nuclear@1: /* nuclear@1: * jddctmgr.c nuclear@1: * nuclear@1: * Copyright (C) 1994-1996, Thomas G. Lane. nuclear@1: * This file is part of the Independent JPEG Group's software. nuclear@1: * For conditions of distribution and use, see the accompanying README file. nuclear@1: * nuclear@1: * This file contains the inverse-DCT management logic. nuclear@1: * This code selects a particular IDCT implementation to be used, nuclear@1: * and it performs related housekeeping chores. No code in this file nuclear@1: * is executed per IDCT step, only during output pass setup. nuclear@1: * nuclear@1: * Note that the IDCT routines are responsible for performing coefficient nuclear@1: * dequantization as well as the IDCT proper. This module sets up the nuclear@1: * dequantization multiplier table needed by the IDCT routine. nuclear@1: */ nuclear@1: nuclear@1: #define JPEG_INTERNALS nuclear@1: #include "jinclude.h" nuclear@1: #include "jpeglib.h" nuclear@1: #include "jdct.h" /* Private declarations for DCT subsystem */ nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * The decompressor input side (jdinput.c) saves away the appropriate nuclear@1: * quantization table for each component at the start of the first scan nuclear@1: * involving that component. (This is necessary in order to correctly nuclear@1: * decode files that reuse Q-table slots.) nuclear@1: * When we are ready to make an output pass, the saved Q-table is converted nuclear@1: * to a multiplier table that will actually be used by the IDCT routine. nuclear@1: * The multiplier table contents are IDCT-method-dependent. To support nuclear@1: * application changes in IDCT method between scans, we can remake the nuclear@1: * multiplier tables if necessary. nuclear@1: * In buffered-image mode, the first output pass may occur before any data nuclear@1: * has been seen for some components, and thus before their Q-tables have nuclear@1: * been saved away. To handle this case, multiplier tables are preset nuclear@1: * to zeroes; the result of the IDCT will be a neutral gray level. nuclear@1: */ nuclear@1: nuclear@1: nuclear@1: /* Private subobject for this module */ nuclear@1: nuclear@1: typedef struct { nuclear@1: struct jpeg_inverse_dct pub; /* public fields */ nuclear@1: nuclear@1: /* This array contains the IDCT method code that each multiplier table nuclear@1: * is currently set up for, or -1 if it's not yet set up. nuclear@1: * The actual multiplier tables are pointed to by dct_table in the nuclear@1: * per-component comp_info structures. nuclear@1: */ nuclear@1: int cur_method[MAX_COMPONENTS]; nuclear@1: } my_idct_controller; nuclear@1: nuclear@1: typedef my_idct_controller * my_idct_ptr; nuclear@1: nuclear@1: nuclear@1: /* Allocated multiplier tables: big enough for any supported variant */ nuclear@1: nuclear@1: typedef union { nuclear@1: ISLOW_MULT_TYPE islow_array[DCTSIZE2]; nuclear@1: #ifdef DCT_IFAST_SUPPORTED nuclear@1: IFAST_MULT_TYPE ifast_array[DCTSIZE2]; nuclear@1: #endif nuclear@1: #ifdef DCT_FLOAT_SUPPORTED nuclear@1: FLOAT_MULT_TYPE float_array[DCTSIZE2]; nuclear@1: #endif nuclear@1: } multiplier_table; nuclear@1: nuclear@1: nuclear@1: /* The current scaled-IDCT routines require ISLOW-style multiplier tables, nuclear@1: * so be sure to compile that code if either ISLOW or SCALING is requested. nuclear@1: */ nuclear@1: #ifdef DCT_ISLOW_SUPPORTED nuclear@1: #define PROVIDE_ISLOW_TABLES nuclear@1: #else nuclear@1: #ifdef IDCT_SCALING_SUPPORTED nuclear@1: #define PROVIDE_ISLOW_TABLES nuclear@1: #endif nuclear@1: #endif nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Prepare for an output pass. nuclear@1: * Here we select the proper IDCT routine for each component and build nuclear@1: * a matching multiplier table. nuclear@1: */ nuclear@1: nuclear@1: METHODDEF(void) nuclear@1: start_pass (j_decompress_ptr cinfo) nuclear@1: { nuclear@1: my_idct_ptr idct = (my_idct_ptr) cinfo->idct; nuclear@1: int ci, i; nuclear@1: jpeg_component_info *compptr; nuclear@1: int method = 0; nuclear@1: inverse_DCT_method_ptr method_ptr = NULL; nuclear@1: JQUANT_TBL * qtbl; nuclear@1: nuclear@1: for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; nuclear@1: ci++, compptr++) { nuclear@1: /* Select the proper IDCT routine for this component's scaling */ nuclear@1: switch (compptr->DCT_scaled_size) { nuclear@1: #ifdef IDCT_SCALING_SUPPORTED nuclear@1: case 1: nuclear@1: method_ptr = jpeg_idct_1x1; nuclear@1: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@1: break; nuclear@1: case 2: nuclear@1: method_ptr = jpeg_idct_2x2; nuclear@1: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@1: break; nuclear@1: case 4: nuclear@1: method_ptr = jpeg_idct_4x4; nuclear@1: method = JDCT_ISLOW; /* jidctred uses islow-style table */ nuclear@1: break; nuclear@1: #endif nuclear@1: case DCTSIZE: nuclear@1: switch (cinfo->dct_method) { nuclear@1: #ifdef DCT_ISLOW_SUPPORTED nuclear@1: case JDCT_ISLOW: nuclear@1: method_ptr = jpeg_idct_islow; nuclear@1: method = JDCT_ISLOW; nuclear@1: break; nuclear@1: #endif nuclear@1: #ifdef DCT_IFAST_SUPPORTED nuclear@1: case JDCT_IFAST: nuclear@1: method_ptr = jpeg_idct_ifast; nuclear@1: method = JDCT_IFAST; nuclear@1: break; nuclear@1: #endif nuclear@1: #ifdef DCT_FLOAT_SUPPORTED nuclear@1: case JDCT_FLOAT: nuclear@1: method_ptr = jpeg_idct_float; nuclear@1: method = JDCT_FLOAT; nuclear@1: break; nuclear@1: #endif nuclear@1: default: nuclear@1: ERREXIT(cinfo, JERR_NOT_COMPILED); nuclear@1: break; nuclear@1: } nuclear@1: break; nuclear@1: default: nuclear@1: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); nuclear@1: break; nuclear@1: } nuclear@1: idct->pub.inverse_DCT[ci] = method_ptr; nuclear@1: /* Create multiplier table from quant table. nuclear@1: * However, we can skip this if the component is uninteresting nuclear@1: * or if we already built the table. Also, if no quant table nuclear@1: * has yet been saved for the component, we leave the nuclear@1: * multiplier table all-zero; we'll be reading zeroes from the nuclear@1: * coefficient controller's buffer anyway. nuclear@1: */ nuclear@1: if (! compptr->component_needed || idct->cur_method[ci] == method) nuclear@1: continue; nuclear@1: qtbl = compptr->quant_table; nuclear@1: if (qtbl == NULL) /* happens if no data yet for component */ nuclear@1: continue; nuclear@1: idct->cur_method[ci] = method; nuclear@1: switch (method) { nuclear@1: #ifdef PROVIDE_ISLOW_TABLES nuclear@1: case JDCT_ISLOW: nuclear@1: { nuclear@1: /* For LL&M IDCT method, multipliers are equal to raw quantization nuclear@1: * coefficients, but are stored as ints to ensure access efficiency. nuclear@1: */ nuclear@1: ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; nuclear@1: for (i = 0; i < DCTSIZE2; i++) { nuclear@1: ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; nuclear@1: } nuclear@1: } nuclear@1: break; nuclear@1: #endif nuclear@1: #ifdef DCT_IFAST_SUPPORTED nuclear@1: case JDCT_IFAST: nuclear@1: { nuclear@1: /* For AA&N IDCT method, multipliers are equal to quantization nuclear@1: * coefficients scaled by scalefactor[row]*scalefactor[col], where nuclear@1: * scalefactor[0] = 1 nuclear@1: * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 nuclear@1: * For integer operation, the multiplier table is to be scaled by nuclear@1: * IFAST_SCALE_BITS. nuclear@1: */ nuclear@1: IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; nuclear@1: #define CONST_BITS 14 nuclear@1: static const INT16 aanscales[DCTSIZE2] = { nuclear@1: /* precomputed values scaled up by 14 bits */ nuclear@1: 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, nuclear@1: 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, nuclear@1: 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, nuclear@1: 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, nuclear@1: 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, nuclear@1: 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, nuclear@1: 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, nuclear@1: 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 nuclear@1: }; nuclear@1: SHIFT_TEMPS nuclear@1: nuclear@1: for (i = 0; i < DCTSIZE2; i++) { nuclear@1: ifmtbl[i] = (IFAST_MULT_TYPE) nuclear@1: DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], nuclear@1: (INT32) aanscales[i]), nuclear@1: CONST_BITS-IFAST_SCALE_BITS); nuclear@1: } nuclear@1: } nuclear@1: break; nuclear@1: #endif nuclear@1: #ifdef DCT_FLOAT_SUPPORTED nuclear@1: case JDCT_FLOAT: nuclear@1: { nuclear@1: /* For float AA&N IDCT method, multipliers are equal to quantization nuclear@1: * coefficients scaled by scalefactor[row]*scalefactor[col], where nuclear@1: * scalefactor[0] = 1 nuclear@1: * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 nuclear@1: */ nuclear@1: FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; nuclear@1: int row, col; nuclear@1: static const double aanscalefactor[DCTSIZE] = { nuclear@1: 1.0, 1.387039845, 1.306562965, 1.175875602, nuclear@1: 1.0, 0.785694958, 0.541196100, 0.275899379 nuclear@1: }; nuclear@1: nuclear@1: i = 0; nuclear@1: for (row = 0; row < DCTSIZE; row++) { nuclear@1: for (col = 0; col < DCTSIZE; col++) { nuclear@1: fmtbl[i] = (FLOAT_MULT_TYPE) nuclear@1: ((double) qtbl->quantval[i] * nuclear@1: aanscalefactor[row] * aanscalefactor[col]); nuclear@1: i++; nuclear@1: } nuclear@1: } nuclear@1: } nuclear@1: break; nuclear@1: #endif nuclear@1: default: nuclear@1: ERREXIT(cinfo, JERR_NOT_COMPILED); nuclear@1: break; nuclear@1: } nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Initialize IDCT manager. nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jinit_inverse_dct (j_decompress_ptr cinfo) nuclear@1: { nuclear@1: my_idct_ptr idct; nuclear@1: int ci; nuclear@1: jpeg_component_info *compptr; nuclear@1: nuclear@1: idct = (my_idct_ptr) nuclear@1: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, nuclear@1: SIZEOF(my_idct_controller)); nuclear@1: cinfo->idct = (struct jpeg_inverse_dct *) idct; nuclear@1: idct->pub.start_pass = start_pass; nuclear@1: nuclear@1: for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; nuclear@1: ci++, compptr++) { nuclear@1: /* Allocate and pre-zero a multiplier table for each component */ nuclear@1: compptr->dct_table = nuclear@1: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, nuclear@1: SIZEOF(multiplier_table)); nuclear@1: MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); nuclear@1: /* Mark multiplier table not yet set up for any method */ nuclear@1: idct->cur_method[ci] = -1; nuclear@1: } nuclear@1: }