
nuclear@0
|
603 *this = quat.get_rotation_matrix();
|
nuclear@0
|
604 }
|
nuclear@0
|
605
|
nuclear@0
|
606 Quaternion Matrix4x4::get_rotation_quat() const
|
nuclear@0
|
607 {
|
nuclear@0
|
608 Matrix3x3 mat3 = *this;
|
nuclear@0
|
609 return mat3.get_rotation_quat();
|
nuclear@0
|
610 }
|
nuclear@0
|
611
|
nuclear@0
|
612 void Matrix4x4::scale(const Vector4 &scale_vec)
|
nuclear@0
|
613 {
|
nuclear@0
|
614 Matrix4x4 smat( scale_vec.x, 0, 0, 0,
|
nuclear@0
|
615 0, scale_vec.y, 0, 0,
|
nuclear@0
|
616 0, 0, scale_vec.z, 0,
|
nuclear@0
|
617 0, 0, 0, scale_vec.w);
|
nuclear@0
|
618 *this *= smat;
|
nuclear@0
|
619 }
|
nuclear@0
|
620
|
nuclear@0
|
621 void Matrix4x4::set_scaling(const Vector4 &scale_vec)
|
nuclear@0
|
622 {
|
nuclear@0
|
623 *this = Matrix4x4( scale_vec.x, 0, 0, 0,
|
nuclear@0
|
624 0, scale_vec.y, 0, 0,
|
nuclear@0
|
625 0, 0, scale_vec.z, 0,
|
nuclear@0
|
626 0, 0, 0, scale_vec.w);
|
nuclear@0
|
627 }
|
nuclear@0
|
628
|
nuclear@0
|
629 Vector3 Matrix4x4::get_scaling() const
|
nuclear@0
|
630 {
|
nuclear@0
|
631 Vector3 vi = get_row_vector(0);
|
nuclear@0
|
632 Vector3 vj = get_row_vector(1);
|
nuclear@0
|
633 Vector3 vk = get_row_vector(2);
|
nuclear@0
|
634
|
nuclear@0
|
635 return Vector3(vi.length(), vj.length(), vk.length());
|
nuclear@0
|
636 }
|
nuclear@0
|
637
|
nuclear@0
|
638 void Matrix4x4::set_column_vector(const Vector4 &vec, unsigned int col_index)
|
nuclear@0
|
639 {
|
nuclear@0
|
640 m[0][col_index] = vec.x;
|
nuclear@0
|
641 m[1][col_index] = vec.y;
|
nuclear@0
|
642 m[2][col_index] = vec.z;
|
nuclear@0
|
643 m[3][col_index] = vec.w;
|
nuclear@0
|
644 }
|
nuclear@0
|
645
|
nuclear@0
|
646 void Matrix4x4::set_row_vector(const Vector4 &vec, unsigned int row_index)
|
nuclear@0
|
647 {
|
nuclear@0
|
648 m[row_index][0] = vec.x;
|
nuclear@0
|
649 m[row_index][1] = vec.y;
|
nuclear@0
|
650 m[row_index][2] = vec.z;
|
nuclear@0
|
651 m[row_index][3] = vec.w;
|
nuclear@0
|
652 }
|
nuclear@0
|
653
|
nuclear@0
|
654 Vector4 Matrix4x4::get_column_vector(unsigned int col_index) const
|
nuclear@0
|
655 {
|
nuclear@0
|
656 return Vector4(m[0][col_index], m[1][col_index], m[2][col_index], m[3][col_index]);
|
nuclear@0
|
657 }
|
nuclear@0
|
658
|
nuclear@0
|
659 Vector4 Matrix4x4::get_row_vector(unsigned int row_index) const
|
nuclear@0
|
660 {
|
nuclear@0
|
661 return Vector4(m[row_index][0], m[row_index][1], m[row_index][2], m[row_index][3]);
|
nuclear@0
|
662 }
|
nuclear@0
|
663
|
nuclear@0
|
664 void Matrix4x4::transpose()
|
nuclear@0
|
665 {
|
nuclear@0
|
666 Matrix4x4 tmp = *this;
|
nuclear@0
|
667 for(int i=0; i<4; i++) {
|
nuclear@0
|
668 for(int j=0; j<4; j++) {
|
nuclear@0
|
669 m[i][j] = tmp[j][i];
|
nuclear@0
|
670 }
|
nuclear@0
|
671 }
|
nuclear@0
|
672 }
|
nuclear@0
|
673
|
nuclear@0
|
674 Matrix4x4 Matrix4x4::transposed() const
|
nuclear@0
|
675 {
|
nuclear@0
|
676 Matrix4x4 res;
|
nuclear@0
|
677 for(int i=0; i<4; i++) {
|
nuclear@0
|
678 for(int j=0; j<4; j++) {
|
nuclear@0
|
679 res[i][j] = m[j][i];
|
nuclear@0
|
680 }
|
nuclear@0
|
681 }
|
nuclear@0
|
682 return res;
|
nuclear@0
|
683 }
|
nuclear@0
|
684
|
nuclear@0
|
685 scalar_t Matrix4x4::determinant() const
|
nuclear@0
|
686 {
|
nuclear@0
|
687 scalar_t det11 = (m[1][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@0
|
688 (m[1][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) +
|
nuclear@0
|
689 (m[1][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2]));
|
nuclear@0
|
690
|
nuclear@0
|
691 scalar_t det12 = (m[1][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@0
|
692 (m[1][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@0
|
693 (m[1][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2]));
|
nuclear@0
|
694
|
nuclear@0
|
695 scalar_t det13 = (m[1][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) -
|
nuclear@0
|
696 (m[1][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@0
|
697 (m[1][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@0
|
698
|
nuclear@0
|
699 scalar_t det14 = (m[1][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) -
|
nuclear@0
|
700 (m[1][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) +
|
nuclear@0
|
701 (m[1][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@0
|
702
|
nuclear@0
|
703 return m[0][0] * det11 - m[0][1] * det12 + m[0][2] * det13 - m[0][3] * det14;
|
nuclear@0
|
704 }
|
nuclear@0
|
705
|
nuclear@0
|
706
|
nuclear@0
|
707 Matrix4x4 Matrix4x4::adjoint() const
|
nuclear@0
|
708 {
|
nuclear@0
|
709 Matrix4x4 coef;
|
nuclear@0
|
710
|
nuclear@0
|
711 coef.m[0][0] = (m[1][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@0
|
712 (m[1][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) +
|
nuclear@0
|
713 (m[1][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2]));
|
nuclear@0
|
714 coef.m[0][1] = (m[1][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@0
|
715 (m[1][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@0
|
716 (m[1][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2]));
|
nuclear@0
|
717 coef.m[0][2] = (m[1][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) -
|
nuclear@0
|
718 (m[1][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@0
|
719 (m[1][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@0
|
720 coef.m[0][3] = (m[1][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) -
|
nuclear@0
|
721 (m[1][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) +
|
nuclear@0
|
722 (m[1][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@0
|
723
|
nuclear@0
|
724 coef.m[1][0] = (m[0][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@0
|
725 (m[0][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) +
|
nuclear@0
|
726 (m[0][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2]));
|
nuclear@0
|
727 coef.m[1][1] = (m[0][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@0
|
728 (m[0][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@0
|
729 (m[0][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2]));
|
nuclear@0
|
730 coef.m[1][2] = (m[0][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) -
|
nuclear@0
|
731 (m[0][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@0
|
732 (m[0][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@0
|
733 coef.m[1][3] = (m[0][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) -
|
nuclear@0
|
734 (m[0][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) +
|
nuclear@0
|
735 (m[0][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@0
|
736
|
nuclear@0
|
737 coef.m[2][0] = (m[0][1] * (m[1][2] * m[3][3] - m[3][2] * m[1][3])) -
|
nuclear@0
|
738 (m[0][2] * (m[1][1] * m[3][3] - m[3][1] * m[1][3])) +
|
nuclear@0
|
739 (m[0][3] * (m[1][1] * m[3][2] - m[3][1] * m[1][2]));
|
nuclear@0
|
740 coef.m[2][1] = (m[0][0] * (m[1][2] * m[3][3] - m[3][2] * m[1][3])) -
|
nuclear@0
|
741 (m[0][2] * (m[1][0] * m[3][3] - m[3][0] * m[1][3])) +
|
nuclear@0
|
742 (m[0][3] * (m[1][0] * m[3][2] - m[3][0] * m[1][2]));
|
nuclear@0
|
743 coef.m[2][2] = (m[0][0] * (m[1][1] * m[3][3] - m[3][1] * m[1][3])) -
|
nuclear@0
|
744 (m[0][1] * (m[1][0] * m[3][3] - m[3][0] * m[1][3])) +
|
nuclear@0
|
745 (m[0][3] * (m[1][0] * m[3][1] - m[3][0] * m[1][1]));
|
nuclear@0
|
746 coef.m[2][3] = (m[0][0] * (m[1][1] * m[3][2] - m[3][1] * m[1][2])) -
|
nuclear@0
|
747 (m[0][1] * (m[1][0] * m[3][2] - m[3][0] * m[1][2])) +
|
nuclear@0
|
748 (m[0][2] * (m[1][0] * m[3][1] - m[3][0] * m[1][1]));
|
nuclear@0
|
749
|
nuclear@0
|
750 coef.m[3][0] = (m[0][1] * (m[1][2] * m[2][3] - m[2][2] * m[1][3])) -
|
nuclear@0
|
751 (m[0][2] * (m[1][1] * m[2][3] - m[2][1] * m[1][3])) +
|
nuclear@0
|
752 (m[0][3] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]));
|
nuclear@0
|
753 coef.m[3][1] = (m[0][0] * (m[1][2] * m[2][3] - m[2][2] * m[1][3])) -
|
nuclear@0
|
754 (m[0][2] * (m[1][0] * m[2][3] - m[2][0] * m[1][3])) +
|
nuclear@0
|
755 (m[0][3] * (m[1][0] * m[2][2] - m[2][0] * m[1][2]));
|
nuclear@0
|
756 coef.m[3][2] = (m[0][0] * (m[1][1] * m[2][3] - m[2][1] * m[1][3])) -
|
nuclear@0
|
757 (m[0][1] * (m[1][0] * m[2][3] - m[2][0] * m[1][3])) +
|
nuclear@0
|
758 (m[0][3] * (m[1][0] * m[2][1] - m[2][0] * m[1][1]));
|
nuclear@0
|
759 coef.m[3][3] = (m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])) -
|
nuclear@0
|
760 (m[0][1] * (m[1][0] * m[2][2] - m[2][0] * m[1][2])) +
|
nuclear@0
|
761 (m[0][2] * (m[1][0] * m[2][1] - m[2][0] * m[1][1]));
|
nuclear@0
|
762
|
nuclear@0
|
763 coef.transpose();
|
nuclear@0
|
764
|
nuclear@0
|
765 for(int i=0; i<4; i++) {
|
nuclear@0
|
766 for(int j=0; j<4; j++) {
|
nuclear@0
|
767 coef.m[i][j] = j%2 ? -coef.m[i][j] : coef.m[i][j];
|
nuclear@0
|
768 if(i%2) coef.m[i][j] = -coef.m[i][j];
|
nuclear@0
|
769 }
|
nuclear@0
|
770 }
|
nuclear@0
|
771
|
nuclear@0
|
772 return coef;
|
nuclear@0
|
773 }
|
nuclear@0
|
774
|
nuclear@0
|
775 Matrix4x4 Matrix4x4::inverse() const
|
nuclear@0
|
776 {
|
nuclear@0
|
777 Matrix4x4 adj = adjoint();
|
nuclear@0
|
778
|
nuclear@0
|
779 return adj * (1.0f / determinant());
|
nuclear@0
|
780 }
|
nuclear@0
|
781
|
nuclear@0
|
782 void Matrix4x4::keep_upper_left()
|
nuclear@0
|
783 {
|
nuclear@0
|
784 m[3][0] = m[3][1] = m[3][2] = m[0][3] = m[1][3] = m[2][3] = 0.0f;
|
nuclear@0
|
785 m[3][3] = 1.0f;
|
nuclear@0
|
786 }
|
nuclear@0
|
787
|
nuclear@0
|
788 void Matrix4x4::clear_upper_left()
|
nuclear@0
|
789 {
|
nuclear@0
|
790 m[0][0] = m[1][1] = m[2][2] = 1.0f;
|
nuclear@0
|
791 m[0][1] = m[0][2] = m[1][2] = m[1][0] = m[2][0] = m[2][1] = 0.0f;
|
nuclear@0
|
792 }
|
nuclear@0
|
793
|
nuclear@0
|
794 ostream &operator <<(ostream &out, const Matrix4x4 &mat)
|
nuclear@0
|
795 {
|
nuclear@0
|
796 for(int i=0; i<4; i++) {
|
nuclear@0
|
797 char str[100];
|
nuclear@0
|
798 sprintf(str, "[ %12.5f %12.5f %12.5f %12.5f ]\n", (float)mat.m[i][0], (float)mat.m[i][1], (float)mat.m[i][2], (float)mat.m[i][3]);
|
nuclear@0
|
799 out << str;
|
nuclear@0
|
800 }
|
nuclear@0
|
801 return out;
|
nuclear@0
|
802 }
|