rev |
line source |
nuclear@9
|
1 #include "config.h"
|
nuclear@7
|
2 #include <string.h>
|
nuclear@7
|
3 #include "x3d.h"
|
nuclear@7
|
4 #include "fixed.h"
|
nuclear@7
|
5 #include "sincos.h"
|
nuclear@8
|
6 #include "logger.h"
|
nuclear@8
|
7 #include "polyfill.h"
|
nuclear@8
|
8 #include "gbasys.h"
|
nuclear@7
|
9
|
nuclear@7
|
10 #define MAT_STACK_SIZE 4
|
nuclear@7
|
11
|
nuclear@7
|
12 struct matrix {
|
nuclear@8
|
13 int32_t m[12];
|
nuclear@7
|
14 };
|
nuclear@7
|
15
|
nuclear@8
|
16 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout);
|
nuclear@8
|
17
|
nuclear@8
|
18
|
nuclear@7
|
19 static int32_t proj_fov = M_PI_X16;
|
nuclear@7
|
20 static int32_t proj_aspect = 65536;
|
nuclear@7
|
21 static int32_t proj_near = ftox16(0.5);
|
nuclear@7
|
22 static int32_t proj_far = 500 << 16;
|
nuclear@7
|
23
|
nuclear@8
|
24 #define ID_INIT {65536, 0, 0, 0, 0, 65536, 0, 0, 0, 0, 65536, 0}
|
nuclear@8
|
25
|
nuclear@8
|
26 static struct matrix identity = { ID_INIT };
|
nuclear@7
|
27
|
nuclear@7
|
28 static short mtop;
|
nuclear@8
|
29 static struct matrix mstack[MAT_STACK_SIZE] = { {ID_INIT}, {ID_INIT} };
|
nuclear@8
|
30
|
nuclear@8
|
31 static const int32_t *vertex_array;
|
nuclear@8
|
32 static unsigned short vertex_count;
|
nuclear@8
|
33 static const int32_t *color_array;
|
nuclear@8
|
34 static unsigned short color_count;
|
nuclear@8
|
35
|
nuclear@8
|
36 static int32_t im_color[3];
|
nuclear@9
|
37 static uint8_t im_color_index;
|
nuclear@7
|
38
|
nuclear@7
|
39 void x3d_projection(int32_t fov, int32_t aspect, int32_t nearz, int32_t farz)
|
nuclear@7
|
40 {
|
nuclear@7
|
41 proj_fov = fov;
|
nuclear@7
|
42 proj_aspect = aspect;
|
nuclear@7
|
43 proj_near = nearz;
|
nuclear@7
|
44 proj_far = farz;
|
nuclear@7
|
45 }
|
nuclear@7
|
46
|
nuclear@7
|
47 int x3d_push_matrix(void)
|
nuclear@7
|
48 {
|
nuclear@7
|
49 short newtop = mtop + 1;
|
nuclear@7
|
50 if(newtop >= MAT_STACK_SIZE) {
|
nuclear@7
|
51 return -1;
|
nuclear@7
|
52 }
|
nuclear@7
|
53 memcpy(mstack + newtop, mstack + mtop, sizeof *mstack);
|
nuclear@7
|
54 mtop = newtop;
|
nuclear@7
|
55 return 0;
|
nuclear@7
|
56 }
|
nuclear@7
|
57
|
nuclear@7
|
58 int x3d_pop_matrix(void)
|
nuclear@7
|
59 {
|
nuclear@7
|
60 if(mtop <= 0) {
|
nuclear@7
|
61 return -1;
|
nuclear@7
|
62 }
|
nuclear@7
|
63 --mtop;
|
nuclear@7
|
64 return 0;
|
nuclear@7
|
65 }
|
nuclear@7
|
66
|
nuclear@7
|
67 void x3d_load_matrix(int32_t *m)
|
nuclear@7
|
68 {
|
nuclear@8
|
69 memcpy(mstack[mtop].m, m, sizeof *mstack);
|
nuclear@7
|
70 }
|
nuclear@7
|
71
|
nuclear@7
|
72
|
nuclear@7
|
73 #define M(i,j) (((i) << 2) + (j))
|
nuclear@7
|
74 void x3d_mult_matrix(int32_t *m)
|
nuclear@7
|
75 {
|
nuclear@7
|
76 int i, j;
|
nuclear@7
|
77 struct matrix tmp;
|
nuclear@7
|
78
|
nuclear@8
|
79 memcpy(tmp.m, mstack[mtop].m, sizeof tmp);
|
nuclear@7
|
80
|
nuclear@7
|
81 for(i=0; i<3; i++) {
|
nuclear@7
|
82 for(j=0; j<4; j++) {
|
nuclear@8
|
83 mstack[mtop].m[M(i, j)] =
|
nuclear@8
|
84 x16mul(tmp.m[M(0, j)], m[M(i, 0)]) +
|
nuclear@8
|
85 x16mul(tmp.m[M(1, j)], m[M(i, 1)]) +
|
nuclear@8
|
86 x16mul(tmp.m[M(2, j)], m[M(i, 2)]);
|
nuclear@7
|
87 }
|
nuclear@8
|
88 mstack[mtop].m[M(i, 3)] += m[M(i, 3)];
|
nuclear@7
|
89 }
|
nuclear@7
|
90 }
|
nuclear@7
|
91
|
nuclear@7
|
92 void x3d_load_identity(void)
|
nuclear@7
|
93 {
|
nuclear@8
|
94 memcpy(mstack[mtop].m, identity.m, sizeof identity);
|
nuclear@7
|
95 }
|
nuclear@7
|
96
|
nuclear@8
|
97 void x3d_translate(int32_t x, int32_t y, int32_t z)
|
nuclear@8
|
98 {
|
nuclear@8
|
99 int32_t m[] = ID_INIT;
|
nuclear@8
|
100 m[3] = x;
|
nuclear@8
|
101 m[7] = y;
|
nuclear@8
|
102 m[11] = z;
|
nuclear@8
|
103
|
nuclear@8
|
104 x3d_mult_matrix(m);
|
nuclear@8
|
105 }
|
nuclear@8
|
106
|
nuclear@8
|
107 void x3d_rotate(int32_t deg, int32_t x, int32_t y, int32_t z)
|
nuclear@8
|
108 {
|
nuclear@8
|
109 int32_t xform[] = ID_INIT;
|
nuclear@8
|
110
|
nuclear@8
|
111 int32_t angle = x16mul(M_PI_X16, deg) / 180;
|
nuclear@8
|
112 int32_t sina = sin_x16(angle);
|
nuclear@8
|
113 int32_t cosa = cos_x16(angle);
|
nuclear@8
|
114 int32_t one_minus_cosa = 65536 - cosa;
|
nuclear@8
|
115 int32_t nxsq = x16sq(x);
|
nuclear@8
|
116 int32_t nysq = x16sq(y);
|
nuclear@8
|
117 int32_t nzsq = x16sq(z);
|
nuclear@8
|
118
|
nuclear@8
|
119 xform[0] = nxsq + x16mul(65536 - nxsq, cosa);
|
nuclear@8
|
120 xform[4] = x16mul(x16mul(x, y), one_minus_cosa) - x16mul(z, sina);
|
nuclear@8
|
121 xform[8] = x16mul(x16mul(x, z), one_minus_cosa) + x16mul(y, sina);
|
nuclear@8
|
122 xform[1] = x16mul(x16mul(x, y), one_minus_cosa) + x16mul(z, sina);
|
nuclear@8
|
123 xform[5] = nysq + x16mul(65536 - nysq, cosa);
|
nuclear@8
|
124 xform[9] = x16mul(x16mul(y, z), one_minus_cosa) - x16mul(x, sina);
|
nuclear@8
|
125 xform[2] = x16mul(x16mul(x, z), one_minus_cosa) - x16mul(y, sina);
|
nuclear@8
|
126 xform[6] = x16mul(x16mul(y, z), one_minus_cosa) + x16mul(x, sina);
|
nuclear@8
|
127 xform[10] = nzsq + x16mul(65536 - nzsq, cosa);
|
nuclear@8
|
128
|
nuclear@8
|
129 x3d_mult_matrix(xform);
|
nuclear@8
|
130 }
|
nuclear@8
|
131
|
nuclear@8
|
132 void x3d_scale(int32_t x, int32_t y, int32_t z)
|
nuclear@8
|
133 {
|
nuclear@8
|
134 int32_t m[] = ID_INIT;
|
nuclear@8
|
135
|
nuclear@8
|
136 m[0] = x;
|
nuclear@8
|
137 m[5] = y;
|
nuclear@8
|
138 m[10] = z;
|
nuclear@8
|
139
|
nuclear@8
|
140 x3d_mult_matrix(m);
|
nuclear@8
|
141 }
|
nuclear@8
|
142
|
nuclear@8
|
143 void x3d_vertex_array(int count, const int32_t *ptr)
|
nuclear@8
|
144 {
|
nuclear@8
|
145 vertex_array = ptr;
|
nuclear@8
|
146 vertex_count = count;
|
nuclear@8
|
147 }
|
nuclear@8
|
148
|
nuclear@8
|
149 void x3d_color_array(int count, const int32_t *ptr)
|
nuclear@8
|
150 {
|
nuclear@8
|
151 color_array = ptr;
|
nuclear@8
|
152 color_count = count;
|
nuclear@8
|
153 }
|
nuclear@8
|
154
|
nuclear@8
|
155 int x3d_draw_arrays(int prim, int vnum)
|
nuclear@8
|
156 {
|
nuclear@8
|
157 int i, j, pverts = prim;
|
nuclear@8
|
158 const int32_t *vptr = vertex_array;
|
nuclear@8
|
159 const int32_t *cptr = color_array;
|
nuclear@9
|
160 #ifndef PALMODE
|
nuclear@8
|
161 short cr, cg, cb;
|
nuclear@9
|
162 #endif
|
nuclear@9
|
163 uint16_t color;
|
nuclear@8
|
164
|
nuclear@8
|
165 if(!vertex_array) return -1;
|
nuclear@8
|
166
|
nuclear@8
|
167 if(vnum > vertex_count) {
|
nuclear@8
|
168 logmsg(LOG_DBG, "%s called with vnum=%d, but current vertex array has %d vertices\n",
|
nuclear@8
|
169 __FUNCTION__, vnum, vertex_count);
|
nuclear@8
|
170 vnum = vertex_count;
|
nuclear@8
|
171 }
|
nuclear@8
|
172 if(color_array && vnum > color_count) {
|
nuclear@8
|
173 logmsg(LOG_DBG, "%s called with vnum=%d, but current color array has %d elements\n",
|
nuclear@8
|
174 __FUNCTION__, vnum, color_count);
|
nuclear@8
|
175 vnum = color_count;
|
nuclear@8
|
176 }
|
nuclear@8
|
177
|
nuclear@8
|
178 for(i=0; i<vnum; i+=pverts) {
|
nuclear@8
|
179 /* process vertices */
|
nuclear@8
|
180 pvec3 vpos[4];
|
nuclear@8
|
181 pvec3 col[4];
|
nuclear@8
|
182
|
nuclear@8
|
183 for(j=0; j<pverts; j++) {
|
nuclear@8
|
184 proc_vertex(vptr, cptr, vpos + j, col + j);
|
nuclear@8
|
185 vptr += 3;
|
nuclear@8
|
186 if(cptr) cptr += 3;
|
nuclear@8
|
187 }
|
nuclear@8
|
188
|
nuclear@9
|
189 #ifdef PALMODE
|
nuclear@9
|
190 color = im_color_index;
|
nuclear@9
|
191 #else
|
nuclear@8
|
192 cr = col[0].x >> 8;
|
nuclear@8
|
193 cg = col[0].y >> 8;
|
nuclear@8
|
194 cb = col[0].z >> 8;
|
nuclear@8
|
195
|
nuclear@8
|
196 if(cr > 255) cr = 255;
|
nuclear@8
|
197 if(cg > 255) cg = 255;
|
nuclear@8
|
198 if(cb > 255) cb = 255;
|
nuclear@8
|
199
|
nuclear@9
|
200 color = RGB(cr, cg, cb);
|
nuclear@9
|
201 #endif
|
nuclear@9
|
202
|
nuclear@8
|
203 switch(pverts) {
|
nuclear@8
|
204 case X3D_POINTS:
|
nuclear@9
|
205 draw_point(vpos, color);
|
nuclear@8
|
206 break;
|
nuclear@8
|
207
|
nuclear@8
|
208 case X3D_LINES:
|
nuclear@8
|
209 break;
|
nuclear@8
|
210
|
nuclear@8
|
211 case X3D_TRIANGLES:
|
nuclear@8
|
212 case X3D_QUADS:
|
nuclear@9
|
213 draw_poly(pverts, vpos, color);
|
nuclear@8
|
214 break;
|
nuclear@8
|
215 }
|
nuclear@8
|
216 }
|
nuclear@8
|
217 return 0;
|
nuclear@8
|
218 }
|
nuclear@8
|
219
|
nuclear@8
|
220 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout)
|
nuclear@8
|
221 {
|
nuclear@8
|
222 int i;
|
nuclear@8
|
223 int32_t tvert[3];
|
nuclear@8
|
224 int32_t *mvmat = mstack[mtop].m;
|
nuclear@8
|
225
|
nuclear@8
|
226 /* transform vertex with current matrix */
|
nuclear@8
|
227 for(i=0; i<3; i++) {
|
nuclear@8
|
228 tvert[i] = x16mul(mvmat[0], vin[0]) +
|
nuclear@8
|
229 x16mul(mvmat[1], vin[1]) +
|
nuclear@8
|
230 x16mul(mvmat[2], vin[2]) +
|
nuclear@8
|
231 mvmat[3];
|
nuclear@8
|
232 mvmat += 4;
|
nuclear@8
|
233 }
|
nuclear@8
|
234
|
nuclear@8
|
235 vout->x = tvert[0];
|
nuclear@8
|
236 vout->y = tvert[1];
|
nuclear@8
|
237 vout->z = tvert[2];
|
nuclear@8
|
238 /*logmsg(LOG_DBG, "%s: (%g %g %g) -> (%g %g %g)\n", __FUNCTION__,
|
nuclear@8
|
239 x16tof(vin[0]), x16tof(vin[1]), x16tof(vin[2]),
|
nuclear@8
|
240 x16tof(vout->x), x16tof(vout->y), x16tof(vout->z));*/
|
nuclear@8
|
241
|
nuclear@8
|
242 if(color_array) {
|
nuclear@8
|
243 cout->x = cin[0];
|
nuclear@8
|
244 cout->y = cin[1];
|
nuclear@8
|
245 cout->z = cin[2];
|
nuclear@8
|
246 } else {
|
nuclear@8
|
247 cout->x = im_color[0];
|
nuclear@8
|
248 cout->y = im_color[1];
|
nuclear@8
|
249 cout->z = im_color[2];
|
nuclear@8
|
250 }
|
nuclear@8
|
251 }
|
nuclear@8
|
252
|
nuclear@9
|
253 void x3d_color_index(int cidx)
|
nuclear@9
|
254 {
|
nuclear@9
|
255 im_color_index = cidx;
|
nuclear@9
|
256 }
|
nuclear@9
|
257
|
nuclear@8
|
258 void x3d_color(int32_t r, int32_t g, int32_t b)
|
nuclear@8
|
259 {
|
nuclear@8
|
260 im_color[0] = r;
|
nuclear@8
|
261 im_color[1] = g;
|
nuclear@8
|
262 im_color[2] = b;
|
nuclear@8
|
263 }
|