nuclear@27: /* nuclear@27: libvmath - a vector math library nuclear@27: Copyright (C) 2004-2011 John Tsiombikas nuclear@27: nuclear@27: This program is free software: you can redistribute it and/or modify nuclear@27: it under the terms of the GNU Lesser General Public License as published nuclear@27: by the Free Software Foundation, either version 3 of the License, or nuclear@27: (at your option) any later version. nuclear@27: nuclear@27: This program is distributed in the hope that it will be useful, nuclear@27: but WITHOUT ANY WARRANTY; without even the implied warranty of nuclear@27: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the nuclear@27: GNU Lesser General Public License for more details. nuclear@27: nuclear@27: You should have received a copy of the GNU Lesser General Public License nuclear@27: along with this program. If not, see . nuclear@27: */ nuclear@27: nuclear@27: #include nuclear@27: nuclear@27: static inline scalar_t smoothstep(float a, float b, float x) nuclear@27: { nuclear@27: if(x < a) return 0.0; nuclear@27: if(x >= b) return 1.0; nuclear@27: nuclear@27: x = (x - a) / (b - a); nuclear@27: return x * x * (3.0 - 2.0 * x); nuclear@27: } nuclear@27: nuclear@27: /** Generates a random number in [0, range) */ nuclear@27: static inline scalar_t frand(scalar_t range) nuclear@27: { nuclear@27: return range * (scalar_t)rand() / (scalar_t)RAND_MAX; nuclear@27: } nuclear@27: nuclear@27: /** Generates a random vector on the surface of a sphere */ nuclear@27: static inline vec3_t sphrand(scalar_t rad) nuclear@27: { nuclear@27: scalar_t u = (scalar_t)rand() / RAND_MAX; nuclear@27: scalar_t v = (scalar_t)rand() / RAND_MAX; nuclear@27: nuclear@27: scalar_t theta = 2.0 * M_PI * u; nuclear@27: scalar_t phi = acos(2.0 * v - 1.0); nuclear@27: nuclear@27: vec3_t res; nuclear@27: res.x = rad * cos(theta) * sin(phi); nuclear@27: res.y = rad * sin(theta) * sin(phi); nuclear@27: res.z = rad * cos(phi); nuclear@27: return res; nuclear@27: } nuclear@27: nuclear@27: /** linear interpolation */ nuclear@27: static inline scalar_t lerp(scalar_t a, scalar_t b, scalar_t t) nuclear@27: { nuclear@27: return a + (b - a) * t; nuclear@27: }