nuclear@1: /* adler32.c -- compute the Adler-32 checksum of a data stream nuclear@1: * Copyright (C) 1995-2004 Mark Adler nuclear@1: * For conditions of distribution and use, see copyright notice in zlib.h nuclear@1: */ nuclear@1: nuclear@1: /* @(#) $Id$ */ nuclear@1: nuclear@1: #define ZLIB_INTERNAL nuclear@1: #include "zlib.h" nuclear@1: nuclear@1: #define BASE 65521UL /* largest prime smaller than 65536 */ nuclear@1: #define NMAX 5552 nuclear@1: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ nuclear@1: nuclear@1: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} nuclear@1: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); nuclear@1: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); nuclear@1: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); nuclear@1: #define DO16(buf) DO8(buf,0); DO8(buf,8); nuclear@1: nuclear@1: /* use NO_DIVIDE if your processor does not do division in hardware */ nuclear@1: #ifdef NO_DIVIDE nuclear@1: # define MOD(a) \ nuclear@1: do { \ nuclear@1: if (a >= (BASE << 16)) a -= (BASE << 16); \ nuclear@1: if (a >= (BASE << 15)) a -= (BASE << 15); \ nuclear@1: if (a >= (BASE << 14)) a -= (BASE << 14); \ nuclear@1: if (a >= (BASE << 13)) a -= (BASE << 13); \ nuclear@1: if (a >= (BASE << 12)) a -= (BASE << 12); \ nuclear@1: if (a >= (BASE << 11)) a -= (BASE << 11); \ nuclear@1: if (a >= (BASE << 10)) a -= (BASE << 10); \ nuclear@1: if (a >= (BASE << 9)) a -= (BASE << 9); \ nuclear@1: if (a >= (BASE << 8)) a -= (BASE << 8); \ nuclear@1: if (a >= (BASE << 7)) a -= (BASE << 7); \ nuclear@1: if (a >= (BASE << 6)) a -= (BASE << 6); \ nuclear@1: if (a >= (BASE << 5)) a -= (BASE << 5); \ nuclear@1: if (a >= (BASE << 4)) a -= (BASE << 4); \ nuclear@1: if (a >= (BASE << 3)) a -= (BASE << 3); \ nuclear@1: if (a >= (BASE << 2)) a -= (BASE << 2); \ nuclear@1: if (a >= (BASE << 1)) a -= (BASE << 1); \ nuclear@1: if (a >= BASE) a -= BASE; \ nuclear@1: } while (0) nuclear@1: # define MOD4(a) \ nuclear@1: do { \ nuclear@1: if (a >= (BASE << 4)) a -= (BASE << 4); \ nuclear@1: if (a >= (BASE << 3)) a -= (BASE << 3); \ nuclear@1: if (a >= (BASE << 2)) a -= (BASE << 2); \ nuclear@1: if (a >= (BASE << 1)) a -= (BASE << 1); \ nuclear@1: if (a >= BASE) a -= BASE; \ nuclear@1: } while (0) nuclear@1: #else nuclear@1: # define MOD(a) a %= BASE nuclear@1: # define MOD4(a) a %= BASE nuclear@1: #endif nuclear@1: nuclear@1: /* ========================================================================= */ nuclear@1: uLong ZEXPORT adler32(adler, buf, len) nuclear@1: uLong adler; nuclear@1: const Bytef *buf; nuclear@1: uInt len; nuclear@1: { nuclear@1: unsigned long sum2; nuclear@1: unsigned n; nuclear@1: nuclear@1: /* split Adler-32 into component sums */ nuclear@1: sum2 = (adler >> 16) & 0xffff; nuclear@1: adler &= 0xffff; nuclear@1: nuclear@1: /* in case user likes doing a byte at a time, keep it fast */ nuclear@1: if (len == 1) { nuclear@1: adler += buf[0]; nuclear@1: if (adler >= BASE) nuclear@1: adler -= BASE; nuclear@1: sum2 += adler; nuclear@1: if (sum2 >= BASE) nuclear@1: sum2 -= BASE; nuclear@1: return adler | (sum2 << 16); nuclear@1: } nuclear@1: nuclear@1: /* initial Adler-32 value (deferred check for len == 1 speed) */ nuclear@1: if (buf == Z_NULL) nuclear@1: return 1L; nuclear@1: nuclear@1: /* in case short lengths are provided, keep it somewhat fast */ nuclear@1: if (len < 16) { nuclear@1: while (len--) { nuclear@1: adler += *buf++; nuclear@1: sum2 += adler; nuclear@1: } nuclear@1: if (adler >= BASE) nuclear@1: adler -= BASE; nuclear@1: MOD4(sum2); /* only added so many BASE's */ nuclear@1: return adler | (sum2 << 16); nuclear@1: } nuclear@1: nuclear@1: /* do length NMAX blocks -- requires just one modulo operation */ nuclear@1: while (len >= NMAX) { nuclear@1: len -= NMAX; nuclear@1: n = NMAX / 16; /* NMAX is divisible by 16 */ nuclear@1: do { nuclear@1: DO16(buf); /* 16 sums unrolled */ nuclear@1: buf += 16; nuclear@1: } while (--n); nuclear@1: MOD(adler); nuclear@1: MOD(sum2); nuclear@1: } nuclear@1: nuclear@1: /* do remaining bytes (less than NMAX, still just one modulo) */ nuclear@1: if (len) { /* avoid modulos if none remaining */ nuclear@1: while (len >= 16) { nuclear@1: len -= 16; nuclear@1: DO16(buf); nuclear@1: buf += 16; nuclear@1: } nuclear@1: while (len--) { nuclear@1: adler += *buf++; nuclear@1: sum2 += adler; nuclear@1: } nuclear@1: MOD(adler); nuclear@1: MOD(sum2); nuclear@1: } nuclear@1: nuclear@1: /* return recombined sums */ nuclear@1: return adler | (sum2 << 16); nuclear@1: } nuclear@1: nuclear@1: /* ========================================================================= */ nuclear@1: uLong ZEXPORT adler32_combine(adler1, adler2, len2) nuclear@1: uLong adler1; nuclear@1: uLong adler2; nuclear@1: z_off_t len2; nuclear@1: { nuclear@1: unsigned long sum1; nuclear@1: unsigned long sum2; nuclear@1: unsigned rem; nuclear@1: nuclear@1: /* the derivation of this formula is left as an exercise for the reader */ nuclear@1: rem = (unsigned)(len2 % BASE); nuclear@1: sum1 = adler1 & 0xffff; nuclear@1: sum2 = rem * sum1; nuclear@1: MOD(sum2); nuclear@1: sum1 += (adler2 & 0xffff) + BASE - 1; nuclear@1: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; nuclear@1: if (sum1 > BASE) sum1 -= BASE; nuclear@1: if (sum1 > BASE) sum1 -= BASE; nuclear@1: if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); nuclear@1: if (sum2 > BASE) sum2 -= BASE; nuclear@1: return sum1 | (sum2 << 16); nuclear@1: }