rev |
line source |
nuclear@1
|
1 #include <cstdio>
|
nuclear@1
|
2 #include <cmath>
|
nuclear@1
|
3 #include "matrix.h"
|
nuclear@1
|
4 #include "vector.h"
|
nuclear@1
|
5 #include "quat.h"
|
nuclear@1
|
6
|
nuclear@1
|
7 using namespace std;
|
nuclear@1
|
8
|
nuclear@1
|
9 // ----------- Matrix3x3 --------------
|
nuclear@1
|
10
|
nuclear@1
|
11 Matrix3x3 Matrix3x3::identity = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
nuclear@1
|
12
|
nuclear@1
|
13 Matrix3x3::Matrix3x3()
|
nuclear@1
|
14 {
|
nuclear@1
|
15 *this = identity;
|
nuclear@1
|
16 }
|
nuclear@1
|
17
|
nuclear@1
|
18 Matrix3x3::Matrix3x3( scalar_t m11, scalar_t m12, scalar_t m13,
|
nuclear@1
|
19 scalar_t m21, scalar_t m22, scalar_t m23,
|
nuclear@1
|
20 scalar_t m31, scalar_t m32, scalar_t m33)
|
nuclear@1
|
21 {
|
nuclear@1
|
22 m[0][0] = m11; m[0][1] = m12; m[0][2] = m13;
|
nuclear@1
|
23 m[1][0] = m21; m[1][1] = m22; m[1][2] = m23;
|
nuclear@1
|
24 m[2][0] = m31; m[2][1] = m32; m[2][2] = m33;
|
nuclear@1
|
25 }
|
nuclear@1
|
26
|
nuclear@1
|
27 Matrix3x3::Matrix3x3(const Vector3 &ivec, const Vector3 &jvec, const Vector3 &kvec)
|
nuclear@1
|
28 {
|
nuclear@1
|
29 set_row_vector(ivec, 0);
|
nuclear@1
|
30 set_row_vector(jvec, 1);
|
nuclear@1
|
31 set_row_vector(kvec, 2);
|
nuclear@1
|
32 }
|
nuclear@1
|
33
|
nuclear@1
|
34 Matrix3x3::Matrix3x3(const mat3_t cmat)
|
nuclear@1
|
35 {
|
nuclear@1
|
36 memcpy(m, cmat, sizeof(mat3_t));
|
nuclear@1
|
37 }
|
nuclear@1
|
38
|
nuclear@1
|
39 Matrix3x3::Matrix3x3(const Matrix4x4 &mat4x4)
|
nuclear@1
|
40 {
|
nuclear@1
|
41 for(int i=0; i<3; i++) {
|
nuclear@1
|
42 for(int j=0; j<3; j++) {
|
nuclear@1
|
43 m[i][j] = mat4x4[i][j];
|
nuclear@1
|
44 }
|
nuclear@1
|
45 }
|
nuclear@1
|
46 }
|
nuclear@1
|
47
|
nuclear@1
|
48 Matrix3x3 operator +(const Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@1
|
49 {
|
nuclear@1
|
50 Matrix3x3 res;
|
nuclear@1
|
51 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@1
|
52 scalar_t *dest = res.m[0];
|
nuclear@1
|
53
|
nuclear@1
|
54 for(int i=0; i<9; i++) {
|
nuclear@1
|
55 *dest++ = *op1++ + *op2++;
|
nuclear@1
|
56 }
|
nuclear@1
|
57 return res;
|
nuclear@1
|
58 }
|
nuclear@1
|
59
|
nuclear@1
|
60 Matrix3x3 operator -(const Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@1
|
61 {
|
nuclear@1
|
62 Matrix3x3 res;
|
nuclear@1
|
63 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@1
|
64 scalar_t *dest = res.m[0];
|
nuclear@1
|
65
|
nuclear@1
|
66 for(int i=0; i<9; i++) {
|
nuclear@1
|
67 *dest++ = *op1++ - *op2++;
|
nuclear@1
|
68 }
|
nuclear@1
|
69 return res;
|
nuclear@1
|
70 }
|
nuclear@1
|
71
|
nuclear@1
|
72 Matrix3x3 operator *(const Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@1
|
73 {
|
nuclear@1
|
74 Matrix3x3 res;
|
nuclear@1
|
75 for(int i=0; i<3; i++) {
|
nuclear@1
|
76 for(int j=0; j<3; j++) {
|
nuclear@1
|
77 res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j];
|
nuclear@1
|
78 }
|
nuclear@1
|
79 }
|
nuclear@1
|
80 return res;
|
nuclear@1
|
81 }
|
nuclear@1
|
82
|
nuclear@1
|
83 void operator +=(Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@1
|
84 {
|
nuclear@1
|
85 scalar_t *op1 = m1.m[0];
|
nuclear@1
|
86 const scalar_t *op2 = m2.m[0];
|
nuclear@1
|
87
|
nuclear@1
|
88 for(int i=0; i<9; i++) {
|
nuclear@1
|
89 *op1++ += *op2++;
|
nuclear@1
|
90 }
|
nuclear@1
|
91 }
|
nuclear@1
|
92
|
nuclear@1
|
93 void operator -=(Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@1
|
94 {
|
nuclear@1
|
95 scalar_t *op1 = m1.m[0];
|
nuclear@1
|
96 const scalar_t *op2 = m2.m[0];
|
nuclear@1
|
97
|
nuclear@1
|
98 for(int i=0; i<9; i++) {
|
nuclear@1
|
99 *op1++ -= *op2++;
|
nuclear@1
|
100 }
|
nuclear@1
|
101 }
|
nuclear@1
|
102
|
nuclear@1
|
103 void operator *=(Matrix3x3 &m1, const Matrix3x3 &m2)
|
nuclear@1
|
104 {
|
nuclear@1
|
105 Matrix3x3 res;
|
nuclear@1
|
106 for(int i=0; i<3; i++) {
|
nuclear@1
|
107 for(int j=0; j<3; j++) {
|
nuclear@1
|
108 res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j];
|
nuclear@1
|
109 }
|
nuclear@1
|
110 }
|
nuclear@1
|
111 memcpy(m1.m, res.m, 9 * sizeof(scalar_t));
|
nuclear@1
|
112 }
|
nuclear@1
|
113
|
nuclear@1
|
114 Matrix3x3 operator *(const Matrix3x3 &mat, scalar_t scalar)
|
nuclear@1
|
115 {
|
nuclear@1
|
116 Matrix3x3 res;
|
nuclear@1
|
117 const scalar_t *mptr = mat.m[0];
|
nuclear@1
|
118 scalar_t *dptr = res.m[0];
|
nuclear@1
|
119
|
nuclear@1
|
120 for(int i=0; i<9; i++) {
|
nuclear@1
|
121 *dptr++ = *mptr++ * scalar;
|
nuclear@1
|
122 }
|
nuclear@1
|
123 return res;
|
nuclear@1
|
124 }
|
nuclear@1
|
125
|
nuclear@1
|
126 Matrix3x3 operator *(scalar_t scalar, const Matrix3x3 &mat)
|
nuclear@1
|
127 {
|
nuclear@1
|
128 Matrix3x3 res;
|
nuclear@1
|
129 const scalar_t *mptr = mat.m[0];
|
nuclear@1
|
130 scalar_t *dptr = res.m[0];
|
nuclear@1
|
131
|
nuclear@1
|
132 for(int i=0; i<9; i++) {
|
nuclear@1
|
133 *dptr++ = *mptr++ * scalar;
|
nuclear@1
|
134 }
|
nuclear@1
|
135 return res;
|
nuclear@1
|
136 }
|
nuclear@1
|
137
|
nuclear@1
|
138 void operator *=(Matrix3x3 &mat, scalar_t scalar)
|
nuclear@1
|
139 {
|
nuclear@1
|
140 scalar_t *mptr = mat.m[0];
|
nuclear@1
|
141
|
nuclear@1
|
142 for(int i=0; i<9; i++) {
|
nuclear@1
|
143 *mptr++ *= scalar;
|
nuclear@1
|
144 }
|
nuclear@1
|
145 }
|
nuclear@1
|
146
|
nuclear@1
|
147 void Matrix3x3::translate(const Vector2 &trans)
|
nuclear@1
|
148 {
|
nuclear@1
|
149 Matrix3x3 tmat(1, 0, trans.x, 0, 1, trans.y, 0, 0, 1);
|
nuclear@1
|
150 *this *= tmat;
|
nuclear@1
|
151 }
|
nuclear@1
|
152
|
nuclear@1
|
153 void Matrix3x3::set_translation(const Vector2 &trans)
|
nuclear@1
|
154 {
|
nuclear@1
|
155 *this = Matrix3x3(1, 0, trans.x, 0, 1, trans.y, 0, 0, 1);
|
nuclear@1
|
156 }
|
nuclear@1
|
157
|
nuclear@1
|
158 void Matrix3x3::rotate(scalar_t angle)
|
nuclear@1
|
159 {
|
nuclear@1
|
160 scalar_t cos_a = cos(angle);
|
nuclear@1
|
161 scalar_t sin_a = sin(angle);
|
nuclear@1
|
162 Matrix3x3 rmat( cos_a, -sin_a, 0,
|
nuclear@1
|
163 sin_a, cos_a, 0,
|
nuclear@1
|
164 0, 0, 1);
|
nuclear@1
|
165 *this *= rmat;
|
nuclear@1
|
166 }
|
nuclear@1
|
167
|
nuclear@1
|
168 void Matrix3x3::set_rotation(scalar_t angle)
|
nuclear@1
|
169 {
|
nuclear@1
|
170 scalar_t cos_a = cos(angle);
|
nuclear@1
|
171 scalar_t sin_a = sin(angle);
|
nuclear@1
|
172 *this = Matrix3x3(cos_a, -sin_a, 0, sin_a, cos_a, 0, 0, 0, 1);
|
nuclear@1
|
173 }
|
nuclear@1
|
174
|
nuclear@1
|
175 void Matrix3x3::rotate(const Vector3 &euler_angles)
|
nuclear@1
|
176 {
|
nuclear@1
|
177 Matrix3x3 xrot, yrot, zrot;
|
nuclear@1
|
178
|
nuclear@1
|
179 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@1
|
180 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@1
|
181 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@1
|
182
|
nuclear@1
|
183 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@1
|
184 0, 1, 0,
|
nuclear@1
|
185 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@1
|
186
|
nuclear@1
|
187 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@1
|
188 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@1
|
189 0, 0, 1);
|
nuclear@1
|
190
|
nuclear@1
|
191 *this *= xrot * yrot * zrot;
|
nuclear@1
|
192 }
|
nuclear@1
|
193
|
nuclear@1
|
194 void Matrix3x3::set_rotation(const Vector3 &euler_angles)
|
nuclear@1
|
195 {
|
nuclear@1
|
196 Matrix3x3 xrot, yrot, zrot;
|
nuclear@1
|
197
|
nuclear@1
|
198 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@1
|
199 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@1
|
200 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@1
|
201
|
nuclear@1
|
202 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@1
|
203 0, 1, 0,
|
nuclear@1
|
204 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@1
|
205
|
nuclear@1
|
206 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@1
|
207 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@1
|
208 0, 0, 1);
|
nuclear@1
|
209
|
nuclear@1
|
210 *this = xrot * yrot * zrot;
|
nuclear@1
|
211 }
|
nuclear@1
|
212
|
nuclear@1
|
213 void Matrix3x3::rotate(const Vector3 &axis, scalar_t angle)
|
nuclear@1
|
214 {
|
nuclear@1
|
215 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@1
|
216 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@1
|
217 scalar_t invcosa = 1-cosa;
|
nuclear@1
|
218 scalar_t nxsq = axis.x * axis.x;
|
nuclear@1
|
219 scalar_t nysq = axis.y * axis.y;
|
nuclear@1
|
220 scalar_t nzsq = axis.z * axis.z;
|
nuclear@1
|
221
|
nuclear@1
|
222 Matrix3x3 xform;
|
nuclear@1
|
223 xform.m[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@1
|
224 xform.m[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@1
|
225 xform.m[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@1
|
226
|
nuclear@1
|
227 xform.m[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@1
|
228 xform.m[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@1
|
229 xform.m[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@1
|
230
|
nuclear@1
|
231 xform.m[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@1
|
232 xform.m[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@1
|
233 xform.m[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@1
|
234
|
nuclear@1
|
235 *this *= xform;
|
nuclear@1
|
236 }
|
nuclear@1
|
237
|
nuclear@1
|
238 void Matrix3x3::set_rotation(const Vector3 &axis, scalar_t angle)
|
nuclear@1
|
239 {
|
nuclear@1
|
240 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@1
|
241 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@1
|
242 scalar_t invcosa = 1-cosa;
|
nuclear@1
|
243 scalar_t nxsq = axis.x * axis.x;
|
nuclear@1
|
244 scalar_t nysq = axis.y * axis.y;
|
nuclear@1
|
245 scalar_t nzsq = axis.z * axis.z;
|
nuclear@1
|
246
|
nuclear@1
|
247 reset_identity();
|
nuclear@1
|
248 m[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@1
|
249 m[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@1
|
250 m[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@1
|
251 m[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@1
|
252 m[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@1
|
253 m[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@1
|
254 m[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@1
|
255 m[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@1
|
256 m[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@1
|
257 }
|
nuclear@1
|
258
|
nuclear@1
|
259 void Matrix3x3::scale(const Vector3 &scale_vec)
|
nuclear@1
|
260 {
|
nuclear@1
|
261 Matrix3x3 smat( scale_vec.x, 0, 0,
|
nuclear@1
|
262 0, scale_vec.y, 0,
|
nuclear@1
|
263 0, 0, scale_vec.z);
|
nuclear@1
|
264 *this *= smat;
|
nuclear@1
|
265 }
|
nuclear@1
|
266
|
nuclear@1
|
267 void Matrix3x3::set_scaling(const Vector3 &scale_vec)
|
nuclear@1
|
268 {
|
nuclear@1
|
269 *this = Matrix3x3( scale_vec.x, 0, 0,
|
nuclear@1
|
270 0, scale_vec.y, 0,
|
nuclear@1
|
271 0, 0, scale_vec.z);
|
nuclear@1
|
272 }
|
nuclear@1
|
273
|
nuclear@1
|
274 void Matrix3x3::set_column_vector(const Vector3 &vec, unsigned int col_index)
|
nuclear@1
|
275 {
|
nuclear@1
|
276 m[0][col_index] = vec.x;
|
nuclear@1
|
277 m[1][col_index] = vec.y;
|
nuclear@1
|
278 m[2][col_index] = vec.z;
|
nuclear@1
|
279 }
|
nuclear@1
|
280
|
nuclear@1
|
281 void Matrix3x3::set_row_vector(const Vector3 &vec, unsigned int row_index)
|
nuclear@1
|
282 {
|
nuclear@1
|
283 m[row_index][0] = vec.x;
|
nuclear@1
|
284 m[row_index][1] = vec.y;
|
nuclear@1
|
285 m[row_index][2] = vec.z;
|
nuclear@1
|
286 }
|
nuclear@1
|
287
|
nuclear@1
|
288 Vector3 Matrix3x3::get_column_vector(unsigned int col_index) const
|
nuclear@1
|
289 {
|
nuclear@1
|
290 return Vector3(m[0][col_index], m[1][col_index], m[2][col_index]);
|
nuclear@1
|
291 }
|
nuclear@1
|
292
|
nuclear@1
|
293 Vector3 Matrix3x3::get_row_vector(unsigned int row_index) const
|
nuclear@1
|
294 {
|
nuclear@1
|
295 return Vector3(m[row_index][0], m[row_index][1], m[row_index][2]);
|
nuclear@1
|
296 }
|
nuclear@1
|
297
|
nuclear@1
|
298 void Matrix3x3::transpose()
|
nuclear@1
|
299 {
|
nuclear@1
|
300 Matrix3x3 tmp = *this;
|
nuclear@1
|
301 for(int i=0; i<3; i++) {
|
nuclear@1
|
302 for(int j=0; j<3; j++) {
|
nuclear@1
|
303 m[i][j] = tmp[j][i];
|
nuclear@1
|
304 }
|
nuclear@1
|
305 }
|
nuclear@1
|
306 }
|
nuclear@1
|
307
|
nuclear@1
|
308 Matrix3x3 Matrix3x3::transposed() const
|
nuclear@1
|
309 {
|
nuclear@1
|
310 Matrix3x3 res;
|
nuclear@1
|
311 for(int i=0; i<3; i++) {
|
nuclear@1
|
312 for(int j=0; j<3; j++) {
|
nuclear@1
|
313 res[i][j] = m[j][i];
|
nuclear@1
|
314 }
|
nuclear@1
|
315 }
|
nuclear@1
|
316 return res;
|
nuclear@1
|
317 }
|
nuclear@1
|
318
|
nuclear@1
|
319 scalar_t Matrix3x3::determinant() const
|
nuclear@1
|
320 {
|
nuclear@1
|
321 return m[0][0] * (m[1][1]*m[2][2] - m[1][2]*m[2][1]) -
|
nuclear@1
|
322 m[0][1] * (m[1][0]*m[2][2] - m[1][2]*m[2][0]) +
|
nuclear@1
|
323 m[0][2] * (m[1][0]*m[2][1] - m[1][1]*m[2][0]);
|
nuclear@1
|
324 }
|
nuclear@1
|
325
|
nuclear@1
|
326 Matrix3x3 Matrix3x3::inverse() const
|
nuclear@1
|
327 {
|
nuclear@1
|
328 // TODO: implement 3x3 inverse
|
nuclear@1
|
329 return *this;
|
nuclear@1
|
330 }
|
nuclear@1
|
331
|
nuclear@1
|
332 ostream &operator <<(ostream &out, const Matrix3x3 &mat)
|
nuclear@1
|
333 {
|
nuclear@1
|
334 for(int i=0; i<3; i++) {
|
nuclear@1
|
335 char str[100];
|
nuclear@1
|
336 sprintf(str, "[ %12.5f %12.5f %12.5f ]\n", (float)mat.m[i][0], (float)mat.m[i][1], (float)mat.m[i][2]);
|
nuclear@1
|
337 out << str;
|
nuclear@1
|
338 }
|
nuclear@1
|
339 return out;
|
nuclear@1
|
340 }
|
nuclear@1
|
341
|
nuclear@1
|
342
|
nuclear@1
|
343
|
nuclear@1
|
344 /* ----------------- Matrix4x4 implementation --------------- */
|
nuclear@1
|
345
|
nuclear@1
|
346 Matrix4x4 Matrix4x4::identity = Matrix4x4(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
|
nuclear@1
|
347
|
nuclear@1
|
348 Matrix4x4::Matrix4x4()
|
nuclear@1
|
349 {
|
nuclear@1
|
350 *this = identity;
|
nuclear@1
|
351 }
|
nuclear@1
|
352
|
nuclear@1
|
353 Matrix4x4::Matrix4x4( scalar_t m11, scalar_t m12, scalar_t m13, scalar_t m14,
|
nuclear@1
|
354 scalar_t m21, scalar_t m22, scalar_t m23, scalar_t m24,
|
nuclear@1
|
355 scalar_t m31, scalar_t m32, scalar_t m33, scalar_t m34,
|
nuclear@1
|
356 scalar_t m41, scalar_t m42, scalar_t m43, scalar_t m44)
|
nuclear@1
|
357 {
|
nuclear@1
|
358 m[0][0] = m11; m[0][1] = m12; m[0][2] = m13; m[0][3] = m14;
|
nuclear@1
|
359 m[1][0] = m21; m[1][1] = m22; m[1][2] = m23; m[1][3] = m24;
|
nuclear@1
|
360 m[2][0] = m31; m[2][1] = m32; m[2][2] = m33; m[2][3] = m34;
|
nuclear@1
|
361 m[3][0] = m41; m[3][1] = m42; m[3][2] = m43; m[3][3] = m44;
|
nuclear@1
|
362 }
|
nuclear@1
|
363
|
nuclear@1
|
364 Matrix4x4::Matrix4x4(const mat4_t cmat)
|
nuclear@1
|
365 {
|
nuclear@1
|
366 memcpy(m, cmat, sizeof(mat4_t));
|
nuclear@1
|
367 }
|
nuclear@1
|
368
|
nuclear@1
|
369 Matrix4x4::Matrix4x4(const Matrix3x3 &mat3x3)
|
nuclear@1
|
370 {
|
nuclear@1
|
371 reset_identity();
|
nuclear@1
|
372 for(int i=0; i<3; i++) {
|
nuclear@1
|
373 for(int j=0; j<3; j++) {
|
nuclear@1
|
374 m[i][j] = mat3x3[i][j];
|
nuclear@1
|
375 }
|
nuclear@1
|
376 }
|
nuclear@1
|
377 }
|
nuclear@1
|
378
|
nuclear@1
|
379 Matrix4x4 operator +(const Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@1
|
380 {
|
nuclear@1
|
381 Matrix4x4 res;
|
nuclear@1
|
382 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@1
|
383 scalar_t *dest = res.m[0];
|
nuclear@1
|
384
|
nuclear@1
|
385 for(int i=0; i<16; i++) {
|
nuclear@1
|
386 *dest++ = *op1++ + *op2++;
|
nuclear@1
|
387 }
|
nuclear@1
|
388 return res;
|
nuclear@1
|
389 }
|
nuclear@1
|
390
|
nuclear@1
|
391 Matrix4x4 operator -(const Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@1
|
392 {
|
nuclear@1
|
393 Matrix4x4 res;
|
nuclear@1
|
394 const scalar_t *op1 = m1.m[0], *op2 = m2.m[0];
|
nuclear@1
|
395 scalar_t *dest = res.m[0];
|
nuclear@1
|
396
|
nuclear@1
|
397 for(int i=0; i<16; i++) {
|
nuclear@1
|
398 *dest++ = *op1++ - *op2++;
|
nuclear@1
|
399 }
|
nuclear@1
|
400 return res;
|
nuclear@1
|
401 }
|
nuclear@1
|
402
|
nuclear@1
|
403 /*
|
nuclear@1
|
404 Matrix4x4 operator *(const Matrix4x4 &m1, const Matrix4x4 &m2) {
|
nuclear@1
|
405 Matrix4x4 res;
|
nuclear@1
|
406
|
nuclear@1
|
407 for(int i=0; i<4; i++) {
|
nuclear@1
|
408 for(int j=0; j<4; j++) {
|
nuclear@1
|
409 res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j] + m1.m[i][3] * m2.m[3][j];
|
nuclear@1
|
410 }
|
nuclear@1
|
411 }
|
nuclear@1
|
412
|
nuclear@1
|
413 return res;
|
nuclear@1
|
414 }
|
nuclear@1
|
415 */
|
nuclear@1
|
416
|
nuclear@1
|
417 void operator +=(Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@1
|
418 {
|
nuclear@1
|
419 scalar_t *op1 = m1.m[0];
|
nuclear@1
|
420 const scalar_t *op2 = m2.m[0];
|
nuclear@1
|
421
|
nuclear@1
|
422 for(int i=0; i<16; i++) {
|
nuclear@1
|
423 *op1++ += *op2++;
|
nuclear@1
|
424 }
|
nuclear@1
|
425 }
|
nuclear@1
|
426
|
nuclear@1
|
427 void operator -=(Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@1
|
428 {
|
nuclear@1
|
429 scalar_t *op1 = m1.m[0];
|
nuclear@1
|
430 const scalar_t *op2 = m2.m[0];
|
nuclear@1
|
431
|
nuclear@1
|
432 for(int i=0; i<16; i++) {
|
nuclear@1
|
433 *op1++ -= *op2++;
|
nuclear@1
|
434 }
|
nuclear@1
|
435 }
|
nuclear@1
|
436
|
nuclear@1
|
437 void operator *=(Matrix4x4 &m1, const Matrix4x4 &m2)
|
nuclear@1
|
438 {
|
nuclear@1
|
439 Matrix4x4 res;
|
nuclear@1
|
440 for(int i=0; i<4; i++) {
|
nuclear@1
|
441 for(int j=0; j<4; j++) {
|
nuclear@1
|
442 res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j] + m1.m[i][3] * m2.m[3][j];
|
nuclear@1
|
443 }
|
nuclear@1
|
444 }
|
nuclear@1
|
445 memcpy(m1.m, res.m, 16 * sizeof(scalar_t));
|
nuclear@1
|
446 }
|
nuclear@1
|
447
|
nuclear@1
|
448 Matrix4x4 operator *(const Matrix4x4 &mat, scalar_t scalar)
|
nuclear@1
|
449 {
|
nuclear@1
|
450 Matrix4x4 res;
|
nuclear@1
|
451 const scalar_t *mptr = mat.m[0];
|
nuclear@1
|
452 scalar_t *dptr = res.m[0];
|
nuclear@1
|
453
|
nuclear@1
|
454 for(int i=0; i<16; i++) {
|
nuclear@1
|
455 *dptr++ = *mptr++ * scalar;
|
nuclear@1
|
456 }
|
nuclear@1
|
457 return res;
|
nuclear@1
|
458 }
|
nuclear@1
|
459
|
nuclear@1
|
460 Matrix4x4 operator *(scalar_t scalar, const Matrix4x4 &mat)
|
nuclear@1
|
461 {
|
nuclear@1
|
462 Matrix4x4 res;
|
nuclear@1
|
463 const scalar_t *mptr = mat.m[0];
|
nuclear@1
|
464 scalar_t *dptr = res.m[0];
|
nuclear@1
|
465
|
nuclear@1
|
466 for(int i=0; i<16; i++) {
|
nuclear@1
|
467 *dptr++ = *mptr++ * scalar;
|
nuclear@1
|
468 }
|
nuclear@1
|
469 return res;
|
nuclear@1
|
470 }
|
nuclear@1
|
471
|
nuclear@1
|
472 void operator *=(Matrix4x4 &mat, scalar_t scalar)
|
nuclear@1
|
473 {
|
nuclear@1
|
474 scalar_t *mptr = mat.m[0];
|
nuclear@1
|
475
|
nuclear@1
|
476 for(int i=0; i<16; i++) {
|
nuclear@1
|
477 *mptr++ *= scalar;
|
nuclear@1
|
478 }
|
nuclear@1
|
479 }
|
nuclear@1
|
480
|
nuclear@1
|
481 void Matrix4x4::translate(const Vector3 &trans)
|
nuclear@1
|
482 {
|
nuclear@1
|
483 Matrix4x4 tmat(1, 0, 0, trans.x, 0, 1, 0, trans.y, 0, 0, 1, trans.z, 0, 0, 0, 1);
|
nuclear@1
|
484 *this *= tmat;
|
nuclear@1
|
485 }
|
nuclear@1
|
486
|
nuclear@1
|
487 void Matrix4x4::set_translation(const Vector3 &trans)
|
nuclear@1
|
488 {
|
nuclear@1
|
489 *this = Matrix4x4(1, 0, 0, trans.x, 0, 1, 0, trans.y, 0, 0, 1, trans.z, 0, 0, 0, 1);
|
nuclear@1
|
490 }
|
nuclear@1
|
491
|
nuclear@1
|
492 void Matrix4x4::rotate(const Vector3 &euler_angles)
|
nuclear@1
|
493 {
|
nuclear@1
|
494 Matrix3x3 xrot, yrot, zrot;
|
nuclear@1
|
495
|
nuclear@1
|
496 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@1
|
497 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@1
|
498 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@1
|
499
|
nuclear@1
|
500 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@1
|
501 0, 1, 0,
|
nuclear@1
|
502 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@1
|
503
|
nuclear@1
|
504 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@1
|
505 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@1
|
506 0, 0, 1);
|
nuclear@1
|
507
|
nuclear@1
|
508 *this *= Matrix4x4(xrot * yrot * zrot);
|
nuclear@1
|
509 }
|
nuclear@1
|
510
|
nuclear@1
|
511 void Matrix4x4::set_rotation(const Vector3 &euler_angles)
|
nuclear@1
|
512 {
|
nuclear@1
|
513 Matrix3x3 xrot, yrot, zrot;
|
nuclear@1
|
514
|
nuclear@1
|
515 xrot = Matrix3x3( 1, 0, 0,
|
nuclear@1
|
516 0, cos(euler_angles.x), -sin(euler_angles.x),
|
nuclear@1
|
517 0, sin(euler_angles.x), cos(euler_angles.x));
|
nuclear@1
|
518
|
nuclear@1
|
519 yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y),
|
nuclear@1
|
520 0, 1, 0,
|
nuclear@1
|
521 -sin(euler_angles.y), 0, cos(euler_angles.y));
|
nuclear@1
|
522
|
nuclear@1
|
523 zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0,
|
nuclear@1
|
524 sin(euler_angles.z), cos(euler_angles.z), 0,
|
nuclear@1
|
525 0, 0, 1);
|
nuclear@1
|
526
|
nuclear@1
|
527 *this = Matrix4x4(xrot * yrot * zrot);
|
nuclear@1
|
528 }
|
nuclear@1
|
529
|
nuclear@1
|
530 void Matrix4x4::rotate(const Vector3 &axis, scalar_t angle)
|
nuclear@1
|
531 {
|
nuclear@1
|
532 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@1
|
533 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@1
|
534 scalar_t invcosa = 1-cosa;
|
nuclear@1
|
535 scalar_t nxsq = axis.x * axis.x;
|
nuclear@1
|
536 scalar_t nysq = axis.y * axis.y;
|
nuclear@1
|
537 scalar_t nzsq = axis.z * axis.z;
|
nuclear@1
|
538
|
nuclear@1
|
539 Matrix3x3 xform;
|
nuclear@1
|
540 xform[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@1
|
541 xform[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@1
|
542 xform[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@1
|
543 xform[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@1
|
544 xform[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@1
|
545 xform[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@1
|
546 xform[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@1
|
547 xform[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@1
|
548 xform[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@1
|
549
|
nuclear@1
|
550 *this *= Matrix4x4(xform);
|
nuclear@1
|
551 }
|
nuclear@1
|
552
|
nuclear@1
|
553 void Matrix4x4::set_rotation(const Vector3 &axis, scalar_t angle)
|
nuclear@1
|
554 {
|
nuclear@1
|
555 scalar_t sina = (scalar_t)sin(angle);
|
nuclear@1
|
556 scalar_t cosa = (scalar_t)cos(angle);
|
nuclear@1
|
557 scalar_t invcosa = 1-cosa;
|
nuclear@1
|
558 scalar_t nxsq = axis.x * axis.x;
|
nuclear@1
|
559 scalar_t nysq = axis.y * axis.y;
|
nuclear@1
|
560 scalar_t nzsq = axis.z * axis.z;
|
nuclear@1
|
561
|
nuclear@1
|
562 reset_identity();
|
nuclear@1
|
563 m[0][0] = nxsq + (1-nxsq) * cosa;
|
nuclear@1
|
564 m[0][1] = axis.x * axis.y * invcosa - axis.z * sina;
|
nuclear@1
|
565 m[0][2] = axis.x * axis.z * invcosa + axis.y * sina;
|
nuclear@1
|
566 m[1][0] = axis.x * axis.y * invcosa + axis.z * sina;
|
nuclear@1
|
567 m[1][1] = nysq + (1-nysq) * cosa;
|
nuclear@1
|
568 m[1][2] = axis.y * axis.z * invcosa - axis.x * sina;
|
nuclear@1
|
569 m[2][0] = axis.x * axis.z * invcosa - axis.y * sina;
|
nuclear@1
|
570 m[2][1] = axis.y * axis.z * invcosa + axis.x * sina;
|
nuclear@1
|
571 m[2][2] = nzsq + (1-nzsq) * cosa;
|
nuclear@1
|
572 }
|
nuclear@1
|
573
|
nuclear@1
|
574 void Matrix4x4::scale(const Vector4 &scale_vec)
|
nuclear@1
|
575 {
|
nuclear@1
|
576 Matrix4x4 smat( scale_vec.x, 0, 0, 0,
|
nuclear@1
|
577 0, scale_vec.y, 0, 0,
|
nuclear@1
|
578 0, 0, scale_vec.z, 0,
|
nuclear@1
|
579 0, 0, 0, scale_vec.w);
|
nuclear@1
|
580 *this *= smat;
|
nuclear@1
|
581 }
|
nuclear@1
|
582
|
nuclear@1
|
583 void Matrix4x4::set_scaling(const Vector4 &scale_vec)
|
nuclear@1
|
584 {
|
nuclear@1
|
585 *this = Matrix4x4( scale_vec.x, 0, 0, 0,
|
nuclear@1
|
586 0, scale_vec.y, 0, 0,
|
nuclear@1
|
587 0, 0, scale_vec.z, 0,
|
nuclear@1
|
588 0, 0, 0, scale_vec.w);
|
nuclear@1
|
589 }
|
nuclear@1
|
590
|
nuclear@1
|
591 void Matrix4x4::set_column_vector(const Vector4 &vec, unsigned int col_index)
|
nuclear@1
|
592 {
|
nuclear@1
|
593 m[0][col_index] = vec.x;
|
nuclear@1
|
594 m[1][col_index] = vec.y;
|
nuclear@1
|
595 m[2][col_index] = vec.z;
|
nuclear@1
|
596 m[3][col_index] = vec.w;
|
nuclear@1
|
597 }
|
nuclear@1
|
598
|
nuclear@1
|
599 void Matrix4x4::set_row_vector(const Vector4 &vec, unsigned int row_index)
|
nuclear@1
|
600 {
|
nuclear@1
|
601 m[row_index][0] = vec.x;
|
nuclear@1
|
602 m[row_index][1] = vec.y;
|
nuclear@1
|
603 m[row_index][2] = vec.z;
|
nuclear@1
|
604 m[row_index][3] = vec.w;
|
nuclear@1
|
605 }
|
nuclear@1
|
606
|
nuclear@1
|
607 Vector4 Matrix4x4::get_column_vector(unsigned int col_index) const
|
nuclear@1
|
608 {
|
nuclear@1
|
609 return Vector4(m[0][col_index], m[1][col_index], m[2][col_index], m[3][col_index]);
|
nuclear@1
|
610 }
|
nuclear@1
|
611
|
nuclear@1
|
612 Vector4 Matrix4x4::get_row_vector(unsigned int row_index) const
|
nuclear@1
|
613 {
|
nuclear@1
|
614 return Vector4(m[row_index][0], m[row_index][1], m[row_index][2], m[row_index][3]);
|
nuclear@1
|
615 }
|
nuclear@1
|
616
|
nuclear@1
|
617 void Matrix4x4::transpose()
|
nuclear@1
|
618 {
|
nuclear@1
|
619 Matrix4x4 tmp = *this;
|
nuclear@1
|
620 for(int i=0; i<4; i++) {
|
nuclear@1
|
621 for(int j=0; j<4; j++) {
|
nuclear@1
|
622 m[i][j] = tmp[j][i];
|
nuclear@1
|
623 }
|
nuclear@1
|
624 }
|
nuclear@1
|
625 }
|
nuclear@1
|
626
|
nuclear@1
|
627 Matrix4x4 Matrix4x4::transposed() const
|
nuclear@1
|
628 {
|
nuclear@1
|
629 Matrix4x4 res;
|
nuclear@1
|
630 for(int i=0; i<4; i++) {
|
nuclear@1
|
631 for(int j=0; j<4; j++) {
|
nuclear@1
|
632 res[i][j] = m[j][i];
|
nuclear@1
|
633 }
|
nuclear@1
|
634 }
|
nuclear@1
|
635 return res;
|
nuclear@1
|
636 }
|
nuclear@1
|
637
|
nuclear@1
|
638 scalar_t Matrix4x4::determinant() const
|
nuclear@1
|
639 {
|
nuclear@1
|
640 scalar_t det11 = (m[1][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@1
|
641 (m[1][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) +
|
nuclear@1
|
642 (m[1][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2]));
|
nuclear@1
|
643
|
nuclear@1
|
644 scalar_t det12 = (m[1][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@1
|
645 (m[1][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@1
|
646 (m[1][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2]));
|
nuclear@1
|
647
|
nuclear@1
|
648 scalar_t det13 = (m[1][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) -
|
nuclear@1
|
649 (m[1][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@1
|
650 (m[1][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@1
|
651
|
nuclear@1
|
652 scalar_t det14 = (m[1][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) -
|
nuclear@1
|
653 (m[1][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) +
|
nuclear@1
|
654 (m[1][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@1
|
655
|
nuclear@1
|
656 return m[0][0] * det11 - m[0][1] * det12 + m[0][2] * det13 - m[0][3] * det14;
|
nuclear@1
|
657 }
|
nuclear@1
|
658
|
nuclear@1
|
659
|
nuclear@1
|
660 Matrix4x4 Matrix4x4::adjoint() const
|
nuclear@1
|
661 {
|
nuclear@1
|
662 Matrix4x4 coef;
|
nuclear@1
|
663
|
nuclear@1
|
664 coef.m[0][0] = (m[1][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@1
|
665 (m[1][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) +
|
nuclear@1
|
666 (m[1][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2]));
|
nuclear@1
|
667 coef.m[0][1] = (m[1][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@1
|
668 (m[1][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@1
|
669 (m[1][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2]));
|
nuclear@1
|
670 coef.m[0][2] = (m[1][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) -
|
nuclear@1
|
671 (m[1][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@1
|
672 (m[1][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@1
|
673 coef.m[0][3] = (m[1][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) -
|
nuclear@1
|
674 (m[1][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) +
|
nuclear@1
|
675 (m[1][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@1
|
676
|
nuclear@1
|
677 coef.m[1][0] = (m[0][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@1
|
678 (m[0][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) +
|
nuclear@1
|
679 (m[0][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2]));
|
nuclear@1
|
680 coef.m[1][1] = (m[0][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) -
|
nuclear@1
|
681 (m[0][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@1
|
682 (m[0][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2]));
|
nuclear@1
|
683 coef.m[1][2] = (m[0][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) -
|
nuclear@1
|
684 (m[0][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) +
|
nuclear@1
|
685 (m[0][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@1
|
686 coef.m[1][3] = (m[0][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) -
|
nuclear@1
|
687 (m[0][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) +
|
nuclear@1
|
688 (m[0][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1]));
|
nuclear@1
|
689
|
nuclear@1
|
690 coef.m[2][0] = (m[0][1] * (m[1][2] * m[3][3] - m[3][2] * m[1][3])) -
|
nuclear@1
|
691 (m[0][2] * (m[1][1] * m[3][3] - m[3][1] * m[1][3])) +
|
nuclear@1
|
692 (m[0][3] * (m[1][1] * m[3][2] - m[3][1] * m[1][2]));
|
nuclear@1
|
693 coef.m[2][1] = (m[0][0] * (m[1][2] * m[3][3] - m[3][2] * m[1][3])) -
|
nuclear@1
|
694 (m[0][2] * (m[1][0] * m[3][3] - m[3][0] * m[1][3])) +
|
nuclear@1
|
695 (m[0][3] * (m[1][0] * m[3][2] - m[3][0] * m[1][2]));
|
nuclear@1
|
696 coef.m[2][2] = (m[0][0] * (m[1][1] * m[3][3] - m[3][1] * m[1][3])) -
|
nuclear@1
|
697 (m[0][1] * (m[1][0] * m[3][3] - m[3][0] * m[1][3])) +
|
nuclear@1
|
698 (m[0][3] * (m[1][0] * m[3][1] - m[3][0] * m[1][1]));
|
nuclear@1
|
699 coef.m[2][3] = (m[0][0] * (m[1][1] * m[3][2] - m[3][1] * m[1][2])) -
|
nuclear@1
|
700 (m[0][1] * (m[1][0] * m[3][2] - m[3][0] * m[1][2])) +
|
nuclear@1
|
701 (m[0][2] * (m[1][0] * m[3][1] - m[3][0] * m[1][1]));
|
nuclear@1
|
702
|
nuclear@1
|
703 coef.m[3][0] = (m[0][1] * (m[1][2] * m[2][3] - m[2][2] * m[1][3])) -
|
nuclear@1
|
704 (m[0][2] * (m[1][1] * m[2][3] - m[2][1] * m[1][3])) +
|
nuclear@1
|
705 (m[0][3] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]));
|
nuclear@1
|
706 coef.m[3][1] = (m[0][0] * (m[1][2] * m[2][3] - m[2][2] * m[1][3])) -
|
nuclear@1
|
707 (m[0][2] * (m[1][0] * m[2][3] - m[2][0] * m[1][3])) +
|
nuclear@1
|
708 (m[0][3] * (m[1][0] * m[2][2] - m[2][0] * m[1][2]));
|
nuclear@1
|
709 coef.m[3][2] = (m[0][0] * (m[1][1] * m[2][3] - m[2][1] * m[1][3])) -
|
nuclear@1
|
710 (m[0][1] * (m[1][0] * m[2][3] - m[2][0] * m[1][3])) +
|
nuclear@1
|
711 (m[0][3] * (m[1][0] * m[2][1] - m[2][0] * m[1][1]));
|
nuclear@1
|
712 coef.m[3][3] = (m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])) -
|
nuclear@1
|
713 (m[0][1] * (m[1][0] * m[2][2] - m[2][0] * m[1][2])) +
|
nuclear@1
|
714 (m[0][2] * (m[1][0] * m[2][1] - m[2][0] * m[1][1]));
|
nuclear@1
|
715
|
nuclear@1
|
716 coef.transpose();
|
nuclear@1
|
717
|
nuclear@1
|
718 for(int i=0; i<4; i++) {
|
nuclear@1
|
719 for(int j=0; j<4; j++) {
|
nuclear@1
|
720 coef.m[i][j] = j%2 ? -coef.m[i][j] : coef.m[i][j];
|
nuclear@1
|
721 if(i%2) coef.m[i][j] = -coef.m[i][j];
|
nuclear@1
|
722 }
|
nuclear@1
|
723 }
|
nuclear@1
|
724
|
nuclear@1
|
725 return coef;
|
nuclear@1
|
726 }
|
nuclear@1
|
727
|
nuclear@1
|
728 Matrix4x4 Matrix4x4::inverse() const
|
nuclear@1
|
729 {
|
nuclear@1
|
730 Matrix4x4 adj = adjoint();
|
nuclear@1
|
731
|
nuclear@1
|
732 return adj * (1.0f / determinant());
|
nuclear@1
|
733 }
|
nuclear@1
|
734
|
nuclear@1
|
735 ostream &operator <<(ostream &out, const Matrix4x4 &mat)
|
nuclear@1
|
736 {
|
nuclear@1
|
737 for(int i=0; i<4; i++) {
|
nuclear@1
|
738 char str[100];
|
nuclear@1
|
739 sprintf(str, "[ %12.5f %12.5f %12.5f %12.5f ]\n", (float)mat.m[i][0], (float)mat.m[i][1], (float)mat.m[i][2], (float)mat.m[i][3]);
|
nuclear@1
|
740 out << str;
|
nuclear@1
|
741 }
|
nuclear@1
|
742 return out;
|
nuclear@1
|
743 }
|