rev |
line source |
nuclear@0
|
1 #include <stdio.h>
|
nuclear@0
|
2 #include <stdlib.h>
|
nuclear@0
|
3 #include <float.h>
|
nuclear@0
|
4 #include <assert.h>
|
nuclear@0
|
5 #include "opengl.h"
|
nuclear@0
|
6 #include "mesh.h"
|
nuclear@0
|
7 #include "xform_node.h"
|
nuclear@0
|
8 #include "logger.h"
|
nuclear@0
|
9
|
nuclear@0
|
10 int Mesh::global_sdr_loc[NUM_MESH_ATTR] = { 0, 1, 2, 3, 4, 5 };
|
nuclear@0
|
11 unsigned int Mesh::intersect_mode = ISECT_DEFAULT;
|
nuclear@0
|
12 float Mesh::vertex_sel_dist = 0.01;
|
nuclear@0
|
13 float Mesh::vis_vecsize = 1.0;
|
nuclear@0
|
14
|
nuclear@0
|
15 Mesh::Mesh()
|
nuclear@0
|
16 {
|
nuclear@0
|
17 clear();
|
nuclear@0
|
18
|
nuclear@0
|
19 glGenBuffers(NUM_MESH_ATTR + 1, buffer_objects);
|
nuclear@0
|
20
|
nuclear@0
|
21 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
22 vattr[i].vbo = buffer_objects[i];
|
nuclear@0
|
23 }
|
nuclear@0
|
24 ibo = buffer_objects[NUM_MESH_ATTR];
|
nuclear@0
|
25 wire_ibo = 0;
|
nuclear@0
|
26 }
|
nuclear@0
|
27
|
nuclear@0
|
28 Mesh::~Mesh()
|
nuclear@0
|
29 {
|
nuclear@0
|
30 glDeleteBuffers(NUM_MESH_ATTR + 1, buffer_objects);
|
nuclear@0
|
31
|
nuclear@0
|
32 if(wire_ibo) {
|
nuclear@0
|
33 glDeleteBuffers(1, &wire_ibo);
|
nuclear@0
|
34 }
|
nuclear@0
|
35 }
|
nuclear@0
|
36
|
nuclear@0
|
37 void Mesh::set_name(const char *name)
|
nuclear@0
|
38 {
|
nuclear@0
|
39 this->name = name;
|
nuclear@0
|
40 }
|
nuclear@0
|
41
|
nuclear@0
|
42 const char *Mesh::get_name() const
|
nuclear@0
|
43 {
|
nuclear@0
|
44 return name.c_str();
|
nuclear@0
|
45 }
|
nuclear@0
|
46
|
nuclear@0
|
47 bool Mesh::has_attrib(int attr) const
|
nuclear@0
|
48 {
|
nuclear@0
|
49 if(attr < 0 || attr >= NUM_MESH_ATTR) {
|
nuclear@0
|
50 return false;
|
nuclear@0
|
51 }
|
nuclear@0
|
52
|
nuclear@0
|
53 // if neither of these is valid, then nobody has set this attribute
|
nuclear@0
|
54 return vattr[attr].vbo_valid || vattr[attr].data_valid;
|
nuclear@0
|
55 }
|
nuclear@0
|
56
|
nuclear@0
|
57 void Mesh::clear()
|
nuclear@0
|
58 {
|
nuclear@0
|
59 bones.clear();
|
nuclear@0
|
60
|
nuclear@0
|
61 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
62 vattr[i].nelem = 0;
|
nuclear@0
|
63 vattr[i].vbo_valid = false;
|
nuclear@0
|
64 vattr[i].data_valid = false;
|
nuclear@0
|
65 //vattr[i].sdr_loc = -1;
|
nuclear@0
|
66 vattr[i].data.clear();
|
nuclear@0
|
67 }
|
nuclear@0
|
68 ibo_valid = false;
|
nuclear@0
|
69 idata.clear();
|
nuclear@0
|
70
|
nuclear@0
|
71 wire_ibo_valid = false;
|
nuclear@0
|
72
|
nuclear@0
|
73 nverts = nfaces = 0;
|
nuclear@0
|
74
|
nuclear@0
|
75 bsph_valid = false;
|
nuclear@0
|
76 aabb_valid = false;
|
nuclear@0
|
77 }
|
nuclear@0
|
78
|
nuclear@0
|
79 float *Mesh::set_attrib_data(int attrib, int nelem, unsigned int num, const float *data)
|
nuclear@0
|
80 {
|
nuclear@0
|
81 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
|
nuclear@0
|
82 error_log("%s: invalid attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
83 return 0;
|
nuclear@0
|
84 }
|
nuclear@0
|
85
|
nuclear@0
|
86 if(nverts && num != nverts) {
|
nuclear@0
|
87 error_log("%s: attribute count missmatch (%d instead of %d)\n", __FUNCTION__, num, nverts);
|
nuclear@0
|
88 return 0;
|
nuclear@0
|
89 }
|
nuclear@0
|
90 nverts = num;
|
nuclear@0
|
91
|
nuclear@0
|
92 vattr[attrib].data.clear();
|
nuclear@0
|
93 vattr[attrib].nelem = nelem;
|
nuclear@0
|
94 vattr[attrib].data.resize(num * nelem);
|
nuclear@0
|
95
|
nuclear@0
|
96 if(data) {
|
nuclear@0
|
97 memcpy(&vattr[attrib].data[0], data, num * nelem * sizeof *data);
|
nuclear@0
|
98 }
|
nuclear@0
|
99
|
nuclear@0
|
100 vattr[attrib].data_valid = true;
|
nuclear@0
|
101 vattr[attrib].vbo_valid = false;
|
nuclear@0
|
102 return &vattr[attrib].data[0];
|
nuclear@0
|
103 }
|
nuclear@0
|
104
|
nuclear@0
|
105 float *Mesh::get_attrib_data(int attrib)
|
nuclear@0
|
106 {
|
nuclear@0
|
107 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
|
nuclear@0
|
108 error_log("%s: invalid attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
109 return 0;
|
nuclear@0
|
110 }
|
nuclear@0
|
111
|
nuclear@0
|
112 vattr[attrib].vbo_valid = false;
|
nuclear@0
|
113 return (float*)((const Mesh*)this)->get_attrib_data(attrib);
|
nuclear@0
|
114 }
|
nuclear@0
|
115
|
nuclear@0
|
116 const float *Mesh::get_attrib_data(int attrib) const
|
nuclear@0
|
117 {
|
nuclear@0
|
118 if(attrib < 0 || attrib >= NUM_MESH_ATTR) {
|
nuclear@0
|
119 error_log("%s: invalid attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
120 return 0;
|
nuclear@0
|
121 }
|
nuclear@0
|
122
|
nuclear@0
|
123 if(!vattr[attrib].data_valid) {
|
nuclear@0
|
124 #if GL_ES_VERSION_2_0
|
nuclear@0
|
125 error_log("%s: can't read back attrib data on CrippledGL ES\n", __FUNCTION__);
|
nuclear@0
|
126 return 0;
|
nuclear@0
|
127 #else
|
nuclear@0
|
128 if(!vattr[attrib].vbo_valid) {
|
nuclear@0
|
129 error_log("%s: unavailable attrib: %d\n", __FUNCTION__, attrib);
|
nuclear@0
|
130 return 0;
|
nuclear@0
|
131 }
|
nuclear@0
|
132
|
nuclear@0
|
133 // local data copy is unavailable, grab the data from the vbo
|
nuclear@0
|
134 Mesh *m = (Mesh*)this;
|
nuclear@0
|
135 m->vattr[attrib].data.resize(nverts * vattr[attrib].nelem);
|
nuclear@0
|
136
|
nuclear@0
|
137 glBindBuffer(GL_ARRAY_BUFFER, vattr[attrib].vbo);
|
nuclear@0
|
138 void *data = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_ONLY);
|
nuclear@0
|
139 memcpy(&m->vattr[attrib].data[0], data, nverts * vattr[attrib].nelem * sizeof(float));
|
nuclear@0
|
140 glUnmapBuffer(GL_ARRAY_BUFFER);
|
nuclear@0
|
141
|
nuclear@0
|
142 vattr[attrib].data_valid = true;
|
nuclear@0
|
143 #endif
|
nuclear@0
|
144 }
|
nuclear@0
|
145
|
nuclear@0
|
146 return &vattr[attrib].data[0];
|
nuclear@0
|
147 }
|
nuclear@0
|
148
|
nuclear@0
|
149 void Mesh::set_attrib(int attrib, int idx, const Vector4 &v)
|
nuclear@0
|
150 {
|
nuclear@0
|
151 float *data = get_attrib_data(attrib);
|
nuclear@0
|
152 if(data) {
|
nuclear@0
|
153 data += idx * vattr[attrib].nelem;
|
nuclear@0
|
154 for(int i=0; i<vattr[attrib].nelem; i++) {
|
nuclear@0
|
155 data[i] = v[i];
|
nuclear@0
|
156 }
|
nuclear@0
|
157 }
|
nuclear@0
|
158 }
|
nuclear@0
|
159
|
nuclear@0
|
160 Vector4 Mesh::get_attrib(int attrib, int idx) const
|
nuclear@0
|
161 {
|
nuclear@0
|
162 Vector4 v(0.0, 0.0, 0.0, 1.0);
|
nuclear@0
|
163 const float *data = get_attrib_data(attrib);
|
nuclear@0
|
164 if(data) {
|
nuclear@0
|
165 data += idx * vattr[attrib].nelem;
|
nuclear@0
|
166 for(int i=0; i<vattr[attrib].nelem; i++) {
|
nuclear@0
|
167 v[i] = data[i];
|
nuclear@0
|
168 }
|
nuclear@0
|
169 }
|
nuclear@0
|
170 return v;
|
nuclear@0
|
171 }
|
nuclear@0
|
172
|
nuclear@0
|
173 unsigned int *Mesh::set_index_data(int num, const unsigned int *indices)
|
nuclear@0
|
174 {
|
nuclear@0
|
175 int nidx = nfaces * 3;
|
nuclear@0
|
176 if(nidx && num != nidx) {
|
nuclear@0
|
177 error_log("%s: index count missmatch (%d instead of %d)\n", __FUNCTION__, num, nidx);
|
nuclear@0
|
178 return 0;
|
nuclear@0
|
179 }
|
nuclear@0
|
180 nfaces = num / 3;
|
nuclear@0
|
181
|
nuclear@0
|
182 idata.clear();
|
nuclear@0
|
183 idata.resize(num);
|
nuclear@0
|
184
|
nuclear@0
|
185 if(indices) {
|
nuclear@0
|
186 memcpy(&idata[0], indices, num * sizeof *indices);
|
nuclear@0
|
187 }
|
nuclear@0
|
188
|
nuclear@0
|
189 idata_valid = true;
|
nuclear@0
|
190 ibo_valid = false;
|
nuclear@0
|
191
|
nuclear@0
|
192 return &idata[0];
|
nuclear@0
|
193 }
|
nuclear@0
|
194
|
nuclear@0
|
195 unsigned int *Mesh::get_index_data()
|
nuclear@0
|
196 {
|
nuclear@0
|
197 ibo_valid = false;
|
nuclear@0
|
198 return (unsigned int*)((const Mesh*)this)->get_index_data();
|
nuclear@0
|
199 }
|
nuclear@0
|
200
|
nuclear@0
|
201 const unsigned int *Mesh::get_index_data() const
|
nuclear@0
|
202 {
|
nuclear@0
|
203 if(!idata_valid) {
|
nuclear@0
|
204 #if GL_ES_VERSION_2_0
|
nuclear@0
|
205 error_log("%s: can't read back index data in CrippledGL ES\n", __FUNCTION__);
|
nuclear@0
|
206 return 0;
|
nuclear@0
|
207 #else
|
nuclear@0
|
208 if(!ibo_valid) {
|
nuclear@0
|
209 error_log("%s: indices unavailable\n", __FUNCTION__);
|
nuclear@0
|
210 return 0;
|
nuclear@0
|
211 }
|
nuclear@0
|
212
|
nuclear@0
|
213 // local data copy is unavailable, gram the data from the ibo
|
nuclear@0
|
214 Mesh *m = (Mesh*)this;
|
nuclear@0
|
215 int nidx = nfaces * 3;
|
nuclear@0
|
216 m->idata.resize(nidx);
|
nuclear@0
|
217
|
nuclear@0
|
218 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
|
nuclear@0
|
219 void *data = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_READ_ONLY);
|
nuclear@0
|
220 memcpy(&m->idata[0], data, nidx * sizeof(unsigned int));
|
nuclear@0
|
221 glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
|
nuclear@0
|
222
|
nuclear@0
|
223 idata_valid = true;
|
nuclear@0
|
224 #endif
|
nuclear@0
|
225 }
|
nuclear@0
|
226
|
nuclear@0
|
227 return &idata[0];
|
nuclear@0
|
228 }
|
nuclear@0
|
229
|
nuclear@0
|
230 void Mesh::append(const Mesh &mesh)
|
nuclear@0
|
231 {
|
nuclear@0
|
232 unsigned int idxoffs = nverts;
|
nuclear@0
|
233
|
nuclear@0
|
234 nverts += mesh.nverts;
|
nuclear@0
|
235 nfaces += mesh.nfaces;
|
nuclear@0
|
236
|
nuclear@0
|
237 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
238 if(has_attrib(i) && mesh.has_attrib(i)) {
|
nuclear@0
|
239 // force validating the data arrays
|
nuclear@0
|
240 get_attrib_data(i);
|
nuclear@0
|
241 mesh.get_attrib_data(i);
|
nuclear@0
|
242
|
nuclear@0
|
243 // append the mesh data
|
nuclear@0
|
244 vattr[i].data.insert(vattr[i].data.end(), mesh.vattr[i].data.begin(), mesh.vattr[i].data.end());
|
nuclear@0
|
245 }
|
nuclear@0
|
246 }
|
nuclear@0
|
247
|
nuclear@0
|
248 if(ibo_valid || idata_valid) {
|
nuclear@0
|
249 // make index arrays valid
|
nuclear@0
|
250 get_index_data();
|
nuclear@0
|
251 mesh.get_index_data();
|
nuclear@0
|
252
|
nuclear@0
|
253 size_t orig_sz = idata.size();
|
nuclear@0
|
254
|
nuclear@0
|
255 idata.insert(idata.end(), mesh.idata.begin(), mesh.idata.end());
|
nuclear@0
|
256
|
nuclear@0
|
257 // fixup all the new indices
|
nuclear@0
|
258 for(size_t i=orig_sz; i<idata.size(); i++) {
|
nuclear@0
|
259 idata[i] += idxoffs;
|
nuclear@0
|
260 }
|
nuclear@0
|
261 }
|
nuclear@0
|
262
|
nuclear@0
|
263 // fuck everything
|
nuclear@0
|
264 wire_ibo_valid = false;
|
nuclear@0
|
265 aabb_valid = false;
|
nuclear@0
|
266 bsph_valid = false;
|
nuclear@0
|
267 }
|
nuclear@0
|
268
|
nuclear@0
|
269 // assemble a complete vertex by adding all the useful attributes
|
nuclear@0
|
270 void Mesh::vertex(float x, float y, float z)
|
nuclear@0
|
271 {
|
nuclear@0
|
272 cur_val[MESH_ATTR_VERTEX] = Vector4(x, y, z, 1.0f);
|
nuclear@0
|
273 vattr[MESH_ATTR_VERTEX].data_valid = true;
|
nuclear@0
|
274 vattr[MESH_ATTR_VERTEX].nelem = 3;
|
nuclear@0
|
275
|
nuclear@0
|
276 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
277 if(vattr[i].data_valid) {
|
nuclear@0
|
278 for(int j=0; j<vattr[MESH_ATTR_VERTEX].nelem; j++) {
|
nuclear@0
|
279 vattr[i].data.push_back(cur_val[i][j]);
|
nuclear@0
|
280 }
|
nuclear@0
|
281 }
|
nuclear@0
|
282 vattr[i].vbo_valid = false;
|
nuclear@0
|
283 }
|
nuclear@0
|
284
|
nuclear@0
|
285 if(idata_valid) {
|
nuclear@0
|
286 idata.clear();
|
nuclear@0
|
287 }
|
nuclear@0
|
288 ibo_valid = idata_valid = false;
|
nuclear@0
|
289 }
|
nuclear@0
|
290
|
nuclear@0
|
291 void Mesh::normal(float nx, float ny, float nz)
|
nuclear@0
|
292 {
|
nuclear@0
|
293 cur_val[MESH_ATTR_NORMAL] = Vector4(nx, ny, nz, 1.0f);
|
nuclear@0
|
294 vattr[MESH_ATTR_NORMAL].data_valid = true;
|
nuclear@0
|
295 vattr[MESH_ATTR_NORMAL].nelem = 3;
|
nuclear@0
|
296 }
|
nuclear@0
|
297
|
nuclear@0
|
298 void Mesh::tangent(float tx, float ty, float tz)
|
nuclear@0
|
299 {
|
nuclear@0
|
300 cur_val[MESH_ATTR_TANGENT] = Vector4(tx, ty, tz, 1.0f);
|
nuclear@0
|
301 vattr[MESH_ATTR_TANGENT].data_valid = true;
|
nuclear@0
|
302 vattr[MESH_ATTR_TANGENT].nelem = 3;
|
nuclear@0
|
303 }
|
nuclear@0
|
304
|
nuclear@0
|
305 void Mesh::texcoord(float u, float v, float w)
|
nuclear@0
|
306 {
|
nuclear@0
|
307 cur_val[MESH_ATTR_TEXCOORD] = Vector4(u, v, w, 1.0f);
|
nuclear@0
|
308 vattr[MESH_ATTR_TEXCOORD].data_valid = true;
|
nuclear@0
|
309 vattr[MESH_ATTR_TEXCOORD].nelem = 3;
|
nuclear@0
|
310 }
|
nuclear@0
|
311
|
nuclear@0
|
312 void Mesh::boneweights(float w1, float w2, float w3, float w4)
|
nuclear@0
|
313 {
|
nuclear@0
|
314 cur_val[MESH_ATTR_BONEWEIGHTS] = Vector4(w1, w2, w3, w4);
|
nuclear@0
|
315 vattr[MESH_ATTR_BONEWEIGHTS].data_valid = true;
|
nuclear@0
|
316 vattr[MESH_ATTR_BONEWEIGHTS].nelem = 4;
|
nuclear@0
|
317 }
|
nuclear@0
|
318
|
nuclear@0
|
319 void Mesh::boneidx(int idx1, int idx2, int idx3, int idx4)
|
nuclear@0
|
320 {
|
nuclear@0
|
321 cur_val[MESH_ATTR_BONEIDX] = Vector4(idx1, idx2, idx3, idx4);
|
nuclear@0
|
322 vattr[MESH_ATTR_BONEIDX].data_valid = true;
|
nuclear@0
|
323 vattr[MESH_ATTR_BONEIDX].nelem = 4;
|
nuclear@0
|
324 }
|
nuclear@0
|
325
|
nuclear@0
|
326 /// static function
|
nuclear@0
|
327 void Mesh::set_attrib_location(int attr, int loc)
|
nuclear@0
|
328 {
|
nuclear@0
|
329 if(attr < 0 || attr >= NUM_MESH_ATTR) {
|
nuclear@0
|
330 return;
|
nuclear@0
|
331 }
|
nuclear@0
|
332 Mesh::global_sdr_loc[attr] = loc;
|
nuclear@0
|
333 }
|
nuclear@0
|
334
|
nuclear@0
|
335 /// static function
|
nuclear@0
|
336 int Mesh::get_attrib_location(int attr)
|
nuclear@0
|
337 {
|
nuclear@0
|
338 if(attr < 0 || attr >= NUM_MESH_ATTR) {
|
nuclear@0
|
339 return -1;
|
nuclear@0
|
340 }
|
nuclear@0
|
341 return Mesh::global_sdr_loc[attr];
|
nuclear@0
|
342 }
|
nuclear@0
|
343
|
nuclear@0
|
344 /// static function
|
nuclear@0
|
345 void Mesh::clear_attrib_locations()
|
nuclear@0
|
346 {
|
nuclear@0
|
347 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
348 Mesh::global_sdr_loc[i] = -1;
|
nuclear@0
|
349 }
|
nuclear@0
|
350 }
|
nuclear@0
|
351
|
nuclear@0
|
352 /// static function
|
nuclear@0
|
353 void Mesh::set_vis_vecsize(float sz)
|
nuclear@0
|
354 {
|
nuclear@0
|
355 Mesh::vis_vecsize = sz;
|
nuclear@0
|
356 }
|
nuclear@0
|
357
|
nuclear@0
|
358 float Mesh::get_vis_vecsize()
|
nuclear@0
|
359 {
|
nuclear@0
|
360 return Mesh::vis_vecsize;
|
nuclear@0
|
361 }
|
nuclear@0
|
362
|
nuclear@0
|
363 void Mesh::apply_xform(const Matrix4x4 &xform)
|
nuclear@0
|
364 {
|
nuclear@0
|
365 Matrix4x4 dir_xform = xform;
|
nuclear@0
|
366 dir_xform[0][3] = dir_xform[1][3] = dir_xform[2][3] = 0.0f;
|
nuclear@0
|
367 dir_xform[3][0] = dir_xform[3][1] = dir_xform[3][2] = 0.0f;
|
nuclear@0
|
368 dir_xform[3][3] = 1.0f;
|
nuclear@0
|
369
|
nuclear@0
|
370 apply_xform(xform, dir_xform);
|
nuclear@0
|
371 }
|
nuclear@0
|
372
|
nuclear@0
|
373 void Mesh::apply_xform(const Matrix4x4 &xform, const Matrix4x4 &dir_xform)
|
nuclear@0
|
374 {
|
nuclear@0
|
375 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
376 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
377 set_attrib(MESH_ATTR_VERTEX, i, v.transformed(xform));
|
nuclear@0
|
378
|
nuclear@0
|
379 if(has_attrib(MESH_ATTR_NORMAL)) {
|
nuclear@0
|
380 Vector3 n = get_attrib(MESH_ATTR_NORMAL, i);
|
nuclear@0
|
381 set_attrib(MESH_ATTR_NORMAL, i, n.transformed(dir_xform));
|
nuclear@0
|
382 }
|
nuclear@0
|
383 if(has_attrib(MESH_ATTR_TANGENT)) {
|
nuclear@0
|
384 Vector3 t = get_attrib(MESH_ATTR_TANGENT, i);
|
nuclear@0
|
385 set_attrib(MESH_ATTR_TANGENT, i, t.transformed(dir_xform));
|
nuclear@0
|
386 }
|
nuclear@0
|
387 }
|
nuclear@0
|
388 }
|
nuclear@0
|
389
|
nuclear@0
|
390 int Mesh::add_bone(XFormNode *bone)
|
nuclear@0
|
391 {
|
nuclear@0
|
392 int idx = bones.size();
|
nuclear@0
|
393 bones.push_back(bone);
|
nuclear@0
|
394 return idx;
|
nuclear@0
|
395 }
|
nuclear@0
|
396
|
nuclear@0
|
397 const XFormNode *Mesh::get_bone(int idx) const
|
nuclear@0
|
398 {
|
nuclear@0
|
399 if(idx < 0 || idx >= (int)bones.size()) {
|
nuclear@0
|
400 return 0;
|
nuclear@0
|
401 }
|
nuclear@0
|
402 return bones[idx];
|
nuclear@0
|
403 }
|
nuclear@0
|
404
|
nuclear@0
|
405 int Mesh::get_bones_count() const
|
nuclear@0
|
406 {
|
nuclear@0
|
407 return (int)bones.size();
|
nuclear@0
|
408 }
|
nuclear@0
|
409
|
nuclear@0
|
410 void Mesh::draw() const
|
nuclear@0
|
411 {
|
nuclear@0
|
412 ((Mesh*)this)->update_buffers();
|
nuclear@0
|
413
|
nuclear@0
|
414 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
|
nuclear@0
|
415 error_log("%s: invalid vertex buffer\n", __FUNCTION__);
|
nuclear@0
|
416 return;
|
nuclear@0
|
417 }
|
nuclear@0
|
418 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
|
nuclear@0
|
419 error_log("%s: shader attribute location for vertices unset\n", __FUNCTION__);
|
nuclear@0
|
420 return;
|
nuclear@0
|
421 }
|
nuclear@0
|
422
|
nuclear@0
|
423 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
424 int loc = global_sdr_loc[i];
|
nuclear@0
|
425 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
426 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
427 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
|
nuclear@0
|
428 glEnableVertexAttribArray(loc);
|
nuclear@0
|
429 }
|
nuclear@0
|
430 }
|
nuclear@0
|
431 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
432
|
nuclear@0
|
433 if(ibo_valid) {
|
nuclear@0
|
434 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
|
nuclear@0
|
435 glDrawElements(GL_TRIANGLES, nfaces * 3, GL_UNSIGNED_INT, 0);
|
nuclear@0
|
436 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
437 } else {
|
nuclear@0
|
438 glDrawArrays(GL_TRIANGLES, 0, nverts);
|
nuclear@0
|
439 }
|
nuclear@0
|
440
|
nuclear@0
|
441 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
442 int loc = global_sdr_loc[i];
|
nuclear@0
|
443 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
444 glDisableVertexAttribArray(loc);
|
nuclear@0
|
445 }
|
nuclear@0
|
446 }
|
nuclear@0
|
447 }
|
nuclear@0
|
448
|
nuclear@0
|
449 void Mesh::draw_wire() const
|
nuclear@0
|
450 {
|
nuclear@0
|
451 ((Mesh*)this)->update_wire_ibo();
|
nuclear@0
|
452
|
nuclear@0
|
453 if(!vattr[MESH_ATTR_VERTEX].vbo_valid || !wire_ibo_valid) {
|
nuclear@0
|
454 error_log("%s: invalid vertex buffer\n", __FUNCTION__);
|
nuclear@0
|
455 return;
|
nuclear@0
|
456 }
|
nuclear@0
|
457 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
|
nuclear@0
|
458 error_log("%s: shader attribute location for vertices unset\n", __FUNCTION__);
|
nuclear@0
|
459 return;
|
nuclear@0
|
460 }
|
nuclear@0
|
461
|
nuclear@0
|
462 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
463 int loc = global_sdr_loc[i];
|
nuclear@0
|
464 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
465 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
466 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
|
nuclear@0
|
467 glEnableVertexAttribArray(loc);
|
nuclear@0
|
468 }
|
nuclear@0
|
469 }
|
nuclear@0
|
470 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
471
|
nuclear@0
|
472 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
|
nuclear@0
|
473 glDrawElements(GL_LINES, nfaces * 6, GL_UNSIGNED_INT, 0);
|
nuclear@0
|
474 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
475
|
nuclear@0
|
476 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
477 int loc = global_sdr_loc[i];
|
nuclear@0
|
478 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
479 glDisableVertexAttribArray(loc);
|
nuclear@0
|
480 }
|
nuclear@0
|
481 }
|
nuclear@0
|
482 }
|
nuclear@0
|
483
|
nuclear@0
|
484 void Mesh::draw_vertices() const
|
nuclear@0
|
485 {
|
nuclear@0
|
486 ((Mesh*)this)->update_buffers();
|
nuclear@0
|
487
|
nuclear@0
|
488 if(!vattr[MESH_ATTR_VERTEX].vbo_valid) {
|
nuclear@0
|
489 error_log("%s: invalid vertex buffer\n", __FUNCTION__);
|
nuclear@0
|
490 return;
|
nuclear@0
|
491 }
|
nuclear@0
|
492 if(global_sdr_loc[MESH_ATTR_VERTEX] == -1) {
|
nuclear@0
|
493 error_log("%s: shader attribute location for vertices unset\n", __FUNCTION__);
|
nuclear@0
|
494 return;
|
nuclear@0
|
495 }
|
nuclear@0
|
496
|
nuclear@0
|
497 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
498 int loc = global_sdr_loc[i];
|
nuclear@0
|
499 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
500 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
501 glVertexAttribPointer(loc, vattr[i].nelem, GL_FLOAT, GL_FALSE, 0, 0);
|
nuclear@0
|
502 glEnableVertexAttribArray(loc);
|
nuclear@0
|
503 }
|
nuclear@0
|
504 }
|
nuclear@0
|
505 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
506
|
nuclear@0
|
507 glDrawArrays(GL_POINTS, 0, nverts);
|
nuclear@0
|
508
|
nuclear@0
|
509 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
510 int loc = global_sdr_loc[i];
|
nuclear@0
|
511 if(loc >= 0 && vattr[i].vbo_valid) {
|
nuclear@0
|
512 glDisableVertexAttribArray(loc);
|
nuclear@0
|
513 }
|
nuclear@0
|
514 }
|
nuclear@0
|
515 }
|
nuclear@0
|
516
|
nuclear@0
|
517 void Mesh::draw_normals() const
|
nuclear@0
|
518 {
|
nuclear@0
|
519 #ifdef USE_OLDGL
|
nuclear@0
|
520 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
|
nuclear@0
|
521 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
522 Vector3 *norm = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
|
nuclear@0
|
523
|
nuclear@0
|
524 if(!varr || !norm || vert_loc < 0) {
|
nuclear@0
|
525 return;
|
nuclear@0
|
526 }
|
nuclear@0
|
527
|
nuclear@0
|
528 glBegin(GL_LINES);
|
nuclear@0
|
529 for(size_t i=0; i<nverts; i++) {
|
nuclear@0
|
530 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
|
nuclear@0
|
531 Vector3 end = varr[i] + norm[i] * vis_vecsize;
|
nuclear@0
|
532 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
|
nuclear@0
|
533 }
|
nuclear@0
|
534 glEnd();
|
nuclear@0
|
535
|
nuclear@0
|
536 #endif // USE_OLDGL
|
nuclear@0
|
537 }
|
nuclear@0
|
538
|
nuclear@0
|
539 void Mesh::draw_tangents() const
|
nuclear@0
|
540 {
|
nuclear@0
|
541 #ifdef USE_OLDGL
|
nuclear@0
|
542 int vert_loc = global_sdr_loc[MESH_ATTR_VERTEX];
|
nuclear@0
|
543 Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
544 Vector3 *tang = (Vector3*)get_attrib_data(MESH_ATTR_TANGENT);
|
nuclear@0
|
545
|
nuclear@0
|
546 if(!varr || !tang || vert_loc < 0) {
|
nuclear@0
|
547 return;
|
nuclear@0
|
548 }
|
nuclear@0
|
549
|
nuclear@0
|
550 glBegin(GL_LINES);
|
nuclear@0
|
551 for(size_t i=0; i<nverts; i++) {
|
nuclear@0
|
552 glVertexAttrib3f(vert_loc, varr[i].x, varr[i].y, varr[i].z);
|
nuclear@0
|
553 Vector3 end = varr[i] + tang[i] * vis_vecsize;
|
nuclear@0
|
554 glVertexAttrib3f(vert_loc, end.x, end.y, end.z);
|
nuclear@0
|
555 }
|
nuclear@0
|
556 glEnd();
|
nuclear@0
|
557
|
nuclear@0
|
558 #endif // USE_OLDGL
|
nuclear@0
|
559 }
|
nuclear@0
|
560
|
nuclear@0
|
561 void Mesh::get_aabbox(Vector3 *vmin, Vector3 *vmax) const
|
nuclear@0
|
562 {
|
nuclear@0
|
563 if(!aabb_valid) {
|
nuclear@0
|
564 ((Mesh*)this)->calc_aabb();
|
nuclear@0
|
565 }
|
nuclear@0
|
566 *vmin = aabb.min;
|
nuclear@0
|
567 *vmax = aabb.max;
|
nuclear@0
|
568 }
|
nuclear@0
|
569
|
nuclear@0
|
570 const AABox &Mesh::get_aabbox() const
|
nuclear@0
|
571 {
|
nuclear@0
|
572 if(!aabb_valid) {
|
nuclear@0
|
573 ((Mesh*)this)->calc_aabb();
|
nuclear@0
|
574 }
|
nuclear@0
|
575 return aabb;
|
nuclear@0
|
576 }
|
nuclear@0
|
577
|
nuclear@0
|
578 float Mesh::get_bsphere(Vector3 *center, float *rad) const
|
nuclear@0
|
579 {
|
nuclear@0
|
580 if(!bsph_valid) {
|
nuclear@0
|
581 ((Mesh*)this)->calc_bsph();
|
nuclear@0
|
582 }
|
nuclear@0
|
583 *center = bsph.center;
|
nuclear@0
|
584 *rad = bsph.radius;
|
nuclear@0
|
585 return bsph.radius;
|
nuclear@0
|
586 }
|
nuclear@0
|
587
|
nuclear@0
|
588 const Sphere &Mesh::get_bsphere() const
|
nuclear@0
|
589 {
|
nuclear@0
|
590 if(!bsph_valid) {
|
nuclear@0
|
591 ((Mesh*)this)->calc_bsph();
|
nuclear@0
|
592 }
|
nuclear@0
|
593 return bsph;
|
nuclear@0
|
594 }
|
nuclear@0
|
595
|
nuclear@0
|
596 /// static function
|
nuclear@0
|
597 void Mesh::set_intersect_mode(unsigned int mode)
|
nuclear@0
|
598 {
|
nuclear@0
|
599 Mesh::intersect_mode = mode;
|
nuclear@0
|
600 }
|
nuclear@0
|
601
|
nuclear@0
|
602 /// static function
|
nuclear@0
|
603 unsigned int Mesh::get_intersect_mode()
|
nuclear@0
|
604 {
|
nuclear@0
|
605 return Mesh::intersect_mode;
|
nuclear@0
|
606 }
|
nuclear@0
|
607
|
nuclear@0
|
608 /// static function
|
nuclear@0
|
609 void Mesh::set_vertex_select_distance(float dist)
|
nuclear@0
|
610 {
|
nuclear@0
|
611 Mesh::vertex_sel_dist = dist;
|
nuclear@0
|
612 }
|
nuclear@0
|
613
|
nuclear@0
|
614 /// static function
|
nuclear@0
|
615 float Mesh::get_vertex_select_distance()
|
nuclear@0
|
616 {
|
nuclear@0
|
617 return Mesh::vertex_sel_dist;
|
nuclear@0
|
618 }
|
nuclear@0
|
619
|
nuclear@0
|
620 bool Mesh::intersect(const Ray &ray, HitPoint *hit) const
|
nuclear@0
|
621 {
|
nuclear@0
|
622 assert((Mesh::intersect_mode & (ISECT_VERTICES | ISECT_FACE)) != (ISECT_VERTICES | ISECT_FACE));
|
nuclear@0
|
623
|
nuclear@0
|
624 const Vector3 *varr = (Vector3*)get_attrib_data(MESH_ATTR_VERTEX);
|
nuclear@0
|
625 const Vector3 *narr = (Vector3*)get_attrib_data(MESH_ATTR_NORMAL);
|
nuclear@0
|
626 if(!varr) {
|
nuclear@0
|
627 return false;
|
nuclear@0
|
628 }
|
nuclear@0
|
629 const unsigned int *idxarr = get_index_data();
|
nuclear@0
|
630
|
nuclear@0
|
631 // first test with the bounding box
|
nuclear@0
|
632 AABox box;
|
nuclear@0
|
633 get_aabbox(&box.min, &box.max);
|
nuclear@0
|
634 if(!box.intersect(ray)) {
|
nuclear@0
|
635 return false;
|
nuclear@0
|
636 }
|
nuclear@0
|
637
|
nuclear@0
|
638 HitPoint nearest_hit;
|
nuclear@0
|
639 nearest_hit.dist = FLT_MAX;
|
nuclear@0
|
640 nearest_hit.obj = 0;
|
nuclear@0
|
641
|
nuclear@0
|
642 if(Mesh::intersect_mode & ISECT_VERTICES) {
|
nuclear@0
|
643 // we asked for "intersections" with the vertices of the mesh
|
nuclear@0
|
644 long nearest_vidx = -1;
|
nuclear@0
|
645 float thres_sq = Mesh::vertex_sel_dist * Mesh::vertex_sel_dist;
|
nuclear@0
|
646
|
nuclear@0
|
647 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
648
|
nuclear@0
|
649 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(narr[i], ray.dir) > 0) {
|
nuclear@0
|
650 continue;
|
nuclear@0
|
651 }
|
nuclear@0
|
652
|
nuclear@0
|
653 // project the vertex onto the ray line
|
nuclear@0
|
654 float t = dot_product(varr[i] - ray.origin, ray.dir);
|
nuclear@0
|
655 Vector3 vproj = ray.origin + ray.dir * t;
|
nuclear@0
|
656
|
nuclear@0
|
657 float dist_sq = (vproj - varr[i]).length_sq();
|
nuclear@0
|
658 if(dist_sq < thres_sq) {
|
nuclear@0
|
659 if(!hit) {
|
nuclear@0
|
660 return true;
|
nuclear@0
|
661 }
|
nuclear@0
|
662 if(t < nearest_hit.dist) {
|
nuclear@0
|
663 nearest_hit.dist = t;
|
nuclear@0
|
664 nearest_vidx = i;
|
nuclear@0
|
665 }
|
nuclear@0
|
666 }
|
nuclear@0
|
667 }
|
nuclear@0
|
668
|
nuclear@0
|
669 if(nearest_vidx != -1) {
|
nuclear@0
|
670 hitvert = varr[nearest_vidx];
|
nuclear@0
|
671 nearest_hit.obj = &hitvert;
|
nuclear@0
|
672 }
|
nuclear@0
|
673
|
nuclear@0
|
674 } else {
|
nuclear@0
|
675 // regular intersection test with polygons
|
nuclear@0
|
676
|
nuclear@0
|
677 for(unsigned int i=0; i<nfaces; i++) {
|
nuclear@0
|
678 Triangle face(i, varr, idxarr);
|
nuclear@0
|
679
|
nuclear@0
|
680 // ignore back-facing polygons if the mode flags include ISECT_FRONT
|
nuclear@0
|
681 if((Mesh::intersect_mode & ISECT_FRONT) && dot_product(face.get_normal(), ray.dir) > 0) {
|
nuclear@0
|
682 continue;
|
nuclear@0
|
683 }
|
nuclear@0
|
684
|
nuclear@0
|
685 HitPoint fhit;
|
nuclear@0
|
686 if(face.intersect(ray, hit ? &fhit : 0)) {
|
nuclear@0
|
687 if(!hit) {
|
nuclear@0
|
688 return true;
|
nuclear@0
|
689 }
|
nuclear@0
|
690 if(fhit.dist < nearest_hit.dist) {
|
nuclear@0
|
691 nearest_hit = fhit;
|
nuclear@0
|
692 hitface = face;
|
nuclear@0
|
693 }
|
nuclear@0
|
694 }
|
nuclear@0
|
695 }
|
nuclear@0
|
696 }
|
nuclear@0
|
697
|
nuclear@0
|
698 if(nearest_hit.obj) {
|
nuclear@0
|
699 if(hit) {
|
nuclear@0
|
700 *hit = nearest_hit;
|
nuclear@0
|
701
|
nuclear@0
|
702 // if we are interested in the mesh and not the faces set obj to this
|
nuclear@0
|
703 if(Mesh::intersect_mode & ISECT_FACE) {
|
nuclear@0
|
704 hit->obj = &hitface;
|
nuclear@0
|
705 } else if(Mesh::intersect_mode & ISECT_VERTICES) {
|
nuclear@0
|
706 hit->obj = &hitvert;
|
nuclear@0
|
707 } else {
|
nuclear@0
|
708 hit->obj = this;
|
nuclear@0
|
709 }
|
nuclear@0
|
710 }
|
nuclear@0
|
711 return true;
|
nuclear@0
|
712 }
|
nuclear@0
|
713 return false;
|
nuclear@0
|
714 }
|
nuclear@0
|
715
|
nuclear@0
|
716
|
nuclear@0
|
717 // ------ private member functions ------
|
nuclear@0
|
718
|
nuclear@0
|
719 void Mesh::calc_aabb()
|
nuclear@0
|
720 {
|
nuclear@0
|
721 // the cast is to force calling the const version which doesn't invalidate
|
nuclear@0
|
722 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
|
nuclear@0
|
723 return;
|
nuclear@0
|
724 }
|
nuclear@0
|
725
|
nuclear@0
|
726 aabb.min = Vector3(FLT_MAX, FLT_MAX, FLT_MAX);
|
nuclear@0
|
727 aabb.max = -aabb.min;
|
nuclear@0
|
728
|
nuclear@0
|
729 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
730 Vector4 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
731 for(int j=0; j<3; j++) {
|
nuclear@0
|
732 if(v[j] < aabb.min[j]) {
|
nuclear@0
|
733 aabb.min[j] = v[j];
|
nuclear@0
|
734 }
|
nuclear@0
|
735 if(v[j] > aabb.max[j]) {
|
nuclear@0
|
736 aabb.max[j] = v[j];
|
nuclear@0
|
737 }
|
nuclear@0
|
738 }
|
nuclear@0
|
739 }
|
nuclear@0
|
740 aabb_valid = true;
|
nuclear@0
|
741 }
|
nuclear@0
|
742
|
nuclear@0
|
743 void Mesh::calc_bsph()
|
nuclear@0
|
744 {
|
nuclear@0
|
745 // the cast is to force calling the const version which doesn't invalidate
|
nuclear@0
|
746 if(!((const Mesh*)this)->get_attrib_data(MESH_ATTR_VERTEX)) {
|
nuclear@0
|
747 return;
|
nuclear@0
|
748 }
|
nuclear@0
|
749
|
nuclear@0
|
750 Vector3 v;
|
nuclear@0
|
751 bsph.center = Vector3(0, 0, 0);
|
nuclear@0
|
752
|
nuclear@0
|
753 // first find the center
|
nuclear@0
|
754 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
755 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
756 bsph.center += v;
|
nuclear@0
|
757 }
|
nuclear@0
|
758 bsph.center /= (float)nverts;
|
nuclear@0
|
759
|
nuclear@0
|
760 bsph.radius = 0.0f;
|
nuclear@0
|
761 for(unsigned int i=0; i<nverts; i++) {
|
nuclear@0
|
762 v = get_attrib(MESH_ATTR_VERTEX, i);
|
nuclear@0
|
763 float dist_sq = (v - bsph.center).length_sq();
|
nuclear@0
|
764 if(dist_sq > bsph.radius) {
|
nuclear@0
|
765 bsph.radius = dist_sq;
|
nuclear@0
|
766 }
|
nuclear@0
|
767 }
|
nuclear@0
|
768 bsph.radius = sqrt(bsph.radius);
|
nuclear@0
|
769
|
nuclear@0
|
770 bsph_valid = true;
|
nuclear@0
|
771 }
|
nuclear@0
|
772
|
nuclear@0
|
773 void Mesh::update_buffers()
|
nuclear@0
|
774 {
|
nuclear@0
|
775 for(int i=0; i<NUM_MESH_ATTR; i++) {
|
nuclear@0
|
776 if(has_attrib(i) && !vattr[i].vbo_valid) {
|
nuclear@0
|
777 glBindBuffer(GL_ARRAY_BUFFER, vattr[i].vbo);
|
nuclear@0
|
778 glBufferData(GL_ARRAY_BUFFER, nverts * vattr[i].nelem * sizeof(float), &vattr[i].data[0], GL_STATIC_DRAW);
|
nuclear@0
|
779 vattr[i].vbo_valid = true;
|
nuclear@0
|
780 }
|
nuclear@0
|
781 }
|
nuclear@0
|
782 glBindBuffer(GL_ARRAY_BUFFER, 0);
|
nuclear@0
|
783
|
nuclear@0
|
784 if(idata_valid && !ibo_valid) {
|
nuclear@0
|
785 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
|
nuclear@0
|
786 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 3 * sizeof(unsigned int), &idata[0], GL_STATIC_DRAW);
|
nuclear@0
|
787 ibo_valid = true;
|
nuclear@0
|
788 }
|
nuclear@0
|
789 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
790 }
|
nuclear@0
|
791
|
nuclear@0
|
792 void Mesh::update_wire_ibo()
|
nuclear@0
|
793 {
|
nuclear@0
|
794 update_buffers();
|
nuclear@0
|
795
|
nuclear@0
|
796 if(wire_ibo_valid) {
|
nuclear@0
|
797 return;
|
nuclear@0
|
798 }
|
nuclear@0
|
799
|
nuclear@0
|
800 if(!wire_ibo) {
|
nuclear@0
|
801 glGenBuffers(1, &wire_ibo);
|
nuclear@0
|
802 }
|
nuclear@0
|
803
|
nuclear@0
|
804 unsigned int *wire_idxarr = new unsigned int[nfaces * 6];
|
nuclear@0
|
805 unsigned int *dest = wire_idxarr;
|
nuclear@0
|
806
|
nuclear@0
|
807 if(ibo_valid) {
|
nuclear@0
|
808 // we're dealing with an indexed mesh
|
nuclear@0
|
809 const unsigned int *idxarr = ((const Mesh*)this)->get_index_data();
|
nuclear@0
|
810
|
nuclear@0
|
811 for(unsigned int i=0; i<nfaces; i++) {
|
nuclear@0
|
812 *dest++ = idxarr[0];
|
nuclear@0
|
813 *dest++ = idxarr[1];
|
nuclear@0
|
814 *dest++ = idxarr[1];
|
nuclear@0
|
815 *dest++ = idxarr[2];
|
nuclear@0
|
816 *dest++ = idxarr[2];
|
nuclear@0
|
817 *dest++ = idxarr[0];
|
nuclear@0
|
818 idxarr += 3;
|
nuclear@0
|
819 }
|
nuclear@0
|
820 } else {
|
nuclear@0
|
821 // not an indexed mesh ...
|
nuclear@0
|
822 for(unsigned int i=0; i<nfaces; i++) {
|
nuclear@0
|
823 int vidx = i * 3;
|
nuclear@0
|
824 *dest++ = vidx;
|
nuclear@0
|
825 *dest++ = vidx + 1;
|
nuclear@0
|
826 *dest++ = vidx + 1;
|
nuclear@0
|
827 *dest++ = vidx + 2;
|
nuclear@0
|
828 *dest++ = vidx + 2;
|
nuclear@0
|
829 *dest++ = vidx;
|
nuclear@0
|
830 }
|
nuclear@0
|
831 }
|
nuclear@0
|
832
|
nuclear@0
|
833 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, wire_ibo);
|
nuclear@0
|
834 glBufferData(GL_ELEMENT_ARRAY_BUFFER, nfaces * 6 * sizeof(unsigned int), wire_idxarr, GL_STATIC_DRAW);
|
nuclear@0
|
835 delete [] wire_idxarr;
|
nuclear@0
|
836 wire_ibo_valid = true;
|
nuclear@0
|
837 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
nuclear@0
|
838 }
|
nuclear@0
|
839
|
nuclear@0
|
840
|
nuclear@0
|
841 // ------ class Triangle ------
|
nuclear@0
|
842 Triangle::Triangle()
|
nuclear@0
|
843 {
|
nuclear@0
|
844 normal_valid = false;
|
nuclear@0
|
845 id = -1;
|
nuclear@0
|
846 }
|
nuclear@0
|
847
|
nuclear@0
|
848 Triangle::Triangle(const Vector3 &v0, const Vector3 &v1, const Vector3 &v2)
|
nuclear@0
|
849 {
|
nuclear@0
|
850 v[0] = v0;
|
nuclear@0
|
851 v[1] = v1;
|
nuclear@0
|
852 v[2] = v2;
|
nuclear@0
|
853 normal_valid = false;
|
nuclear@0
|
854 id = -1;
|
nuclear@0
|
855 }
|
nuclear@0
|
856
|
nuclear@0
|
857 Triangle::Triangle(int n, const Vector3 *varr, const unsigned int *idxarr)
|
nuclear@0
|
858 {
|
nuclear@0
|
859 if(idxarr) {
|
nuclear@0
|
860 v[0] = varr[idxarr[n * 3]];
|
nuclear@0
|
861 v[1] = varr[idxarr[n * 3 + 1]];
|
nuclear@0
|
862 v[2] = varr[idxarr[n * 3 + 2]];
|
nuclear@0
|
863 } else {
|
nuclear@0
|
864 v[0] = varr[n * 3];
|
nuclear@0
|
865 v[1] = varr[n * 3 + 1];
|
nuclear@0
|
866 v[2] = varr[n * 3 + 2];
|
nuclear@0
|
867 }
|
nuclear@0
|
868 normal_valid = false;
|
nuclear@0
|
869 id = n;
|
nuclear@0
|
870 }
|
nuclear@0
|
871
|
nuclear@0
|
872 void Triangle::calc_normal()
|
nuclear@0
|
873 {
|
nuclear@0
|
874 normal = cross_product(v[1] - v[0], v[2] - v[0]).normalized();
|
nuclear@0
|
875 normal_valid = true;
|
nuclear@0
|
876 }
|
nuclear@0
|
877
|
nuclear@0
|
878 const Vector3 &Triangle::get_normal() const
|
nuclear@0
|
879 {
|
nuclear@0
|
880 if(!normal_valid) {
|
nuclear@0
|
881 ((Triangle*)this)->calc_normal();
|
nuclear@0
|
882 }
|
nuclear@0
|
883 return normal;
|
nuclear@0
|
884 }
|
nuclear@0
|
885
|
nuclear@0
|
886 void Triangle::transform(const Matrix4x4 &xform)
|
nuclear@0
|
887 {
|
nuclear@0
|
888 v[0].transform(xform);
|
nuclear@0
|
889 v[1].transform(xform);
|
nuclear@0
|
890 v[2].transform(xform);
|
nuclear@0
|
891 normal_valid = false;
|
nuclear@0
|
892 }
|
nuclear@0
|
893
|
nuclear@0
|
894 void Triangle::draw() const
|
nuclear@0
|
895 {
|
nuclear@0
|
896 Vector3 n[3];
|
nuclear@0
|
897 n[0] = get_normal();
|
nuclear@0
|
898 n[1] = get_normal();
|
nuclear@0
|
899 n[2] = get_normal();
|
nuclear@0
|
900
|
nuclear@0
|
901 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
|
nuclear@0
|
902 int nloc = Mesh::get_attrib_location(MESH_ATTR_NORMAL);
|
nuclear@0
|
903
|
nuclear@0
|
904 glEnableVertexAttribArray(vloc);
|
nuclear@0
|
905 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
|
nuclear@0
|
906 glVertexAttribPointer(nloc, 3, GL_FLOAT, GL_FALSE, 0, &n[0].x);
|
nuclear@0
|
907
|
nuclear@0
|
908 glDrawArrays(GL_TRIANGLES, 0, 3);
|
nuclear@0
|
909
|
nuclear@0
|
910 glDisableVertexAttribArray(vloc);
|
nuclear@0
|
911 glDisableVertexAttribArray(nloc);
|
nuclear@0
|
912 CHECKGLERR;
|
nuclear@0
|
913 }
|
nuclear@0
|
914
|
nuclear@0
|
915 void Triangle::draw_wire() const
|
nuclear@0
|
916 {
|
nuclear@0
|
917 static const int idxarr[] = {0, 1, 1, 2, 2, 0};
|
nuclear@0
|
918 int vloc = Mesh::get_attrib_location(MESH_ATTR_VERTEX);
|
nuclear@0
|
919
|
nuclear@0
|
920 glEnableVertexAttribArray(vloc);
|
nuclear@0
|
921 glVertexAttribPointer(vloc, 3, GL_FLOAT, GL_FALSE, 0, &v[0].x);
|
nuclear@0
|
922
|
nuclear@0
|
923 glDrawElements(GL_LINES, 6, GL_UNSIGNED_INT, idxarr);
|
nuclear@0
|
924
|
nuclear@0
|
925 glDisableVertexAttribArray(vloc);
|
nuclear@0
|
926 CHECKGLERR;
|
nuclear@0
|
927 }
|
nuclear@0
|
928
|
nuclear@0
|
929 Vector3 Triangle::calc_barycentric(const Vector3 &pos) const
|
nuclear@0
|
930 {
|
nuclear@0
|
931 Vector3 norm = get_normal();
|
nuclear@0
|
932
|
nuclear@0
|
933 float area_sq = fabs(dot_product(cross_product(v[1] - v[0], v[2] - v[0]), norm));
|
nuclear@0
|
934 if(area_sq < 1e-5) {
|
nuclear@0
|
935 return Vector3(0, 0, 0);
|
nuclear@0
|
936 }
|
nuclear@0
|
937
|
nuclear@0
|
938 float asq0 = fabs(dot_product(cross_product(v[1] - pos, v[2] - pos), norm));
|
nuclear@0
|
939 float asq1 = fabs(dot_product(cross_product(v[2] - pos, v[0] - pos), norm));
|
nuclear@0
|
940 float asq2 = fabs(dot_product(cross_product(v[0] - pos, v[1] - pos), norm));
|
nuclear@0
|
941
|
nuclear@0
|
942 return Vector3(asq0 / area_sq, asq1 / area_sq, asq2 / area_sq);
|
nuclear@0
|
943 }
|
nuclear@0
|
944
|
nuclear@0
|
945 bool Triangle::intersect(const Ray &ray, HitPoint *hit) const
|
nuclear@0
|
946 {
|
nuclear@0
|
947 Vector3 normal = get_normal();
|
nuclear@0
|
948
|
nuclear@0
|
949 float ndotdir = dot_product(ray.dir, normal);
|
nuclear@0
|
950 if(fabs(ndotdir) < 1e-4) {
|
nuclear@0
|
951 return false;
|
nuclear@0
|
952 }
|
nuclear@0
|
953
|
nuclear@0
|
954 Vector3 vertdir = v[0] - ray.origin;
|
nuclear@0
|
955 float t = dot_product(normal, vertdir) / ndotdir;
|
nuclear@0
|
956
|
nuclear@0
|
957 Vector3 pos = ray.origin + ray.dir * t;
|
nuclear@0
|
958 Vector3 bary = calc_barycentric(pos);
|
nuclear@0
|
959
|
nuclear@0
|
960 if(bary.x + bary.y + bary.z > 1.00001) {
|
nuclear@0
|
961 return false;
|
nuclear@0
|
962 }
|
nuclear@0
|
963
|
nuclear@0
|
964 if(hit) {
|
nuclear@0
|
965 hit->dist = t;
|
nuclear@0
|
966 hit->pos = ray.origin + ray.dir * t;
|
nuclear@0
|
967 hit->normal = normal;
|
nuclear@0
|
968 hit->obj = this;
|
nuclear@0
|
969 }
|
nuclear@0
|
970 return true;
|
nuclear@0
|
971 }
|