goat3d
diff libs/vmath/vector.inl @ 28:9ba3e2fb8a33
modified vmath to work with vs2012, still memory corruptions in 3dsmax...
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 29 Sep 2013 08:46:19 +0300 |
parents | 4deb0b12fe14 |
children |
line diff
1.1 --- a/libs/vmath/vector.inl Sun Sep 29 08:20:19 2013 +0300 1.2 +++ b/libs/vmath/vector.inl Sun Sep 29 08:46:19 2013 +0300 1.3 @@ -23,7 +23,7 @@ 1.4 #endif /* __cplusplus */ 1.5 1.6 /* C 2D vector functions */ 1.7 -static inline vec2_t v2_cons(scalar_t x, scalar_t y) 1.8 +static VMATH_INLINE vec2_t v2_cons(scalar_t x, scalar_t y) 1.9 { 1.10 vec2_t v; 1.11 v.x = x; 1.12 @@ -31,12 +31,12 @@ 1.13 return v; 1.14 } 1.15 1.16 -static inline void v2_print(FILE *fp, vec2_t v) 1.17 +static VMATH_INLINE void v2_print(FILE *fp, vec2_t v) 1.18 { 1.19 fprintf(fp, "[ %.4f %.4f ]", v.x, v.y); 1.20 } 1.21 1.22 -static inline vec2_t v2_add(vec2_t v1, vec2_t v2) 1.23 +static VMATH_INLINE vec2_t v2_add(vec2_t v1, vec2_t v2) 1.24 { 1.25 vec2_t res; 1.26 res.x = v1.x + v2.x; 1.27 @@ -44,7 +44,7 @@ 1.28 return res; 1.29 } 1.30 1.31 -static inline vec2_t v2_sub(vec2_t v1, vec2_t v2) 1.32 +static VMATH_INLINE vec2_t v2_sub(vec2_t v1, vec2_t v2) 1.33 { 1.34 vec2_t res; 1.35 res.x = v1.x - v2.x; 1.36 @@ -52,7 +52,7 @@ 1.37 return res; 1.38 } 1.39 1.40 -static inline vec2_t v2_scale(vec2_t v, scalar_t s) 1.41 +static VMATH_INLINE vec2_t v2_scale(vec2_t v, scalar_t s) 1.42 { 1.43 vec2_t res; 1.44 res.x = v.x * s; 1.45 @@ -60,22 +60,22 @@ 1.46 return res; 1.47 } 1.48 1.49 -static inline scalar_t v2_dot(vec2_t v1, vec2_t v2) 1.50 +static VMATH_INLINE scalar_t v2_dot(vec2_t v1, vec2_t v2) 1.51 { 1.52 return v1.x * v2.x + v1.y * v2.y; 1.53 } 1.54 1.55 -static inline scalar_t v2_length(vec2_t v) 1.56 +static VMATH_INLINE scalar_t v2_length(vec2_t v) 1.57 { 1.58 return sqrt(v.x * v.x + v.y * v.y); 1.59 } 1.60 1.61 -static inline scalar_t v2_length_sq(vec2_t v) 1.62 +static VMATH_INLINE scalar_t v2_length_sq(vec2_t v) 1.63 { 1.64 return v.x * v.x + v.y * v.y; 1.65 } 1.66 1.67 -static inline vec2_t v2_normalize(vec2_t v) 1.68 +static VMATH_INLINE vec2_t v2_normalize(vec2_t v) 1.69 { 1.70 scalar_t len = (scalar_t)sqrt(v.x * v.x + v.y * v.y); 1.71 v.x /= len; 1.72 @@ -83,7 +83,7 @@ 1.73 return v; 1.74 } 1.75 1.76 -static inline vec2_t v2_lerp(vec2_t v1, vec2_t v2, scalar_t t) 1.77 +static VMATH_INLINE vec2_t v2_lerp(vec2_t v1, vec2_t v2, scalar_t t) 1.78 { 1.79 vec2_t res; 1.80 res.x = v1.x + (v2.x - v1.x) * t; 1.81 @@ -93,7 +93,7 @@ 1.82 1.83 1.84 /* C 3D vector functions */ 1.85 -static inline vec3_t v3_cons(scalar_t x, scalar_t y, scalar_t z) 1.86 +static VMATH_INLINE vec3_t v3_cons(scalar_t x, scalar_t y, scalar_t z) 1.87 { 1.88 vec3_t v; 1.89 v.x = x; 1.90 @@ -102,12 +102,12 @@ 1.91 return v; 1.92 } 1.93 1.94 -static inline void v3_print(FILE *fp, vec3_t v) 1.95 +static VMATH_INLINE void v3_print(FILE *fp, vec3_t v) 1.96 { 1.97 fprintf(fp, "[ %.4f %.4f %.4f ]", v.x, v.y, v.z); 1.98 } 1.99 1.100 -static inline vec3_t v3_add(vec3_t v1, vec3_t v2) 1.101 +static VMATH_INLINE vec3_t v3_add(vec3_t v1, vec3_t v2) 1.102 { 1.103 v1.x += v2.x; 1.104 v1.y += v2.y; 1.105 @@ -115,7 +115,7 @@ 1.106 return v1; 1.107 } 1.108 1.109 -static inline vec3_t v3_sub(vec3_t v1, vec3_t v2) 1.110 +static VMATH_INLINE vec3_t v3_sub(vec3_t v1, vec3_t v2) 1.111 { 1.112 v1.x -= v2.x; 1.113 v1.y -= v2.y; 1.114 @@ -123,7 +123,7 @@ 1.115 return v1; 1.116 } 1.117 1.118 -static inline vec3_t v3_neg(vec3_t v) 1.119 +static VMATH_INLINE vec3_t v3_neg(vec3_t v) 1.120 { 1.121 v.x = -v.x; 1.122 v.y = -v.y; 1.123 @@ -131,7 +131,7 @@ 1.124 return v; 1.125 } 1.126 1.127 -static inline vec3_t v3_mul(vec3_t v1, vec3_t v2) 1.128 +static VMATH_INLINE vec3_t v3_mul(vec3_t v1, vec3_t v2) 1.129 { 1.130 v1.x *= v2.x; 1.131 v1.y *= v2.y; 1.132 @@ -139,7 +139,7 @@ 1.133 return v1; 1.134 } 1.135 1.136 -static inline vec3_t v3_scale(vec3_t v1, scalar_t s) 1.137 +static VMATH_INLINE vec3_t v3_scale(vec3_t v1, scalar_t s) 1.138 { 1.139 v1.x *= s; 1.140 v1.y *= s; 1.141 @@ -147,12 +147,12 @@ 1.142 return v1; 1.143 } 1.144 1.145 -static inline scalar_t v3_dot(vec3_t v1, vec3_t v2) 1.146 +static VMATH_INLINE scalar_t v3_dot(vec3_t v1, vec3_t v2) 1.147 { 1.148 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; 1.149 } 1.150 1.151 -static inline vec3_t v3_cross(vec3_t v1, vec3_t v2) 1.152 +static VMATH_INLINE vec3_t v3_cross(vec3_t v1, vec3_t v2) 1.153 { 1.154 vec3_t v; 1.155 v.x = v1.y * v2.z - v1.z * v2.y; 1.156 @@ -161,17 +161,17 @@ 1.157 return v; 1.158 } 1.159 1.160 -static inline scalar_t v3_length(vec3_t v) 1.161 +static VMATH_INLINE scalar_t v3_length(vec3_t v) 1.162 { 1.163 return sqrt(v.x * v.x + v.y * v.y + v.z * v.z); 1.164 } 1.165 1.166 -static inline scalar_t v3_length_sq(vec3_t v) 1.167 +static VMATH_INLINE scalar_t v3_length_sq(vec3_t v) 1.168 { 1.169 return v.x * v.x + v.y * v.y + v.z * v.z; 1.170 } 1.171 1.172 -static inline vec3_t v3_normalize(vec3_t v) 1.173 +static VMATH_INLINE vec3_t v3_normalize(vec3_t v) 1.174 { 1.175 scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z); 1.176 v.x /= len; 1.177 @@ -180,7 +180,7 @@ 1.178 return v; 1.179 } 1.180 1.181 -static inline vec3_t v3_transform(vec3_t v, mat4_t m) 1.182 +static VMATH_INLINE vec3_t v3_transform(vec3_t v, mat4_t m) 1.183 { 1.184 vec3_t res; 1.185 res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3]; 1.186 @@ -189,7 +189,7 @@ 1.187 return res; 1.188 } 1.189 1.190 -static inline vec3_t v3_rotate(vec3_t v, scalar_t x, scalar_t y, scalar_t z) 1.191 +static VMATH_INLINE vec3_t v3_rotate(vec3_t v, scalar_t x, scalar_t y, scalar_t z) 1.192 { 1.193 void m4_rotate(mat4_t, scalar_t, scalar_t, scalar_t); 1.194 1.195 @@ -198,7 +198,7 @@ 1.196 return v3_transform(v, m); 1.197 } 1.198 1.199 -static inline vec3_t v3_rotate_axis(vec3_t v, scalar_t angle, scalar_t x, scalar_t y, scalar_t z) 1.200 +static VMATH_INLINE vec3_t v3_rotate_axis(vec3_t v, scalar_t angle, scalar_t x, scalar_t y, scalar_t z) 1.201 { 1.202 void m4_rotate_axis(mat4_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.203 1.204 @@ -207,7 +207,7 @@ 1.205 return v3_transform(v, m); 1.206 } 1.207 1.208 -static inline vec3_t v3_rotate_quat(vec3_t v, quat_t q) 1.209 +static VMATH_INLINE vec3_t v3_rotate_quat(vec3_t v, quat_t q) 1.210 { 1.211 quat_t quat_rotate_quat(quat_t, quat_t); 1.212 1.213 @@ -216,13 +216,13 @@ 1.214 return v3_cons(res.x, res.y, res.z); 1.215 } 1.216 1.217 -static inline vec3_t v3_reflect(vec3_t v, vec3_t n) 1.218 +static VMATH_INLINE vec3_t v3_reflect(vec3_t v, vec3_t n) 1.219 { 1.220 scalar_t dot = v3_dot(v, n); 1.221 return v3_sub(v3_scale(n, dot * 2.0), v); 1.222 } 1.223 1.224 -static inline vec3_t v3_lerp(vec3_t v1, vec3_t v2, scalar_t t) 1.225 +static VMATH_INLINE vec3_t v3_lerp(vec3_t v1, vec3_t v2, scalar_t t) 1.226 { 1.227 v1.x += (v2.x - v1.x) * t; 1.228 v1.y += (v2.y - v1.y) * t; 1.229 @@ -231,7 +231,7 @@ 1.230 } 1.231 1.232 /* C 4D vector functions */ 1.233 -static inline vec4_t v4_cons(scalar_t x, scalar_t y, scalar_t z, scalar_t w) 1.234 +static VMATH_INLINE vec4_t v4_cons(scalar_t x, scalar_t y, scalar_t z, scalar_t w) 1.235 { 1.236 vec4_t v; 1.237 v.x = x; 1.238 @@ -241,12 +241,12 @@ 1.239 return v; 1.240 } 1.241 1.242 -static inline void v4_print(FILE *fp, vec4_t v) 1.243 +static VMATH_INLINE void v4_print(FILE *fp, vec4_t v) 1.244 { 1.245 fprintf(fp, "[ %.4f %.4f %.4f %.4f ]", v.x, v.y, v.z, v.w); 1.246 } 1.247 1.248 -static inline vec4_t v4_add(vec4_t v1, vec4_t v2) 1.249 +static VMATH_INLINE vec4_t v4_add(vec4_t v1, vec4_t v2) 1.250 { 1.251 v1.x += v2.x; 1.252 v1.y += v2.y; 1.253 @@ -255,7 +255,7 @@ 1.254 return v1; 1.255 } 1.256 1.257 -static inline vec4_t v4_sub(vec4_t v1, vec4_t v2) 1.258 +static VMATH_INLINE vec4_t v4_sub(vec4_t v1, vec4_t v2) 1.259 { 1.260 v1.x -= v2.x; 1.261 v1.y -= v2.y; 1.262 @@ -264,7 +264,7 @@ 1.263 return v1; 1.264 } 1.265 1.266 -static inline vec4_t v4_neg(vec4_t v) 1.267 +static VMATH_INLINE vec4_t v4_neg(vec4_t v) 1.268 { 1.269 v.x = -v.x; 1.270 v.y = -v.y; 1.271 @@ -273,7 +273,7 @@ 1.272 return v; 1.273 } 1.274 1.275 -static inline vec4_t v4_mul(vec4_t v1, vec4_t v2) 1.276 +static VMATH_INLINE vec4_t v4_mul(vec4_t v1, vec4_t v2) 1.277 { 1.278 v1.x *= v2.x; 1.279 v1.y *= v2.y; 1.280 @@ -282,7 +282,7 @@ 1.281 return v1; 1.282 } 1.283 1.284 -static inline vec4_t v4_scale(vec4_t v, scalar_t s) 1.285 +static VMATH_INLINE vec4_t v4_scale(vec4_t v, scalar_t s) 1.286 { 1.287 v.x *= s; 1.288 v.y *= s; 1.289 @@ -291,22 +291,22 @@ 1.290 return v; 1.291 } 1.292 1.293 -static inline scalar_t v4_dot(vec4_t v1, vec4_t v2) 1.294 +static VMATH_INLINE scalar_t v4_dot(vec4_t v1, vec4_t v2) 1.295 { 1.296 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; 1.297 } 1.298 1.299 -static inline scalar_t v4_length(vec4_t v) 1.300 +static VMATH_INLINE scalar_t v4_length(vec4_t v) 1.301 { 1.302 return sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); 1.303 } 1.304 1.305 -static inline scalar_t v4_length_sq(vec4_t v) 1.306 +static VMATH_INLINE scalar_t v4_length_sq(vec4_t v) 1.307 { 1.308 return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; 1.309 } 1.310 1.311 -static inline vec4_t v4_normalize(vec4_t v) 1.312 +static VMATH_INLINE vec4_t v4_normalize(vec4_t v) 1.313 { 1.314 scalar_t len = sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); 1.315 v.x /= len; 1.316 @@ -316,7 +316,7 @@ 1.317 return v; 1.318 } 1.319 1.320 -static inline vec4_t v4_transform(vec4_t v, mat4_t m) 1.321 +static VMATH_INLINE vec4_t v4_transform(vec4_t v, mat4_t m) 1.322 { 1.323 vec4_t res; 1.324 res.x = m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w; 1.325 @@ -332,120 +332,120 @@ 1.326 1.327 /* --------------- C++ part -------------- */ 1.328 1.329 -inline scalar_t &Vector2::operator [](int elem) { 1.330 +VMATH_INLINE scalar_t &Vector2::operator [](int elem) { 1.331 return elem ? y : x; 1.332 } 1.333 1.334 -inline const scalar_t &Vector2::operator [](int elem) const { 1.335 +VMATH_INLINE const scalar_t &Vector2::operator [](int elem) const { 1.336 return elem ? y : x; 1.337 } 1.338 1.339 -inline Vector2 operator -(const Vector2 &vec) { 1.340 +VMATH_INLINE Vector2 operator -(const Vector2 &vec) { 1.341 return Vector2(-vec.x, -vec.y); 1.342 } 1.343 1.344 -inline scalar_t dot_product(const Vector2 &v1, const Vector2 &v2) { 1.345 +VMATH_INLINE scalar_t dot_product(const Vector2 &v1, const Vector2 &v2) { 1.346 return v1.x * v2.x + v1.y * v2.y; 1.347 } 1.348 1.349 -inline Vector2 operator +(const Vector2 &v1, const Vector2 &v2) { 1.350 +VMATH_INLINE Vector2 operator +(const Vector2 &v1, const Vector2 &v2) { 1.351 return Vector2(v1.x + v2.x, v1.y + v2.y); 1.352 } 1.353 1.354 -inline Vector2 operator -(const Vector2 &v1, const Vector2 &v2) { 1.355 +VMATH_INLINE Vector2 operator -(const Vector2 &v1, const Vector2 &v2) { 1.356 return Vector2(v1.x - v2.x, v1.y - v2.y); 1.357 } 1.358 1.359 -inline Vector2 operator *(const Vector2 &v1, const Vector2 &v2) { 1.360 +VMATH_INLINE Vector2 operator *(const Vector2 &v1, const Vector2 &v2) { 1.361 return Vector2(v1.x * v2.x, v1.y * v2.y); 1.362 } 1.363 1.364 -inline Vector2 operator /(const Vector2 &v1, const Vector2 &v2) { 1.365 +VMATH_INLINE Vector2 operator /(const Vector2 &v1, const Vector2 &v2) { 1.366 return Vector2(v1.x / v2.x, v1.y / v2.y); 1.367 } 1.368 1.369 -inline bool operator ==(const Vector2 &v1, const Vector2 &v2) { 1.370 +VMATH_INLINE bool operator ==(const Vector2 &v1, const Vector2 &v2) { 1.371 return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.x) < XSMALL_NUMBER); 1.372 } 1.373 1.374 -inline void operator +=(Vector2 &v1, const Vector2 &v2) { 1.375 +VMATH_INLINE void operator +=(Vector2 &v1, const Vector2 &v2) { 1.376 v1.x += v2.x; 1.377 v1.y += v2.y; 1.378 } 1.379 1.380 -inline void operator -=(Vector2 &v1, const Vector2 &v2) { 1.381 +VMATH_INLINE void operator -=(Vector2 &v1, const Vector2 &v2) { 1.382 v1.x -= v2.x; 1.383 v1.y -= v2.y; 1.384 } 1.385 1.386 -inline void operator *=(Vector2 &v1, const Vector2 &v2) { 1.387 +VMATH_INLINE void operator *=(Vector2 &v1, const Vector2 &v2) { 1.388 v1.x *= v2.x; 1.389 v1.y *= v2.y; 1.390 } 1.391 1.392 -inline void operator /=(Vector2 &v1, const Vector2 &v2) { 1.393 +VMATH_INLINE void operator /=(Vector2 &v1, const Vector2 &v2) { 1.394 v1.x /= v2.x; 1.395 v1.y /= v2.y; 1.396 } 1.397 1.398 -inline Vector2 operator +(const Vector2 &vec, scalar_t scalar) { 1.399 +VMATH_INLINE Vector2 operator +(const Vector2 &vec, scalar_t scalar) { 1.400 return Vector2(vec.x + scalar, vec.y + scalar); 1.401 } 1.402 1.403 -inline Vector2 operator +(scalar_t scalar, const Vector2 &vec) { 1.404 +VMATH_INLINE Vector2 operator +(scalar_t scalar, const Vector2 &vec) { 1.405 return Vector2(vec.x + scalar, vec.y + scalar); 1.406 } 1.407 1.408 -inline Vector2 operator -(scalar_t scalar, const Vector2 &vec) { 1.409 +VMATH_INLINE Vector2 operator -(scalar_t scalar, const Vector2 &vec) { 1.410 return Vector2(vec.x - scalar, vec.y - scalar); 1.411 } 1.412 1.413 -inline Vector2 operator *(const Vector2 &vec, scalar_t scalar) { 1.414 +VMATH_INLINE Vector2 operator *(const Vector2 &vec, scalar_t scalar) { 1.415 return Vector2(vec.x * scalar, vec.y * scalar); 1.416 } 1.417 1.418 -inline Vector2 operator *(scalar_t scalar, const Vector2 &vec) { 1.419 +VMATH_INLINE Vector2 operator *(scalar_t scalar, const Vector2 &vec) { 1.420 return Vector2(vec.x * scalar, vec.y * scalar); 1.421 } 1.422 1.423 -inline Vector2 operator /(const Vector2 &vec, scalar_t scalar) { 1.424 +VMATH_INLINE Vector2 operator /(const Vector2 &vec, scalar_t scalar) { 1.425 return Vector2(vec.x / scalar, vec.y / scalar); 1.426 } 1.427 1.428 -inline void operator +=(Vector2 &vec, scalar_t scalar) { 1.429 +VMATH_INLINE void operator +=(Vector2 &vec, scalar_t scalar) { 1.430 vec.x += scalar; 1.431 vec.y += scalar; 1.432 } 1.433 1.434 -inline void operator -=(Vector2 &vec, scalar_t scalar) { 1.435 +VMATH_INLINE void operator -=(Vector2 &vec, scalar_t scalar) { 1.436 vec.x -= scalar; 1.437 vec.y -= scalar; 1.438 } 1.439 1.440 -inline void operator *=(Vector2 &vec, scalar_t scalar) { 1.441 +VMATH_INLINE void operator *=(Vector2 &vec, scalar_t scalar) { 1.442 vec.x *= scalar; 1.443 vec.y *= scalar; 1.444 } 1.445 1.446 -inline void operator /=(Vector2 &vec, scalar_t scalar) { 1.447 +VMATH_INLINE void operator /=(Vector2 &vec, scalar_t scalar) { 1.448 vec.x /= scalar; 1.449 vec.y /= scalar; 1.450 } 1.451 1.452 -inline scalar_t Vector2::length() const { 1.453 +VMATH_INLINE scalar_t Vector2::length() const { 1.454 return sqrt(x*x + y*y); 1.455 } 1.456 1.457 -inline scalar_t Vector2::length_sq() const { 1.458 +VMATH_INLINE scalar_t Vector2::length_sq() const { 1.459 return x*x + y*y; 1.460 } 1.461 1.462 -inline Vector2 lerp(const Vector2 &a, const Vector2 &b, scalar_t t) 1.463 +VMATH_INLINE Vector2 lerp(const Vector2 &a, const Vector2 &b, scalar_t t) 1.464 { 1.465 return a + (b - a) * t; 1.466 } 1.467 1.468 -inline Vector2 catmull_rom_spline(const Vector2 &v0, const Vector2 &v1, 1.469 +VMATH_INLINE Vector2 catmull_rom_spline(const Vector2 &v0, const Vector2 &v1, 1.470 const Vector2 &v2, const Vector2 &v3, scalar_t t) 1.471 { 1.472 scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.473 @@ -457,133 +457,133 @@ 1.474 1.475 /* ------------- Vector3 -------------- */ 1.476 1.477 -inline scalar_t &Vector3::operator [](int elem) { 1.478 +VMATH_INLINE scalar_t &Vector3::operator [](int elem) { 1.479 return elem ? (elem == 1 ? y : z) : x; 1.480 } 1.481 1.482 -inline const scalar_t &Vector3::operator [](int elem) const { 1.483 +VMATH_INLINE const scalar_t &Vector3::operator [](int elem) const { 1.484 return elem ? (elem == 1 ? y : z) : x; 1.485 } 1.486 1.487 /* unary operations */ 1.488 -inline Vector3 operator -(const Vector3 &vec) { 1.489 +VMATH_INLINE Vector3 operator -(const Vector3 &vec) { 1.490 return Vector3(-vec.x, -vec.y, -vec.z); 1.491 } 1.492 1.493 /* binary vector (op) vector operations */ 1.494 -inline scalar_t dot_product(const Vector3 &v1, const Vector3 &v2) { 1.495 +VMATH_INLINE scalar_t dot_product(const Vector3 &v1, const Vector3 &v2) { 1.496 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; 1.497 } 1.498 1.499 -inline Vector3 cross_product(const Vector3 &v1, const Vector3 &v2) { 1.500 +VMATH_INLINE Vector3 cross_product(const Vector3 &v1, const Vector3 &v2) { 1.501 return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x); 1.502 } 1.503 1.504 1.505 -inline Vector3 operator +(const Vector3 &v1, const Vector3 &v2) { 1.506 +VMATH_INLINE Vector3 operator +(const Vector3 &v1, const Vector3 &v2) { 1.507 return Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z); 1.508 } 1.509 1.510 -inline Vector3 operator -(const Vector3 &v1, const Vector3 &v2) { 1.511 +VMATH_INLINE Vector3 operator -(const Vector3 &v1, const Vector3 &v2) { 1.512 return Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z); 1.513 } 1.514 1.515 -inline Vector3 operator *(const Vector3 &v1, const Vector3 &v2) { 1.516 +VMATH_INLINE Vector3 operator *(const Vector3 &v1, const Vector3 &v2) { 1.517 return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); 1.518 } 1.519 1.520 -inline Vector3 operator /(const Vector3 &v1, const Vector3 &v2) { 1.521 +VMATH_INLINE Vector3 operator /(const Vector3 &v1, const Vector3 &v2) { 1.522 return Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z); 1.523 } 1.524 1.525 -inline bool operator ==(const Vector3 &v1, const Vector3 &v2) { 1.526 +VMATH_INLINE bool operator ==(const Vector3 &v1, const Vector3 &v2) { 1.527 return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && (fabs(v1.y - v2.y) < XSMALL_NUMBER) && (fabs(v1.z - v2.z) < XSMALL_NUMBER); 1.528 } 1.529 1.530 -inline void operator +=(Vector3 &v1, const Vector3 &v2) { 1.531 +VMATH_INLINE void operator +=(Vector3 &v1, const Vector3 &v2) { 1.532 v1.x += v2.x; 1.533 v1.y += v2.y; 1.534 v1.z += v2.z; 1.535 } 1.536 1.537 -inline void operator -=(Vector3 &v1, const Vector3 &v2) { 1.538 +VMATH_INLINE void operator -=(Vector3 &v1, const Vector3 &v2) { 1.539 v1.x -= v2.x; 1.540 v1.y -= v2.y; 1.541 v1.z -= v2.z; 1.542 } 1.543 1.544 -inline void operator *=(Vector3 &v1, const Vector3 &v2) { 1.545 +VMATH_INLINE void operator *=(Vector3 &v1, const Vector3 &v2) { 1.546 v1.x *= v2.x; 1.547 v1.y *= v2.y; 1.548 v1.z *= v2.z; 1.549 } 1.550 1.551 -inline void operator /=(Vector3 &v1, const Vector3 &v2) { 1.552 +VMATH_INLINE void operator /=(Vector3 &v1, const Vector3 &v2) { 1.553 v1.x /= v2.x; 1.554 v1.y /= v2.y; 1.555 v1.z /= v2.z; 1.556 } 1.557 /* binary vector (op) scalar and scalar (op) vector operations */ 1.558 -inline Vector3 operator +(const Vector3 &vec, scalar_t scalar) { 1.559 +VMATH_INLINE Vector3 operator +(const Vector3 &vec, scalar_t scalar) { 1.560 return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar); 1.561 } 1.562 1.563 -inline Vector3 operator +(scalar_t scalar, const Vector3 &vec) { 1.564 +VMATH_INLINE Vector3 operator +(scalar_t scalar, const Vector3 &vec) { 1.565 return Vector3(vec.x + scalar, vec.y + scalar, vec.z + scalar); 1.566 } 1.567 1.568 -inline Vector3 operator -(const Vector3 &vec, scalar_t scalar) { 1.569 +VMATH_INLINE Vector3 operator -(const Vector3 &vec, scalar_t scalar) { 1.570 return Vector3(vec.x - scalar, vec.y - scalar, vec.z - scalar); 1.571 } 1.572 1.573 -inline Vector3 operator *(const Vector3 &vec, scalar_t scalar) { 1.574 +VMATH_INLINE Vector3 operator *(const Vector3 &vec, scalar_t scalar) { 1.575 return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar); 1.576 } 1.577 1.578 -inline Vector3 operator *(scalar_t scalar, const Vector3 &vec) { 1.579 +VMATH_INLINE Vector3 operator *(scalar_t scalar, const Vector3 &vec) { 1.580 return Vector3(vec.x * scalar, vec.y * scalar, vec.z * scalar); 1.581 } 1.582 1.583 -inline Vector3 operator /(const Vector3 &vec, scalar_t scalar) { 1.584 +VMATH_INLINE Vector3 operator /(const Vector3 &vec, scalar_t scalar) { 1.585 return Vector3(vec.x / scalar, vec.y / scalar, vec.z / scalar); 1.586 } 1.587 1.588 -inline void operator +=(Vector3 &vec, scalar_t scalar) { 1.589 +VMATH_INLINE void operator +=(Vector3 &vec, scalar_t scalar) { 1.590 vec.x += scalar; 1.591 vec.y += scalar; 1.592 vec.z += scalar; 1.593 } 1.594 1.595 -inline void operator -=(Vector3 &vec, scalar_t scalar) { 1.596 +VMATH_INLINE void operator -=(Vector3 &vec, scalar_t scalar) { 1.597 vec.x -= scalar; 1.598 vec.y -= scalar; 1.599 vec.z -= scalar; 1.600 } 1.601 1.602 -inline void operator *=(Vector3 &vec, scalar_t scalar) { 1.603 +VMATH_INLINE void operator *=(Vector3 &vec, scalar_t scalar) { 1.604 vec.x *= scalar; 1.605 vec.y *= scalar; 1.606 vec.z *= scalar; 1.607 } 1.608 1.609 -inline void operator /=(Vector3 &vec, scalar_t scalar) { 1.610 +VMATH_INLINE void operator /=(Vector3 &vec, scalar_t scalar) { 1.611 vec.x /= scalar; 1.612 vec.y /= scalar; 1.613 vec.z /= scalar; 1.614 } 1.615 1.616 -inline scalar_t Vector3::length() const { 1.617 +VMATH_INLINE scalar_t Vector3::length() const { 1.618 return sqrt(x*x + y*y + z*z); 1.619 } 1.620 -inline scalar_t Vector3::length_sq() const { 1.621 +VMATH_INLINE scalar_t Vector3::length_sq() const { 1.622 return x*x + y*y + z*z; 1.623 } 1.624 1.625 -inline Vector3 lerp(const Vector3 &a, const Vector3 &b, scalar_t t) { 1.626 +VMATH_INLINE Vector3 lerp(const Vector3 &a, const Vector3 &b, scalar_t t) { 1.627 return a + (b - a) * t; 1.628 } 1.629 1.630 -inline Vector3 catmull_rom_spline(const Vector3 &v0, const Vector3 &v1, 1.631 +VMATH_INLINE Vector3 catmull_rom_spline(const Vector3 &v0, const Vector3 &v1, 1.632 const Vector3 &v2, const Vector3 &v3, scalar_t t) 1.633 { 1.634 scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t); 1.635 @@ -595,23 +595,23 @@ 1.636 1.637 /* ----------- Vector4 ----------------- */ 1.638 1.639 -inline scalar_t &Vector4::operator [](int elem) { 1.640 +VMATH_INLINE scalar_t &Vector4::operator [](int elem) { 1.641 return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x; 1.642 } 1.643 1.644 -inline const scalar_t &Vector4::operator [](int elem) const { 1.645 +VMATH_INLINE const scalar_t &Vector4::operator [](int elem) const { 1.646 return elem ? (elem == 1 ? y : (elem == 2 ? z : w)) : x; 1.647 } 1.648 1.649 -inline Vector4 operator -(const Vector4 &vec) { 1.650 +VMATH_INLINE Vector4 operator -(const Vector4 &vec) { 1.651 return Vector4(-vec.x, -vec.y, -vec.z, -vec.w); 1.652 } 1.653 1.654 -inline scalar_t dot_product(const Vector4 &v1, const Vector4 &v2) { 1.655 +VMATH_INLINE scalar_t dot_product(const Vector4 &v1, const Vector4 &v2) { 1.656 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; 1.657 } 1.658 1.659 -inline Vector4 cross_product(const Vector4 &v1, const Vector4 &v2, const Vector4 &v3) { 1.660 +VMATH_INLINE Vector4 cross_product(const Vector4 &v1, const Vector4 &v2, const Vector4 &v3) { 1.661 scalar_t a, b, c, d, e, f; /* Intermediate Values */ 1.662 Vector4 result; 1.663 1.664 @@ -631,51 +631,51 @@ 1.665 return result; 1.666 } 1.667 1.668 -inline Vector4 operator +(const Vector4 &v1, const Vector4 &v2) { 1.669 +VMATH_INLINE Vector4 operator +(const Vector4 &v1, const Vector4 &v2) { 1.670 return Vector4(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w); 1.671 } 1.672 1.673 -inline Vector4 operator -(const Vector4 &v1, const Vector4 &v2) { 1.674 +VMATH_INLINE Vector4 operator -(const Vector4 &v1, const Vector4 &v2) { 1.675 return Vector4(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w); 1.676 } 1.677 1.678 -inline Vector4 operator *(const Vector4 &v1, const Vector4 &v2) { 1.679 +VMATH_INLINE Vector4 operator *(const Vector4 &v1, const Vector4 &v2) { 1.680 return Vector4(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z, v1.w * v2.w); 1.681 } 1.682 1.683 -inline Vector4 operator /(const Vector4 &v1, const Vector4 &v2) { 1.684 +VMATH_INLINE Vector4 operator /(const Vector4 &v1, const Vector4 &v2) { 1.685 return Vector4(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z, v1.w / v2.w); 1.686 } 1.687 1.688 -inline bool operator ==(const Vector4 &v1, const Vector4 &v2) { 1.689 +VMATH_INLINE bool operator ==(const Vector4 &v1, const Vector4 &v2) { 1.690 return (fabs(v1.x - v2.x) < XSMALL_NUMBER) && 1.691 (fabs(v1.y - v2.y) < XSMALL_NUMBER) && 1.692 (fabs(v1.z - v2.z) < XSMALL_NUMBER) && 1.693 (fabs(v1.w - v2.w) < XSMALL_NUMBER); 1.694 } 1.695 1.696 -inline void operator +=(Vector4 &v1, const Vector4 &v2) { 1.697 +VMATH_INLINE void operator +=(Vector4 &v1, const Vector4 &v2) { 1.698 v1.x += v2.x; 1.699 v1.y += v2.y; 1.700 v1.z += v2.z; 1.701 v1.w += v2.w; 1.702 } 1.703 1.704 -inline void operator -=(Vector4 &v1, const Vector4 &v2) { 1.705 +VMATH_INLINE void operator -=(Vector4 &v1, const Vector4 &v2) { 1.706 v1.x -= v2.x; 1.707 v1.y -= v2.y; 1.708 v1.z -= v2.z; 1.709 v1.w -= v2.w; 1.710 } 1.711 1.712 -inline void operator *=(Vector4 &v1, const Vector4 &v2) { 1.713 +VMATH_INLINE void operator *=(Vector4 &v1, const Vector4 &v2) { 1.714 v1.x *= v2.x; 1.715 v1.y *= v2.y; 1.716 v1.z *= v2.z; 1.717 v1.w *= v2.w; 1.718 } 1.719 1.720 -inline void operator /=(Vector4 &v1, const Vector4 &v2) { 1.721 +VMATH_INLINE void operator /=(Vector4 &v1, const Vector4 &v2) { 1.722 v1.x /= v2.x; 1.723 v1.y /= v2.y; 1.724 v1.z /= v2.z; 1.725 @@ -683,71 +683,71 @@ 1.726 } 1.727 1.728 /* binary vector (op) scalar and scalar (op) vector operations */ 1.729 -inline Vector4 operator +(const Vector4 &vec, scalar_t scalar) { 1.730 +VMATH_INLINE Vector4 operator +(const Vector4 &vec, scalar_t scalar) { 1.731 return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar); 1.732 } 1.733 1.734 -inline Vector4 operator +(scalar_t scalar, const Vector4 &vec) { 1.735 +VMATH_INLINE Vector4 operator +(scalar_t scalar, const Vector4 &vec) { 1.736 return Vector4(vec.x + scalar, vec.y + scalar, vec.z + scalar, vec.w + scalar); 1.737 } 1.738 1.739 -inline Vector4 operator -(const Vector4 &vec, scalar_t scalar) { 1.740 +VMATH_INLINE Vector4 operator -(const Vector4 &vec, scalar_t scalar) { 1.741 return Vector4(vec.x - scalar, vec.y - scalar, vec.z - scalar, vec.w - scalar); 1.742 } 1.743 1.744 -inline Vector4 operator *(const Vector4 &vec, scalar_t scalar) { 1.745 +VMATH_INLINE Vector4 operator *(const Vector4 &vec, scalar_t scalar) { 1.746 return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar); 1.747 } 1.748 1.749 -inline Vector4 operator *(scalar_t scalar, const Vector4 &vec) { 1.750 +VMATH_INLINE Vector4 operator *(scalar_t scalar, const Vector4 &vec) { 1.751 return Vector4(vec.x * scalar, vec.y * scalar, vec.z * scalar, vec.w * scalar); 1.752 } 1.753 1.754 -inline Vector4 operator /(const Vector4 &vec, scalar_t scalar) { 1.755 +VMATH_INLINE Vector4 operator /(const Vector4 &vec, scalar_t scalar) { 1.756 return Vector4(vec.x / scalar, vec.y / scalar, vec.z / scalar, vec.w / scalar); 1.757 } 1.758 1.759 -inline void operator +=(Vector4 &vec, scalar_t scalar) { 1.760 +VMATH_INLINE void operator +=(Vector4 &vec, scalar_t scalar) { 1.761 vec.x += scalar; 1.762 vec.y += scalar; 1.763 vec.z += scalar; 1.764 vec.w += scalar; 1.765 } 1.766 1.767 -inline void operator -=(Vector4 &vec, scalar_t scalar) { 1.768 +VMATH_INLINE void operator -=(Vector4 &vec, scalar_t scalar) { 1.769 vec.x -= scalar; 1.770 vec.y -= scalar; 1.771 vec.z -= scalar; 1.772 vec.w -= scalar; 1.773 } 1.774 1.775 -inline void operator *=(Vector4 &vec, scalar_t scalar) { 1.776 +VMATH_INLINE void operator *=(Vector4 &vec, scalar_t scalar) { 1.777 vec.x *= scalar; 1.778 vec.y *= scalar; 1.779 vec.z *= scalar; 1.780 vec.w *= scalar; 1.781 } 1.782 1.783 -inline void operator /=(Vector4 &vec, scalar_t scalar) { 1.784 +VMATH_INLINE void operator /=(Vector4 &vec, scalar_t scalar) { 1.785 vec.x /= scalar; 1.786 vec.y /= scalar; 1.787 vec.z /= scalar; 1.788 vec.w /= scalar; 1.789 } 1.790 1.791 -inline scalar_t Vector4::length() const { 1.792 +VMATH_INLINE scalar_t Vector4::length() const { 1.793 return sqrt(x*x + y*y + z*z + w*w); 1.794 } 1.795 -inline scalar_t Vector4::length_sq() const { 1.796 +VMATH_INLINE scalar_t Vector4::length_sq() const { 1.797 return x*x + y*y + z*z + w*w; 1.798 } 1.799 1.800 -inline Vector4 lerp(const Vector4 &v0, const Vector4 &v1, scalar_t t) 1.801 +VMATH_INLINE Vector4 lerp(const Vector4 &v0, const Vector4 &v1, scalar_t t) 1.802 { 1.803 return v0 + (v1 - v0) * t; 1.804 } 1.805 1.806 -inline Vector4 catmull_rom_spline(const Vector4 &v0, const Vector4 &v1, 1.807 +VMATH_INLINE Vector4 catmull_rom_spline(const Vector4 &v0, const Vector4 &v1, 1.808 const Vector4 &v2, const Vector4 &v3, scalar_t t) 1.809 { 1.810 scalar_t spline(scalar_t, scalar_t, scalar_t, scalar_t, scalar_t);