rev |
line source |
nuclear@9
|
1 #include "config.h"
|
nuclear@7
|
2 #include <string.h>
|
nuclear@12
|
3 #include <math.h>
|
nuclear@7
|
4 #include "x3d.h"
|
nuclear@7
|
5 #include "fixed.h"
|
nuclear@7
|
6 #include "sincos.h"
|
nuclear@8
|
7 #include "logger.h"
|
nuclear@8
|
8 #include "polyfill.h"
|
nuclear@8
|
9 #include "gbasys.h"
|
nuclear@7
|
10
|
nuclear@7
|
11 #define MAT_STACK_SIZE 4
|
nuclear@7
|
12
|
nuclear@7
|
13 struct matrix {
|
nuclear@8
|
14 int32_t m[12];
|
nuclear@7
|
15 };
|
nuclear@7
|
16
|
nuclear@8
|
17 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout);
|
nuclear@8
|
18
|
nuclear@8
|
19
|
nuclear@7
|
20 static int32_t proj_fov = M_PI_X16;
|
nuclear@7
|
21 static int32_t proj_aspect = 65536;
|
nuclear@13
|
22 static int32_t inv_proj_aspect = 65536;
|
nuclear@7
|
23 static int32_t proj_near = ftox16(0.5);
|
nuclear@7
|
24 static int32_t proj_far = 500 << 16;
|
nuclear@13
|
25 static int32_t inv_tan_half_xfov, inv_tan_half_yfov;
|
nuclear@7
|
26
|
nuclear@8
|
27 #define ID_INIT {65536, 0, 0, 0, 0, 65536, 0, 0, 0, 0, 65536, 0}
|
nuclear@8
|
28
|
nuclear@8
|
29 static struct matrix identity = { ID_INIT };
|
nuclear@7
|
30
|
nuclear@7
|
31 static short mtop;
|
nuclear@8
|
32 static struct matrix mstack[MAT_STACK_SIZE] = { {ID_INIT}, {ID_INIT} };
|
nuclear@8
|
33
|
nuclear@8
|
34 static const int32_t *vertex_array;
|
nuclear@8
|
35 static unsigned short vertex_count;
|
nuclear@8
|
36 static const int32_t *color_array;
|
nuclear@8
|
37 static unsigned short color_count;
|
nuclear@8
|
38
|
nuclear@8
|
39 static int32_t im_color[3];
|
nuclear@9
|
40 static uint8_t im_color_index;
|
nuclear@7
|
41
|
nuclear@12
|
42 void x3d_projection(int fov, int32_t aspect, int32_t nearz, int32_t farz)
|
nuclear@7
|
43 {
|
nuclear@12
|
44 proj_fov = (M_PI_X16 * fov) / 180;
|
nuclear@7
|
45 proj_aspect = aspect;
|
nuclear@13
|
46 inv_proj_aspect = x16div(65536, proj_aspect);
|
nuclear@7
|
47 proj_near = nearz;
|
nuclear@7
|
48 proj_far = farz;
|
nuclear@12
|
49
|
nuclear@13
|
50 inv_tan_half_yfov = (int32_t)(65536.0 / tan(0.5 * proj_fov / 65536.0));
|
nuclear@13
|
51 inv_tan_half_xfov = x16mul(inv_tan_half_yfov, aspect);
|
nuclear@7
|
52 }
|
nuclear@7
|
53
|
nuclear@7
|
54 int x3d_push_matrix(void)
|
nuclear@7
|
55 {
|
nuclear@7
|
56 short newtop = mtop + 1;
|
nuclear@7
|
57 if(newtop >= MAT_STACK_SIZE) {
|
nuclear@7
|
58 return -1;
|
nuclear@7
|
59 }
|
nuclear@7
|
60 memcpy(mstack + newtop, mstack + mtop, sizeof *mstack);
|
nuclear@7
|
61 mtop = newtop;
|
nuclear@7
|
62 return 0;
|
nuclear@7
|
63 }
|
nuclear@7
|
64
|
nuclear@7
|
65 int x3d_pop_matrix(void)
|
nuclear@7
|
66 {
|
nuclear@7
|
67 if(mtop <= 0) {
|
nuclear@7
|
68 return -1;
|
nuclear@7
|
69 }
|
nuclear@7
|
70 --mtop;
|
nuclear@7
|
71 return 0;
|
nuclear@7
|
72 }
|
nuclear@7
|
73
|
nuclear@7
|
74 void x3d_load_matrix(int32_t *m)
|
nuclear@7
|
75 {
|
nuclear@8
|
76 memcpy(mstack[mtop].m, m, sizeof *mstack);
|
nuclear@7
|
77 }
|
nuclear@7
|
78
|
nuclear@7
|
79
|
nuclear@7
|
80 #define M(i,j) (((i) << 2) + (j))
|
nuclear@7
|
81 void x3d_mult_matrix(int32_t *m)
|
nuclear@7
|
82 {
|
nuclear@7
|
83 int i, j;
|
nuclear@7
|
84 struct matrix tmp;
|
nuclear@7
|
85
|
nuclear@8
|
86 memcpy(tmp.m, mstack[mtop].m, sizeof tmp);
|
nuclear@7
|
87
|
nuclear@7
|
88 for(i=0; i<3; i++) {
|
nuclear@7
|
89 for(j=0; j<4; j++) {
|
nuclear@8
|
90 mstack[mtop].m[M(i, j)] =
|
nuclear@8
|
91 x16mul(tmp.m[M(0, j)], m[M(i, 0)]) +
|
nuclear@8
|
92 x16mul(tmp.m[M(1, j)], m[M(i, 1)]) +
|
nuclear@8
|
93 x16mul(tmp.m[M(2, j)], m[M(i, 2)]);
|
nuclear@7
|
94 }
|
nuclear@8
|
95 mstack[mtop].m[M(i, 3)] += m[M(i, 3)];
|
nuclear@7
|
96 }
|
nuclear@7
|
97 }
|
nuclear@7
|
98
|
nuclear@7
|
99 void x3d_load_identity(void)
|
nuclear@7
|
100 {
|
nuclear@8
|
101 memcpy(mstack[mtop].m, identity.m, sizeof identity);
|
nuclear@7
|
102 }
|
nuclear@7
|
103
|
nuclear@8
|
104 void x3d_translate(int32_t x, int32_t y, int32_t z)
|
nuclear@8
|
105 {
|
nuclear@8
|
106 int32_t m[] = ID_INIT;
|
nuclear@8
|
107 m[3] = x;
|
nuclear@8
|
108 m[7] = y;
|
nuclear@8
|
109 m[11] = z;
|
nuclear@8
|
110
|
nuclear@8
|
111 x3d_mult_matrix(m);
|
nuclear@8
|
112 }
|
nuclear@8
|
113
|
nuclear@8
|
114 void x3d_rotate(int32_t deg, int32_t x, int32_t y, int32_t z)
|
nuclear@8
|
115 {
|
nuclear@8
|
116 int32_t xform[] = ID_INIT;
|
nuclear@8
|
117
|
nuclear@8
|
118 int32_t angle = x16mul(M_PI_X16, deg) / 180;
|
nuclear@8
|
119 int32_t sina = sin_x16(angle);
|
nuclear@8
|
120 int32_t cosa = cos_x16(angle);
|
nuclear@8
|
121 int32_t one_minus_cosa = 65536 - cosa;
|
nuclear@8
|
122 int32_t nxsq = x16sq(x);
|
nuclear@8
|
123 int32_t nysq = x16sq(y);
|
nuclear@8
|
124 int32_t nzsq = x16sq(z);
|
nuclear@8
|
125
|
nuclear@8
|
126 xform[0] = nxsq + x16mul(65536 - nxsq, cosa);
|
nuclear@8
|
127 xform[4] = x16mul(x16mul(x, y), one_minus_cosa) - x16mul(z, sina);
|
nuclear@8
|
128 xform[8] = x16mul(x16mul(x, z), one_minus_cosa) + x16mul(y, sina);
|
nuclear@8
|
129 xform[1] = x16mul(x16mul(x, y), one_minus_cosa) + x16mul(z, sina);
|
nuclear@8
|
130 xform[5] = nysq + x16mul(65536 - nysq, cosa);
|
nuclear@8
|
131 xform[9] = x16mul(x16mul(y, z), one_minus_cosa) - x16mul(x, sina);
|
nuclear@8
|
132 xform[2] = x16mul(x16mul(x, z), one_minus_cosa) - x16mul(y, sina);
|
nuclear@8
|
133 xform[6] = x16mul(x16mul(y, z), one_minus_cosa) + x16mul(x, sina);
|
nuclear@8
|
134 xform[10] = nzsq + x16mul(65536 - nzsq, cosa);
|
nuclear@8
|
135
|
nuclear@8
|
136 x3d_mult_matrix(xform);
|
nuclear@8
|
137 }
|
nuclear@8
|
138
|
nuclear@8
|
139 void x3d_scale(int32_t x, int32_t y, int32_t z)
|
nuclear@8
|
140 {
|
nuclear@8
|
141 int32_t m[] = ID_INIT;
|
nuclear@8
|
142
|
nuclear@8
|
143 m[0] = x;
|
nuclear@8
|
144 m[5] = y;
|
nuclear@8
|
145 m[10] = z;
|
nuclear@8
|
146
|
nuclear@8
|
147 x3d_mult_matrix(m);
|
nuclear@8
|
148 }
|
nuclear@8
|
149
|
nuclear@8
|
150 void x3d_vertex_array(int count, const int32_t *ptr)
|
nuclear@8
|
151 {
|
nuclear@8
|
152 vertex_array = ptr;
|
nuclear@8
|
153 vertex_count = count;
|
nuclear@8
|
154 }
|
nuclear@8
|
155
|
nuclear@8
|
156 void x3d_color_array(int count, const int32_t *ptr)
|
nuclear@8
|
157 {
|
nuclear@8
|
158 color_array = ptr;
|
nuclear@8
|
159 color_count = count;
|
nuclear@8
|
160 }
|
nuclear@8
|
161
|
nuclear@12
|
162 int x3d_draw(int prim, int vnum)
|
nuclear@8
|
163 {
|
nuclear@8
|
164 int i, j, pverts = prim;
|
nuclear@8
|
165 const int32_t *vptr = vertex_array;
|
nuclear@8
|
166 const int32_t *cptr = color_array;
|
nuclear@9
|
167 #ifndef PALMODE
|
nuclear@8
|
168 short cr, cg, cb;
|
nuclear@9
|
169 #endif
|
nuclear@9
|
170 uint16_t color;
|
nuclear@8
|
171
|
nuclear@8
|
172 if(!vertex_array) return -1;
|
nuclear@8
|
173
|
nuclear@8
|
174 if(vnum > vertex_count) {
|
nuclear@8
|
175 logmsg(LOG_DBG, "%s called with vnum=%d, but current vertex array has %d vertices\n",
|
nuclear@8
|
176 __FUNCTION__, vnum, vertex_count);
|
nuclear@8
|
177 vnum = vertex_count;
|
nuclear@8
|
178 }
|
nuclear@8
|
179 if(color_array && vnum > color_count) {
|
nuclear@8
|
180 logmsg(LOG_DBG, "%s called with vnum=%d, but current color array has %d elements\n",
|
nuclear@8
|
181 __FUNCTION__, vnum, color_count);
|
nuclear@8
|
182 vnum = color_count;
|
nuclear@8
|
183 }
|
nuclear@8
|
184
|
nuclear@8
|
185 for(i=0; i<vnum; i+=pverts) {
|
nuclear@8
|
186 /* process vertices */
|
nuclear@8
|
187 pvec3 vpos[4];
|
nuclear@8
|
188 pvec3 col[4];
|
nuclear@8
|
189
|
nuclear@8
|
190 for(j=0; j<pverts; j++) {
|
nuclear@8
|
191 proc_vertex(vptr, cptr, vpos + j, col + j);
|
nuclear@12
|
192
|
nuclear@12
|
193 if(vpos[j].z <= proj_near) {
|
nuclear@12
|
194 goto skip_prim;
|
nuclear@12
|
195 }
|
nuclear@12
|
196
|
nuclear@8
|
197 vptr += 3;
|
nuclear@8
|
198 if(cptr) cptr += 3;
|
nuclear@8
|
199 }
|
nuclear@8
|
200
|
nuclear@9
|
201 #ifdef PALMODE
|
nuclear@9
|
202 color = im_color_index;
|
nuclear@9
|
203 #else
|
nuclear@8
|
204 cr = col[0].x >> 8;
|
nuclear@8
|
205 cg = col[0].y >> 8;
|
nuclear@8
|
206 cb = col[0].z >> 8;
|
nuclear@8
|
207
|
nuclear@8
|
208 if(cr > 255) cr = 255;
|
nuclear@8
|
209 if(cg > 255) cg = 255;
|
nuclear@8
|
210 if(cb > 255) cb = 255;
|
nuclear@8
|
211
|
nuclear@9
|
212 color = RGB(cr, cg, cb);
|
nuclear@9
|
213 #endif
|
nuclear@9
|
214
|
nuclear@12
|
215 /* project & viewport */
|
nuclear@12
|
216 for(j=0; j<pverts; j++) {
|
nuclear@12
|
217 int32_t x, y;
|
nuclear@12
|
218
|
nuclear@13
|
219 x = x16mul(vpos[j].x, inv_tan_half_xfov);
|
nuclear@12
|
220 x = x16div(x, vpos[j].z);
|
nuclear@13
|
221 vpos[j].x = (x16mul(x, inv_proj_aspect) + 65536) * (WIDTH / 2);
|
nuclear@12
|
222
|
nuclear@13
|
223 y = x16mul(vpos[j].y, inv_tan_half_yfov);
|
nuclear@12
|
224 y = x16div(y, vpos[j].z);
|
nuclear@12
|
225 vpos[j].y = (65536 - y) * (HEIGHT / 2);
|
nuclear@12
|
226 }
|
nuclear@12
|
227
|
nuclear@8
|
228 switch(pverts) {
|
nuclear@8
|
229 case X3D_POINTS:
|
nuclear@9
|
230 draw_point(vpos, color);
|
nuclear@8
|
231 break;
|
nuclear@8
|
232
|
nuclear@8
|
233 case X3D_LINES:
|
nuclear@8
|
234 break;
|
nuclear@8
|
235
|
nuclear@8
|
236 case X3D_TRIANGLES:
|
nuclear@8
|
237 case X3D_QUADS:
|
nuclear@9
|
238 draw_poly(pverts, vpos, color);
|
nuclear@8
|
239 break;
|
nuclear@8
|
240 }
|
nuclear@12
|
241 skip_prim: ;
|
nuclear@8
|
242 }
|
nuclear@8
|
243 return 0;
|
nuclear@8
|
244 }
|
nuclear@8
|
245
|
nuclear@8
|
246 static void proc_vertex(const int32_t *vin, const int32_t *cin, pvec3 *vout, pvec3 *cout)
|
nuclear@8
|
247 {
|
nuclear@8
|
248 int i;
|
nuclear@8
|
249 int32_t tvert[3];
|
nuclear@8
|
250 int32_t *mvmat = mstack[mtop].m;
|
nuclear@8
|
251
|
nuclear@8
|
252 /* transform vertex with current matrix */
|
nuclear@8
|
253 for(i=0; i<3; i++) {
|
nuclear@8
|
254 tvert[i] = x16mul(mvmat[0], vin[0]) +
|
nuclear@8
|
255 x16mul(mvmat[1], vin[1]) +
|
nuclear@8
|
256 x16mul(mvmat[2], vin[2]) +
|
nuclear@8
|
257 mvmat[3];
|
nuclear@8
|
258 mvmat += 4;
|
nuclear@8
|
259 }
|
nuclear@8
|
260
|
nuclear@8
|
261 vout->x = tvert[0];
|
nuclear@8
|
262 vout->y = tvert[1];
|
nuclear@8
|
263 vout->z = tvert[2];
|
nuclear@8
|
264 /*logmsg(LOG_DBG, "%s: (%g %g %g) -> (%g %g %g)\n", __FUNCTION__,
|
nuclear@8
|
265 x16tof(vin[0]), x16tof(vin[1]), x16tof(vin[2]),
|
nuclear@8
|
266 x16tof(vout->x), x16tof(vout->y), x16tof(vout->z));*/
|
nuclear@8
|
267
|
nuclear@8
|
268 if(color_array) {
|
nuclear@8
|
269 cout->x = cin[0];
|
nuclear@8
|
270 cout->y = cin[1];
|
nuclear@8
|
271 cout->z = cin[2];
|
nuclear@8
|
272 } else {
|
nuclear@8
|
273 cout->x = im_color[0];
|
nuclear@8
|
274 cout->y = im_color[1];
|
nuclear@8
|
275 cout->z = im_color[2];
|
nuclear@8
|
276 }
|
nuclear@8
|
277 }
|
nuclear@8
|
278
|
nuclear@9
|
279 void x3d_color_index(int cidx)
|
nuclear@9
|
280 {
|
nuclear@9
|
281 im_color_index = cidx;
|
nuclear@9
|
282 }
|
nuclear@9
|
283
|
nuclear@8
|
284 void x3d_color(int32_t r, int32_t g, int32_t b)
|
nuclear@8
|
285 {
|
nuclear@8
|
286 im_color[0] = r;
|
nuclear@8
|
287 im_color[1] = g;
|
nuclear@8
|
288 im_color[2] = b;
|
nuclear@8
|
289 }
|