nuclear@1: /* nuclear@1: * jfdctflt.c nuclear@1: * nuclear@1: * Copyright (C) 1994-1996, Thomas G. Lane. nuclear@1: * This file is part of the Independent JPEG Group's software. nuclear@1: * For conditions of distribution and use, see the accompanying README file. nuclear@1: * nuclear@1: * This file contains a floating-point implementation of the nuclear@1: * forward DCT (Discrete Cosine Transform). nuclear@1: * nuclear@1: * This implementation should be more accurate than either of the integer nuclear@1: * DCT implementations. However, it may not give the same results on all nuclear@1: * machines because of differences in roundoff behavior. Speed will depend nuclear@1: * on the hardware's floating point capacity. nuclear@1: * nuclear@1: * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT nuclear@1: * on each column. Direct algorithms are also available, but they are nuclear@1: * much more complex and seem not to be any faster when reduced to code. nuclear@1: * nuclear@1: * This implementation is based on Arai, Agui, and Nakajima's algorithm for nuclear@1: * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in nuclear@1: * Japanese, but the algorithm is described in the Pennebaker & Mitchell nuclear@1: * JPEG textbook (see REFERENCES section in file README). The following code nuclear@1: * is based directly on figure 4-8 in P&M. nuclear@1: * While an 8-point DCT cannot be done in less than 11 multiplies, it is nuclear@1: * possible to arrange the computation so that many of the multiplies are nuclear@1: * simple scalings of the final outputs. These multiplies can then be nuclear@1: * folded into the multiplications or divisions by the JPEG quantization nuclear@1: * table entries. The AA&N method leaves only 5 multiplies and 29 adds nuclear@1: * to be done in the DCT itself. nuclear@1: * The primary disadvantage of this method is that with a fixed-point nuclear@1: * implementation, accuracy is lost due to imprecise representation of the nuclear@1: * scaled quantization values. However, that problem does not arise if nuclear@1: * we use floating point arithmetic. nuclear@1: */ nuclear@1: nuclear@1: #define JPEG_INTERNALS nuclear@1: #include "jinclude.h" nuclear@1: #include "jpeglib.h" nuclear@1: #include "jdct.h" /* Private declarations for DCT subsystem */ nuclear@1: nuclear@1: #ifdef DCT_FLOAT_SUPPORTED nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * This module is specialized to the case DCTSIZE = 8. nuclear@1: */ nuclear@1: nuclear@1: #if DCTSIZE != 8 nuclear@1: Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ nuclear@1: #endif nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Perform the forward DCT on one block of samples. nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_fdct_float (FAST_FLOAT * data) nuclear@1: { nuclear@1: FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; nuclear@1: FAST_FLOAT tmp10, tmp11, tmp12, tmp13; nuclear@1: FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; nuclear@1: FAST_FLOAT *dataptr; nuclear@1: int ctr; nuclear@1: nuclear@1: /* Pass 1: process rows. */ nuclear@1: nuclear@1: dataptr = data; nuclear@1: for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { nuclear@1: tmp0 = dataptr[0] + dataptr[7]; nuclear@1: tmp7 = dataptr[0] - dataptr[7]; nuclear@1: tmp1 = dataptr[1] + dataptr[6]; nuclear@1: tmp6 = dataptr[1] - dataptr[6]; nuclear@1: tmp2 = dataptr[2] + dataptr[5]; nuclear@1: tmp5 = dataptr[2] - dataptr[5]; nuclear@1: tmp3 = dataptr[3] + dataptr[4]; nuclear@1: tmp4 = dataptr[3] - dataptr[4]; nuclear@1: nuclear@1: /* Even part */ nuclear@1: nuclear@1: tmp10 = tmp0 + tmp3; /* phase 2 */ nuclear@1: tmp13 = tmp0 - tmp3; nuclear@1: tmp11 = tmp1 + tmp2; nuclear@1: tmp12 = tmp1 - tmp2; nuclear@1: nuclear@1: dataptr[0] = tmp10 + tmp11; /* phase 3 */ nuclear@1: dataptr[4] = tmp10 - tmp11; nuclear@1: nuclear@1: z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ nuclear@1: dataptr[2] = tmp13 + z1; /* phase 5 */ nuclear@1: dataptr[6] = tmp13 - z1; nuclear@1: nuclear@1: /* Odd part */ nuclear@1: nuclear@1: tmp10 = tmp4 + tmp5; /* phase 2 */ nuclear@1: tmp11 = tmp5 + tmp6; nuclear@1: tmp12 = tmp6 + tmp7; nuclear@1: nuclear@1: /* The rotator is modified from fig 4-8 to avoid extra negations. */ nuclear@1: z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ nuclear@1: z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ nuclear@1: z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ nuclear@1: z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ nuclear@1: nuclear@1: z11 = tmp7 + z3; /* phase 5 */ nuclear@1: z13 = tmp7 - z3; nuclear@1: nuclear@1: dataptr[5] = z13 + z2; /* phase 6 */ nuclear@1: dataptr[3] = z13 - z2; nuclear@1: dataptr[1] = z11 + z4; nuclear@1: dataptr[7] = z11 - z4; nuclear@1: nuclear@1: dataptr += DCTSIZE; /* advance pointer to next row */ nuclear@1: } nuclear@1: nuclear@1: /* Pass 2: process columns. */ nuclear@1: nuclear@1: dataptr = data; nuclear@1: for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { nuclear@1: tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; nuclear@1: tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; nuclear@1: tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; nuclear@1: tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; nuclear@1: tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; nuclear@1: tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; nuclear@1: tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; nuclear@1: tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; nuclear@1: nuclear@1: /* Even part */ nuclear@1: nuclear@1: tmp10 = tmp0 + tmp3; /* phase 2 */ nuclear@1: tmp13 = tmp0 - tmp3; nuclear@1: tmp11 = tmp1 + tmp2; nuclear@1: tmp12 = tmp1 - tmp2; nuclear@1: nuclear@1: dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ nuclear@1: dataptr[DCTSIZE*4] = tmp10 - tmp11; nuclear@1: nuclear@1: z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ nuclear@1: dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ nuclear@1: dataptr[DCTSIZE*6] = tmp13 - z1; nuclear@1: nuclear@1: /* Odd part */ nuclear@1: nuclear@1: tmp10 = tmp4 + tmp5; /* phase 2 */ nuclear@1: tmp11 = tmp5 + tmp6; nuclear@1: tmp12 = tmp6 + tmp7; nuclear@1: nuclear@1: /* The rotator is modified from fig 4-8 to avoid extra negations. */ nuclear@1: z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ nuclear@1: z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ nuclear@1: z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ nuclear@1: z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ nuclear@1: nuclear@1: z11 = tmp7 + z3; /* phase 5 */ nuclear@1: z13 = tmp7 - z3; nuclear@1: nuclear@1: dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ nuclear@1: dataptr[DCTSIZE*3] = z13 - z2; nuclear@1: dataptr[DCTSIZE*1] = z11 + z4; nuclear@1: dataptr[DCTSIZE*7] = z11 - z4; nuclear@1: nuclear@1: dataptr++; /* advance pointer to next column */ nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: #endif /* DCT_FLOAT_SUPPORTED */