gba-trycatch

annotate src/x3d.c @ 15:b755fb002f17

foo
author John Tsiombikas <nuclear@member.fsf.org>
date Wed, 25 Jun 2014 17:02:48 +0300
parents c398d834d64a
children
rev   line source
nuclear@9 1 #include "config.h"
nuclear@14 2 #include <stdio.h>
nuclear@7 3 #include <string.h>
nuclear@12 4 #include <math.h>
nuclear@7 5 #include "x3d.h"
nuclear@7 6 #include "fixed.h"
nuclear@7 7 #include "sincos.h"
nuclear@8 8 #include "logger.h"
nuclear@8 9 #include "polyfill.h"
nuclear@8 10 #include "gbasys.h"
nuclear@7 11
nuclear@14 12 int dbg_fill_dump;
nuclear@14 13
nuclear@7 14 #define MAT_STACK_SIZE 4
nuclear@7 15
nuclear@7 16 struct matrix {
nuclear@8 17 int32_t m[12];
nuclear@7 18 };
nuclear@7 19
nuclear@15 20 static void proc_vertex(const int32_t *vin, const int32_t *cin, const int32_t *tin,
nuclear@15 21 pvec3 *vout, pvec3 *cout, pvec2 *tout);
nuclear@14 22 static int dump_frame(struct pixel_buffer *frame);
nuclear@8 23
nuclear@8 24
nuclear@7 25 static int32_t proj_fov = M_PI_X16;
nuclear@7 26 static int32_t proj_aspect = 65536;
nuclear@13 27 static int32_t inv_proj_aspect = 65536;
nuclear@7 28 static int32_t proj_near = ftox16(0.5);
nuclear@7 29 static int32_t proj_far = 500 << 16;
nuclear@13 30 static int32_t inv_tan_half_xfov, inv_tan_half_yfov;
nuclear@7 31
nuclear@8 32 #define ID_INIT {65536, 0, 0, 0, 0, 65536, 0, 0, 0, 0, 65536, 0}
nuclear@8 33
nuclear@8 34 static struct matrix identity = { ID_INIT };
nuclear@7 35
nuclear@7 36 static short mtop;
nuclear@8 37 static struct matrix mstack[MAT_STACK_SIZE] = { {ID_INIT}, {ID_INIT} };
nuclear@8 38
nuclear@8 39 static const int32_t *vertex_array;
nuclear@8 40 static unsigned short vertex_count;
nuclear@8 41 static const int32_t *color_array;
nuclear@8 42 static unsigned short color_count;
nuclear@15 43 static const int32_t *texcoord_array;
nuclear@15 44 static unsigned short texcoord_count;
nuclear@8 45
nuclear@8 46 static int32_t im_color[3];
nuclear@15 47 static int32_t im_texcoord[2];
nuclear@9 48 static uint8_t im_color_index;
nuclear@7 49
nuclear@12 50 void x3d_projection(int fov, int32_t aspect, int32_t nearz, int32_t farz)
nuclear@7 51 {
nuclear@12 52 proj_fov = (M_PI_X16 * fov) / 180;
nuclear@7 53 proj_aspect = aspect;
nuclear@13 54 inv_proj_aspect = x16div(65536, proj_aspect);
nuclear@7 55 proj_near = nearz;
nuclear@7 56 proj_far = farz;
nuclear@12 57
nuclear@13 58 inv_tan_half_yfov = (int32_t)(65536.0 / tan(0.5 * proj_fov / 65536.0));
nuclear@13 59 inv_tan_half_xfov = x16mul(inv_tan_half_yfov, aspect);
nuclear@7 60 }
nuclear@7 61
nuclear@7 62 int x3d_push_matrix(void)
nuclear@7 63 {
nuclear@7 64 short newtop = mtop + 1;
nuclear@7 65 if(newtop >= MAT_STACK_SIZE) {
nuclear@7 66 return -1;
nuclear@7 67 }
nuclear@7 68 memcpy(mstack + newtop, mstack + mtop, sizeof *mstack);
nuclear@7 69 mtop = newtop;
nuclear@7 70 return 0;
nuclear@7 71 }
nuclear@7 72
nuclear@7 73 int x3d_pop_matrix(void)
nuclear@7 74 {
nuclear@7 75 if(mtop <= 0) {
nuclear@7 76 return -1;
nuclear@7 77 }
nuclear@7 78 --mtop;
nuclear@7 79 return 0;
nuclear@7 80 }
nuclear@7 81
nuclear@7 82 void x3d_load_matrix(int32_t *m)
nuclear@7 83 {
nuclear@8 84 memcpy(mstack[mtop].m, m, sizeof *mstack);
nuclear@7 85 }
nuclear@7 86
nuclear@7 87
nuclear@7 88 #define M(i,j) (((i) << 2) + (j))
nuclear@7 89 void x3d_mult_matrix(int32_t *m)
nuclear@7 90 {
nuclear@7 91 int i, j;
nuclear@7 92 struct matrix tmp;
nuclear@7 93
nuclear@8 94 memcpy(tmp.m, mstack[mtop].m, sizeof tmp);
nuclear@7 95
nuclear@7 96 for(i=0; i<3; i++) {
nuclear@7 97 for(j=0; j<4; j++) {
nuclear@8 98 mstack[mtop].m[M(i, j)] =
nuclear@14 99 x16mul(m[M(0, j)], tmp.m[M(i, 0)]) +
nuclear@14 100 x16mul(m[M(1, j)], tmp.m[M(i, 1)]) +
nuclear@14 101 x16mul(m[M(2, j)], tmp.m[M(i, 2)]);
nuclear@7 102 }
nuclear@14 103 mstack[mtop].m[M(i, 3)] += tmp.m[M(i, 3)];
nuclear@7 104 }
nuclear@7 105 }
nuclear@7 106
nuclear@7 107 void x3d_load_identity(void)
nuclear@7 108 {
nuclear@8 109 memcpy(mstack[mtop].m, identity.m, sizeof identity);
nuclear@7 110 }
nuclear@7 111
nuclear@8 112 void x3d_translate(int32_t x, int32_t y, int32_t z)
nuclear@8 113 {
nuclear@8 114 int32_t m[] = ID_INIT;
nuclear@8 115 m[3] = x;
nuclear@8 116 m[7] = y;
nuclear@8 117 m[11] = z;
nuclear@8 118
nuclear@8 119 x3d_mult_matrix(m);
nuclear@8 120 }
nuclear@8 121
nuclear@8 122 void x3d_rotate(int32_t deg, int32_t x, int32_t y, int32_t z)
nuclear@8 123 {
nuclear@8 124 int32_t xform[] = ID_INIT;
nuclear@8 125
nuclear@8 126 int32_t angle = x16mul(M_PI_X16, deg) / 180;
nuclear@8 127 int32_t sina = sin_x16(angle);
nuclear@8 128 int32_t cosa = cos_x16(angle);
nuclear@8 129 int32_t one_minus_cosa = 65536 - cosa;
nuclear@8 130 int32_t nxsq = x16sq(x);
nuclear@8 131 int32_t nysq = x16sq(y);
nuclear@8 132 int32_t nzsq = x16sq(z);
nuclear@8 133
nuclear@8 134 xform[0] = nxsq + x16mul(65536 - nxsq, cosa);
nuclear@8 135 xform[4] = x16mul(x16mul(x, y), one_minus_cosa) - x16mul(z, sina);
nuclear@8 136 xform[8] = x16mul(x16mul(x, z), one_minus_cosa) + x16mul(y, sina);
nuclear@8 137 xform[1] = x16mul(x16mul(x, y), one_minus_cosa) + x16mul(z, sina);
nuclear@8 138 xform[5] = nysq + x16mul(65536 - nysq, cosa);
nuclear@8 139 xform[9] = x16mul(x16mul(y, z), one_minus_cosa) - x16mul(x, sina);
nuclear@8 140 xform[2] = x16mul(x16mul(x, z), one_minus_cosa) - x16mul(y, sina);
nuclear@8 141 xform[6] = x16mul(x16mul(y, z), one_minus_cosa) + x16mul(x, sina);
nuclear@8 142 xform[10] = nzsq + x16mul(65536 - nzsq, cosa);
nuclear@8 143
nuclear@8 144 x3d_mult_matrix(xform);
nuclear@8 145 }
nuclear@8 146
nuclear@8 147 void x3d_scale(int32_t x, int32_t y, int32_t z)
nuclear@8 148 {
nuclear@8 149 int32_t m[] = ID_INIT;
nuclear@8 150
nuclear@8 151 m[0] = x;
nuclear@8 152 m[5] = y;
nuclear@8 153 m[10] = z;
nuclear@8 154
nuclear@8 155 x3d_mult_matrix(m);
nuclear@8 156 }
nuclear@8 157
nuclear@8 158 void x3d_vertex_array(int count, const int32_t *ptr)
nuclear@8 159 {
nuclear@8 160 vertex_array = ptr;
nuclear@8 161 vertex_count = count;
nuclear@8 162 }
nuclear@8 163
nuclear@8 164 void x3d_color_array(int count, const int32_t *ptr)
nuclear@8 165 {
nuclear@8 166 color_array = ptr;
nuclear@8 167 color_count = count;
nuclear@8 168 }
nuclear@8 169
nuclear@15 170 void x3d_texcoord_array(int count, const int32_t *ptr)
nuclear@15 171 {
nuclear@15 172 texcoord_array = ptr;
nuclear@15 173 texcoord_count = count;
nuclear@15 174 }
nuclear@15 175
nuclear@12 176 int x3d_draw(int prim, int vnum)
nuclear@8 177 {
nuclear@8 178 int i, j, pverts = prim;
nuclear@8 179 const int32_t *vptr = vertex_array;
nuclear@8 180 const int32_t *cptr = color_array;
nuclear@15 181 const int32_t *tptr = texcoord_array;
nuclear@9 182 #ifndef PALMODE
nuclear@8 183 short cr, cg, cb;
nuclear@9 184 #endif
nuclear@9 185 uint16_t color;
nuclear@8 186
nuclear@8 187 if(!vertex_array) return -1;
nuclear@8 188
nuclear@8 189 if(vnum > vertex_count) {
nuclear@8 190 logmsg(LOG_DBG, "%s called with vnum=%d, but current vertex array has %d vertices\n",
nuclear@8 191 __FUNCTION__, vnum, vertex_count);
nuclear@8 192 vnum = vertex_count;
nuclear@8 193 }
nuclear@8 194 if(color_array && vnum > color_count) {
nuclear@8 195 logmsg(LOG_DBG, "%s called with vnum=%d, but current color array has %d elements\n",
nuclear@8 196 __FUNCTION__, vnum, color_count);
nuclear@8 197 vnum = color_count;
nuclear@8 198 }
nuclear@15 199 if(texcoord_array && vnum > texcoord_count) {
nuclear@15 200 logmsg(LOG_DBG, "%s called with vnum=%d, but current texcoord array has %d elements\n",
nuclear@15 201 __FUNCTION__, vnum, texcoord_count);
nuclear@15 202 vnum = texcoord_count;
nuclear@15 203 }
nuclear@8 204
nuclear@8 205 for(i=0; i<vnum; i+=pverts) {
nuclear@8 206 /* process vertices */
nuclear@8 207 pvec3 vpos[4];
nuclear@8 208 pvec3 col[4];
nuclear@15 209 pvec2 tex[4];
nuclear@8 210
nuclear@8 211 for(j=0; j<pverts; j++) {
nuclear@15 212 proc_vertex(vptr, cptr, tptr, vpos + j, col + j, tex + j);
nuclear@12 213
nuclear@12 214 if(vpos[j].z <= proj_near) {
nuclear@12 215 goto skip_prim;
nuclear@12 216 }
nuclear@12 217
nuclear@8 218 vptr += 3;
nuclear@8 219 if(cptr) cptr += 3;
nuclear@15 220 if(tptr) tptr += 2;
nuclear@8 221 }
nuclear@8 222
nuclear@9 223 #ifdef PALMODE
nuclear@9 224 color = im_color_index;
nuclear@9 225 #else
nuclear@8 226 cr = col[0].x >> 8;
nuclear@8 227 cg = col[0].y >> 8;
nuclear@8 228 cb = col[0].z >> 8;
nuclear@8 229
nuclear@8 230 if(cr > 255) cr = 255;
nuclear@8 231 if(cg > 255) cg = 255;
nuclear@8 232 if(cb > 255) cb = 255;
nuclear@8 233
nuclear@9 234 color = RGB(cr, cg, cb);
nuclear@9 235 #endif
nuclear@9 236
nuclear@12 237 /* project & viewport */
nuclear@12 238 for(j=0; j<pverts; j++) {
nuclear@12 239 int32_t x, y;
nuclear@12 240
nuclear@13 241 x = x16mul(vpos[j].x, inv_tan_half_xfov);
nuclear@12 242 x = x16div(x, vpos[j].z);
nuclear@13 243 vpos[j].x = (x16mul(x, inv_proj_aspect) + 65536) * (WIDTH / 2);
nuclear@12 244
nuclear@13 245 y = x16mul(vpos[j].y, inv_tan_half_yfov);
nuclear@12 246 y = x16div(y, vpos[j].z);
nuclear@12 247 vpos[j].y = (65536 - y) * (HEIGHT / 2);
nuclear@12 248 }
nuclear@12 249
nuclear@8 250 switch(pverts) {
nuclear@8 251 case X3D_POINTS:
nuclear@9 252 draw_point(vpos, color);
nuclear@8 253 break;
nuclear@8 254
nuclear@8 255 case X3D_LINES:
nuclear@8 256 break;
nuclear@8 257
nuclear@8 258 case X3D_TRIANGLES:
nuclear@8 259 case X3D_QUADS:
nuclear@15 260 draw_poly(pverts, vpos, tex, color);
nuclear@14 261 if(dbg_fill_dump) {
nuclear@14 262 dump_frame(back_buffer);
nuclear@14 263 }
nuclear@8 264 break;
nuclear@8 265 }
nuclear@12 266 skip_prim: ;
nuclear@8 267 }
nuclear@14 268
nuclear@14 269 dbg_fill_dump = 0;
nuclear@8 270 return 0;
nuclear@8 271 }
nuclear@8 272
nuclear@15 273 static void proc_vertex(const int32_t *vin, const int32_t *cin, const int32_t *tin,
nuclear@15 274 pvec3 *vout, pvec3 *cout, pvec2 *tout)
nuclear@8 275 {
nuclear@8 276 int i;
nuclear@8 277 int32_t tvert[3];
nuclear@8 278 int32_t *mvmat = mstack[mtop].m;
nuclear@8 279
nuclear@8 280 /* transform vertex with current matrix */
nuclear@8 281 for(i=0; i<3; i++) {
nuclear@8 282 tvert[i] = x16mul(mvmat[0], vin[0]) +
nuclear@8 283 x16mul(mvmat[1], vin[1]) +
nuclear@8 284 x16mul(mvmat[2], vin[2]) +
nuclear@8 285 mvmat[3];
nuclear@8 286 mvmat += 4;
nuclear@8 287 }
nuclear@8 288
nuclear@8 289 vout->x = tvert[0];
nuclear@8 290 vout->y = tvert[1];
nuclear@8 291 vout->z = tvert[2];
nuclear@8 292 /*logmsg(LOG_DBG, "%s: (%g %g %g) -> (%g %g %g)\n", __FUNCTION__,
nuclear@8 293 x16tof(vin[0]), x16tof(vin[1]), x16tof(vin[2]),
nuclear@8 294 x16tof(vout->x), x16tof(vout->y), x16tof(vout->z));*/
nuclear@8 295
nuclear@8 296 if(color_array) {
nuclear@8 297 cout->x = cin[0];
nuclear@8 298 cout->y = cin[1];
nuclear@8 299 cout->z = cin[2];
nuclear@8 300 } else {
nuclear@8 301 cout->x = im_color[0];
nuclear@8 302 cout->y = im_color[1];
nuclear@8 303 cout->z = im_color[2];
nuclear@8 304 }
nuclear@15 305
nuclear@15 306 if(texcoord_array) {
nuclear@15 307 tout->x = tin[0];
nuclear@15 308 tout->y = tin[1];
nuclear@15 309 } else {
nuclear@15 310 tout->x = im_texcoord[0];
nuclear@15 311 tout->y = im_texcoord[1];
nuclear@15 312 }
nuclear@8 313 }
nuclear@8 314
nuclear@9 315 void x3d_color_index(int cidx)
nuclear@9 316 {
nuclear@9 317 im_color_index = cidx;
nuclear@9 318 }
nuclear@9 319
nuclear@8 320 void x3d_color(int32_t r, int32_t g, int32_t b)
nuclear@8 321 {
nuclear@8 322 im_color[0] = r;
nuclear@8 323 im_color[1] = g;
nuclear@8 324 im_color[2] = b;
nuclear@8 325 }
nuclear@14 326
nuclear@14 327 static int dump_frame(struct pixel_buffer *frame)
nuclear@14 328 {
nuclear@14 329 static int frameno;
nuclear@14 330 char buf[128];
nuclear@14 331 FILE *fp;
nuclear@14 332 int i, npix;
nuclear@14 333 uint16_t *ptr = frame->pixels;
nuclear@14 334
nuclear@14 335 sprintf(buf, "dump%03d.ppm", ++frameno);
nuclear@14 336
nuclear@14 337 if(!(fp = fopen(buf, "wb"))) {
nuclear@14 338 fprintf(stderr, "failed to dump file: %s\n", buf);
nuclear@14 339 return -1;
nuclear@14 340 }
nuclear@14 341
nuclear@14 342 fprintf(fp, "P6\n%d %d\n255\n", frame->x, frame->y);
nuclear@14 343
nuclear@14 344 npix = frame->x * frame->y;
nuclear@14 345 for(i=0; i<npix; i++) {
nuclear@14 346 uint16_t pixel = *ptr++;
nuclear@14 347 fputc(GET_R(pixel), fp);
nuclear@14 348 fputc(GET_G(pixel), fp);
nuclear@14 349 fputc(GET_B(pixel), fp);
nuclear@14 350 }
nuclear@14 351 fclose(fp);
nuclear@14 352 return 0;
nuclear@14 353 }