nuclear@1: /* nuclear@1: * jcparam.c nuclear@1: * nuclear@1: * Copyright (C) 1991-1998, Thomas G. Lane. nuclear@1: * This file is part of the Independent JPEG Group's software. nuclear@1: * For conditions of distribution and use, see the accompanying README file. nuclear@1: * nuclear@1: * This file contains optional default-setting code for the JPEG compressor. nuclear@1: * Applications do not have to use this file, but those that don't use it nuclear@1: * must know a lot more about the innards of the JPEG code. nuclear@1: */ nuclear@1: nuclear@1: #define JPEG_INTERNALS nuclear@1: #include "jinclude.h" nuclear@1: #include "jpeglib.h" nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Quantization table setup routines nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, nuclear@1: const unsigned int *basic_table, nuclear@1: int scale_factor, boolean force_baseline) nuclear@1: /* Define a quantization table equal to the basic_table times nuclear@1: * a scale factor (given as a percentage). nuclear@1: * If force_baseline is TRUE, the computed quantization table entries nuclear@1: * are limited to 1..255 for JPEG baseline compatibility. nuclear@1: */ nuclear@1: { nuclear@1: JQUANT_TBL ** qtblptr; nuclear@1: int i; nuclear@1: long temp; nuclear@1: nuclear@1: /* Safety check to ensure start_compress not called yet. */ nuclear@1: if (cinfo->global_state != CSTATE_START) nuclear@1: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); nuclear@1: nuclear@1: if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) nuclear@1: ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); nuclear@1: nuclear@1: qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; nuclear@1: nuclear@1: if (*qtblptr == NULL) nuclear@1: *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); nuclear@1: nuclear@1: for (i = 0; i < DCTSIZE2; i++) { nuclear@1: temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; nuclear@1: /* limit the values to the valid range */ nuclear@1: if (temp <= 0L) temp = 1L; nuclear@1: if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ nuclear@1: if (force_baseline && temp > 255L) nuclear@1: temp = 255L; /* limit to baseline range if requested */ nuclear@1: (*qtblptr)->quantval[i] = (UINT16) temp; nuclear@1: } nuclear@1: nuclear@1: /* Initialize sent_table FALSE so table will be written to JPEG file. */ nuclear@1: (*qtblptr)->sent_table = FALSE; nuclear@1: } nuclear@1: nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, nuclear@1: boolean force_baseline) nuclear@1: /* Set or change the 'quality' (quantization) setting, using default tables nuclear@1: * and a straight percentage-scaling quality scale. In most cases it's better nuclear@1: * to use jpeg_set_quality (below); this entry point is provided for nuclear@1: * applications that insist on a linear percentage scaling. nuclear@1: */ nuclear@1: { nuclear@1: /* These are the sample quantization tables given in JPEG spec section K.1. nuclear@1: * The spec says that the values given produce "good" quality, and nuclear@1: * when divided by 2, "very good" quality. nuclear@1: */ nuclear@1: static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { nuclear@1: 16, 11, 10, 16, 24, 40, 51, 61, nuclear@1: 12, 12, 14, 19, 26, 58, 60, 55, nuclear@1: 14, 13, 16, 24, 40, 57, 69, 56, nuclear@1: 14, 17, 22, 29, 51, 87, 80, 62, nuclear@1: 18, 22, 37, 56, 68, 109, 103, 77, nuclear@1: 24, 35, 55, 64, 81, 104, 113, 92, nuclear@1: 49, 64, 78, 87, 103, 121, 120, 101, nuclear@1: 72, 92, 95, 98, 112, 100, 103, 99 nuclear@1: }; nuclear@1: static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { nuclear@1: 17, 18, 24, 47, 99, 99, 99, 99, nuclear@1: 18, 21, 26, 66, 99, 99, 99, 99, nuclear@1: 24, 26, 56, 99, 99, 99, 99, 99, nuclear@1: 47, 66, 99, 99, 99, 99, 99, 99, nuclear@1: 99, 99, 99, 99, 99, 99, 99, 99, nuclear@1: 99, 99, 99, 99, 99, 99, 99, 99, nuclear@1: 99, 99, 99, 99, 99, 99, 99, 99, nuclear@1: 99, 99, 99, 99, 99, 99, 99, 99 nuclear@1: }; nuclear@1: nuclear@1: /* Set up two quantization tables using the specified scaling */ nuclear@1: jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, nuclear@1: scale_factor, force_baseline); nuclear@1: jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, nuclear@1: scale_factor, force_baseline); nuclear@1: } nuclear@1: nuclear@1: nuclear@1: GLOBAL(int) nuclear@1: jpeg_quality_scaling (int quality) nuclear@1: /* Convert a user-specified quality rating to a percentage scaling factor nuclear@1: * for an underlying quantization table, using our recommended scaling curve. nuclear@1: * The input 'quality' factor should be 0 (terrible) to 100 (very good). nuclear@1: */ nuclear@1: { nuclear@1: /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ nuclear@1: if (quality <= 0) quality = 1; nuclear@1: if (quality > 100) quality = 100; nuclear@1: nuclear@1: /* The basic table is used as-is (scaling 100) for a quality of 50. nuclear@1: * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; nuclear@1: * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table nuclear@1: * to make all the table entries 1 (hence, minimum quantization loss). nuclear@1: * Qualities 1..50 are converted to scaling percentage 5000/Q. nuclear@1: */ nuclear@1: if (quality < 50) nuclear@1: quality = 5000 / quality; nuclear@1: else nuclear@1: quality = 200 - quality*2; nuclear@1: nuclear@1: return quality; nuclear@1: } nuclear@1: nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) nuclear@1: /* Set or change the 'quality' (quantization) setting, using default tables. nuclear@1: * This is the standard quality-adjusting entry point for typical user nuclear@1: * interfaces; only those who want detailed control over quantization tables nuclear@1: * would use the preceding three routines directly. nuclear@1: */ nuclear@1: { nuclear@1: /* Convert user 0-100 rating to percentage scaling */ nuclear@1: quality = jpeg_quality_scaling(quality); nuclear@1: nuclear@1: /* Set up standard quality tables */ nuclear@1: jpeg_set_linear_quality(cinfo, quality, force_baseline); nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Huffman table setup routines nuclear@1: */ nuclear@1: nuclear@1: LOCAL(void) nuclear@1: add_huff_table (j_compress_ptr cinfo, nuclear@1: JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) nuclear@1: /* Define a Huffman table */ nuclear@1: { nuclear@1: int nsymbols, len; nuclear@1: nuclear@1: if (*htblptr == NULL) nuclear@1: *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); nuclear@1: nuclear@1: /* Copy the number-of-symbols-of-each-code-length counts */ nuclear@1: MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); nuclear@1: nuclear@1: /* Validate the counts. We do this here mainly so we can copy the right nuclear@1: * number of symbols from the val[] array, without risking marching off nuclear@1: * the end of memory. jchuff.c will do a more thorough test later. nuclear@1: */ nuclear@1: nsymbols = 0; nuclear@1: for (len = 1; len <= 16; len++) nuclear@1: nsymbols += bits[len]; nuclear@1: if (nsymbols < 1 || nsymbols > 256) nuclear@1: ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); nuclear@1: nuclear@1: MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8)); nuclear@1: nuclear@1: /* Initialize sent_table FALSE so table will be written to JPEG file. */ nuclear@1: (*htblptr)->sent_table = FALSE; nuclear@1: } nuclear@1: nuclear@1: nuclear@1: LOCAL(void) nuclear@1: std_huff_tables (j_compress_ptr cinfo) nuclear@1: /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ nuclear@1: /* IMPORTANT: these are only valid for 8-bit data precision! */ nuclear@1: { nuclear@1: static const UINT8 bits_dc_luminance[17] = nuclear@1: { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; nuclear@1: static const UINT8 val_dc_luminance[] = nuclear@1: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; nuclear@1: nuclear@1: static const UINT8 bits_dc_chrominance[17] = nuclear@1: { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; nuclear@1: static const UINT8 val_dc_chrominance[] = nuclear@1: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; nuclear@1: nuclear@1: static const UINT8 bits_ac_luminance[17] = nuclear@1: { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; nuclear@1: static const UINT8 val_ac_luminance[] = nuclear@1: { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, nuclear@1: 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, nuclear@1: 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, nuclear@1: 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, nuclear@1: 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, nuclear@1: 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, nuclear@1: 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, nuclear@1: 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, nuclear@1: 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, nuclear@1: 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, nuclear@1: 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, nuclear@1: 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, nuclear@1: 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, nuclear@1: 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, nuclear@1: 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, nuclear@1: 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, nuclear@1: 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, nuclear@1: 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, nuclear@1: 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, nuclear@1: 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, nuclear@1: 0xf9, 0xfa }; nuclear@1: nuclear@1: static const UINT8 bits_ac_chrominance[17] = nuclear@1: { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; nuclear@1: static const UINT8 val_ac_chrominance[] = nuclear@1: { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, nuclear@1: 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, nuclear@1: 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, nuclear@1: 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, nuclear@1: 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, nuclear@1: 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, nuclear@1: 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, nuclear@1: 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, nuclear@1: 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, nuclear@1: 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, nuclear@1: 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, nuclear@1: 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, nuclear@1: 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, nuclear@1: 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, nuclear@1: 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, nuclear@1: 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, nuclear@1: 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, nuclear@1: 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, nuclear@1: 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, nuclear@1: 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, nuclear@1: 0xf9, 0xfa }; nuclear@1: nuclear@1: add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0], nuclear@1: bits_dc_luminance, val_dc_luminance); nuclear@1: add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0], nuclear@1: bits_ac_luminance, val_ac_luminance); nuclear@1: add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1], nuclear@1: bits_dc_chrominance, val_dc_chrominance); nuclear@1: add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1], nuclear@1: bits_ac_chrominance, val_ac_chrominance); nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Default parameter setup for compression. nuclear@1: * nuclear@1: * Applications that don't choose to use this routine must do their nuclear@1: * own setup of all these parameters. Alternately, you can call this nuclear@1: * to establish defaults and then alter parameters selectively. This nuclear@1: * is the recommended approach since, if we add any new parameters, nuclear@1: * your code will still work (they'll be set to reasonable defaults). nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_set_defaults (j_compress_ptr cinfo) nuclear@1: { nuclear@1: int i; nuclear@1: nuclear@1: /* Safety check to ensure start_compress not called yet. */ nuclear@1: if (cinfo->global_state != CSTATE_START) nuclear@1: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); nuclear@1: nuclear@1: /* Allocate comp_info array large enough for maximum component count. nuclear@1: * Array is made permanent in case application wants to compress nuclear@1: * multiple images at same param settings. nuclear@1: */ nuclear@1: if (cinfo->comp_info == NULL) nuclear@1: cinfo->comp_info = (jpeg_component_info *) nuclear@1: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, nuclear@1: MAX_COMPONENTS * SIZEOF(jpeg_component_info)); nuclear@1: nuclear@1: /* Initialize everything not dependent on the color space */ nuclear@1: nuclear@1: cinfo->data_precision = BITS_IN_JSAMPLE; nuclear@1: /* Set up two quantization tables using default quality of 75 */ nuclear@1: jpeg_set_quality(cinfo, 75, TRUE); nuclear@1: /* Set up two Huffman tables */ nuclear@1: std_huff_tables(cinfo); nuclear@1: nuclear@1: /* Initialize default arithmetic coding conditioning */ nuclear@1: for (i = 0; i < NUM_ARITH_TBLS; i++) { nuclear@1: cinfo->arith_dc_L[i] = 0; nuclear@1: cinfo->arith_dc_U[i] = 1; nuclear@1: cinfo->arith_ac_K[i] = 5; nuclear@1: } nuclear@1: nuclear@1: /* Default is no multiple-scan output */ nuclear@1: cinfo->scan_info = NULL; nuclear@1: cinfo->num_scans = 0; nuclear@1: nuclear@1: /* Expect normal source image, not raw downsampled data */ nuclear@1: cinfo->raw_data_in = FALSE; nuclear@1: nuclear@1: /* Use Huffman coding, not arithmetic coding, by default */ nuclear@1: cinfo->arith_code = FALSE; nuclear@1: nuclear@1: /* By default, don't do extra passes to optimize entropy coding */ nuclear@1: cinfo->optimize_coding = FALSE; nuclear@1: /* The standard Huffman tables are only valid for 8-bit data precision. nuclear@1: * If the precision is higher, force optimization on so that usable nuclear@1: * tables will be computed. This test can be removed if default tables nuclear@1: * are supplied that are valid for the desired precision. nuclear@1: */ nuclear@1: if (cinfo->data_precision > 8) nuclear@1: cinfo->optimize_coding = TRUE; nuclear@1: nuclear@1: /* By default, use the simpler non-cosited sampling alignment */ nuclear@1: cinfo->CCIR601_sampling = FALSE; nuclear@1: nuclear@1: /* No input smoothing */ nuclear@1: cinfo->smoothing_factor = 0; nuclear@1: nuclear@1: /* DCT algorithm preference */ nuclear@1: cinfo->dct_method = JDCT_DEFAULT; nuclear@1: nuclear@1: /* No restart markers */ nuclear@1: cinfo->restart_interval = 0; nuclear@1: cinfo->restart_in_rows = 0; nuclear@1: nuclear@1: /* Fill in default JFIF marker parameters. Note that whether the marker nuclear@1: * will actually be written is determined by jpeg_set_colorspace. nuclear@1: * nuclear@1: * By default, the library emits JFIF version code 1.01. nuclear@1: * An application that wants to emit JFIF 1.02 extension markers should set nuclear@1: * JFIF_minor_version to 2. We could probably get away with just defaulting nuclear@1: * to 1.02, but there may still be some decoders in use that will complain nuclear@1: * about that; saying 1.01 should minimize compatibility problems. nuclear@1: */ nuclear@1: cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ nuclear@1: cinfo->JFIF_minor_version = 1; nuclear@1: cinfo->density_unit = 0; /* Pixel size is unknown by default */ nuclear@1: cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ nuclear@1: cinfo->Y_density = 1; nuclear@1: nuclear@1: /* Choose JPEG colorspace based on input space, set defaults accordingly */ nuclear@1: nuclear@1: jpeg_default_colorspace(cinfo); nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Select an appropriate JPEG colorspace for in_color_space. nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_default_colorspace (j_compress_ptr cinfo) nuclear@1: { nuclear@1: switch (cinfo->in_color_space) { nuclear@1: case JCS_GRAYSCALE: nuclear@1: jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); nuclear@1: break; nuclear@1: case JCS_RGB: nuclear@1: jpeg_set_colorspace(cinfo, JCS_YCbCr); nuclear@1: break; nuclear@1: case JCS_YCbCr: nuclear@1: jpeg_set_colorspace(cinfo, JCS_YCbCr); nuclear@1: break; nuclear@1: case JCS_CMYK: nuclear@1: jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ nuclear@1: break; nuclear@1: case JCS_YCCK: nuclear@1: jpeg_set_colorspace(cinfo, JCS_YCCK); nuclear@1: break; nuclear@1: case JCS_UNKNOWN: nuclear@1: jpeg_set_colorspace(cinfo, JCS_UNKNOWN); nuclear@1: break; nuclear@1: default: nuclear@1: ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Set the JPEG colorspace, and choose colorspace-dependent default values. nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) nuclear@1: { nuclear@1: jpeg_component_info * compptr; nuclear@1: int ci; nuclear@1: nuclear@1: #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ nuclear@1: (compptr = &cinfo->comp_info[index], \ nuclear@1: compptr->component_id = (id), \ nuclear@1: compptr->h_samp_factor = (hsamp), \ nuclear@1: compptr->v_samp_factor = (vsamp), \ nuclear@1: compptr->quant_tbl_no = (quant), \ nuclear@1: compptr->dc_tbl_no = (dctbl), \ nuclear@1: compptr->ac_tbl_no = (actbl) ) nuclear@1: nuclear@1: /* Safety check to ensure start_compress not called yet. */ nuclear@1: if (cinfo->global_state != CSTATE_START) nuclear@1: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); nuclear@1: nuclear@1: /* For all colorspaces, we use Q and Huff tables 0 for luminance components, nuclear@1: * tables 1 for chrominance components. nuclear@1: */ nuclear@1: nuclear@1: cinfo->jpeg_color_space = colorspace; nuclear@1: nuclear@1: cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ nuclear@1: cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ nuclear@1: nuclear@1: switch (colorspace) { nuclear@1: case JCS_GRAYSCALE: nuclear@1: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ nuclear@1: cinfo->num_components = 1; nuclear@1: /* JFIF specifies component ID 1 */ nuclear@1: SET_COMP(0, 1, 1,1, 0, 0,0); nuclear@1: break; nuclear@1: case JCS_RGB: nuclear@1: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ nuclear@1: cinfo->num_components = 3; nuclear@1: SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); nuclear@1: SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); nuclear@1: SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); nuclear@1: break; nuclear@1: case JCS_YCbCr: nuclear@1: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ nuclear@1: cinfo->num_components = 3; nuclear@1: /* JFIF specifies component IDs 1,2,3 */ nuclear@1: /* We default to 2x2 subsamples of chrominance */ nuclear@1: SET_COMP(0, 1, 2,2, 0, 0,0); nuclear@1: SET_COMP(1, 2, 1,1, 1, 1,1); nuclear@1: SET_COMP(2, 3, 1,1, 1, 1,1); nuclear@1: break; nuclear@1: case JCS_CMYK: nuclear@1: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ nuclear@1: cinfo->num_components = 4; nuclear@1: SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); nuclear@1: SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); nuclear@1: SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); nuclear@1: SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); nuclear@1: break; nuclear@1: case JCS_YCCK: nuclear@1: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ nuclear@1: cinfo->num_components = 4; nuclear@1: SET_COMP(0, 1, 2,2, 0, 0,0); nuclear@1: SET_COMP(1, 2, 1,1, 1, 1,1); nuclear@1: SET_COMP(2, 3, 1,1, 1, 1,1); nuclear@1: SET_COMP(3, 4, 2,2, 0, 0,0); nuclear@1: break; nuclear@1: case JCS_UNKNOWN: nuclear@1: cinfo->num_components = cinfo->input_components; nuclear@1: if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) nuclear@1: ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, nuclear@1: MAX_COMPONENTS); nuclear@1: for (ci = 0; ci < cinfo->num_components; ci++) { nuclear@1: SET_COMP(ci, ci, 1,1, 0, 0,0); nuclear@1: } nuclear@1: break; nuclear@1: default: nuclear@1: ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: nuclear@1: #ifdef C_PROGRESSIVE_SUPPORTED nuclear@1: nuclear@1: LOCAL(jpeg_scan_info *) nuclear@1: fill_a_scan (jpeg_scan_info * scanptr, int ci, nuclear@1: int Ss, int Se, int Ah, int Al) nuclear@1: /* Support routine: generate one scan for specified component */ nuclear@1: { nuclear@1: scanptr->comps_in_scan = 1; nuclear@1: scanptr->component_index[0] = ci; nuclear@1: scanptr->Ss = Ss; nuclear@1: scanptr->Se = Se; nuclear@1: scanptr->Ah = Ah; nuclear@1: scanptr->Al = Al; nuclear@1: scanptr++; nuclear@1: return scanptr; nuclear@1: } nuclear@1: nuclear@1: LOCAL(jpeg_scan_info *) nuclear@1: fill_scans (jpeg_scan_info * scanptr, int ncomps, nuclear@1: int Ss, int Se, int Ah, int Al) nuclear@1: /* Support routine: generate one scan for each component */ nuclear@1: { nuclear@1: int ci; nuclear@1: nuclear@1: for (ci = 0; ci < ncomps; ci++) { nuclear@1: scanptr->comps_in_scan = 1; nuclear@1: scanptr->component_index[0] = ci; nuclear@1: scanptr->Ss = Ss; nuclear@1: scanptr->Se = Se; nuclear@1: scanptr->Ah = Ah; nuclear@1: scanptr->Al = Al; nuclear@1: scanptr++; nuclear@1: } nuclear@1: return scanptr; nuclear@1: } nuclear@1: nuclear@1: LOCAL(jpeg_scan_info *) nuclear@1: fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) nuclear@1: /* Support routine: generate interleaved DC scan if possible, else N scans */ nuclear@1: { nuclear@1: int ci; nuclear@1: nuclear@1: if (ncomps <= MAX_COMPS_IN_SCAN) { nuclear@1: /* Single interleaved DC scan */ nuclear@1: scanptr->comps_in_scan = ncomps; nuclear@1: for (ci = 0; ci < ncomps; ci++) nuclear@1: scanptr->component_index[ci] = ci; nuclear@1: scanptr->Ss = scanptr->Se = 0; nuclear@1: scanptr->Ah = Ah; nuclear@1: scanptr->Al = Al; nuclear@1: scanptr++; nuclear@1: } else { nuclear@1: /* Noninterleaved DC scan for each component */ nuclear@1: scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); nuclear@1: } nuclear@1: return scanptr; nuclear@1: } nuclear@1: nuclear@1: nuclear@1: /* nuclear@1: * Create a recommended progressive-JPEG script. nuclear@1: * cinfo->num_components and cinfo->jpeg_color_space must be correct. nuclear@1: */ nuclear@1: nuclear@1: GLOBAL(void) nuclear@1: jpeg_simple_progression (j_compress_ptr cinfo) nuclear@1: { nuclear@1: int ncomps = cinfo->num_components; nuclear@1: int nscans; nuclear@1: jpeg_scan_info * scanptr; nuclear@1: nuclear@1: /* Safety check to ensure start_compress not called yet. */ nuclear@1: if (cinfo->global_state != CSTATE_START) nuclear@1: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); nuclear@1: nuclear@1: /* Figure space needed for script. Calculation must match code below! */ nuclear@1: if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { nuclear@1: /* Custom script for YCbCr color images. */ nuclear@1: nscans = 10; nuclear@1: } else { nuclear@1: /* All-purpose script for other color spaces. */ nuclear@1: if (ncomps > MAX_COMPS_IN_SCAN) nuclear@1: nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ nuclear@1: else nuclear@1: nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ nuclear@1: } nuclear@1: nuclear@1: /* Allocate space for script. nuclear@1: * We need to put it in the permanent pool in case the application performs nuclear@1: * multiple compressions without changing the settings. To avoid a memory nuclear@1: * leak if jpeg_simple_progression is called repeatedly for the same JPEG nuclear@1: * object, we try to re-use previously allocated space, and we allocate nuclear@1: * enough space to handle YCbCr even if initially asked for grayscale. nuclear@1: */ nuclear@1: if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { nuclear@1: cinfo->script_space_size = MAX(nscans, 10); nuclear@1: cinfo->script_space = (jpeg_scan_info *) nuclear@1: (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, nuclear@1: cinfo->script_space_size * SIZEOF(jpeg_scan_info)); nuclear@1: } nuclear@1: scanptr = cinfo->script_space; nuclear@1: cinfo->scan_info = scanptr; nuclear@1: cinfo->num_scans = nscans; nuclear@1: nuclear@1: if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { nuclear@1: /* Custom script for YCbCr color images. */ nuclear@1: /* Initial DC scan */ nuclear@1: scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); nuclear@1: /* Initial AC scan: get some luma data out in a hurry */ nuclear@1: scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); nuclear@1: /* Chroma data is too small to be worth expending many scans on */ nuclear@1: scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); nuclear@1: scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); nuclear@1: /* Complete spectral selection for luma AC */ nuclear@1: scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); nuclear@1: /* Refine next bit of luma AC */ nuclear@1: scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); nuclear@1: /* Finish DC successive approximation */ nuclear@1: scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); nuclear@1: /* Finish AC successive approximation */ nuclear@1: scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); nuclear@1: scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); nuclear@1: /* Luma bottom bit comes last since it's usually largest scan */ nuclear@1: scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); nuclear@1: } else { nuclear@1: /* All-purpose script for other color spaces. */ nuclear@1: /* Successive approximation first pass */ nuclear@1: scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); nuclear@1: scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); nuclear@1: scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); nuclear@1: /* Successive approximation second pass */ nuclear@1: scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); nuclear@1: /* Successive approximation final pass */ nuclear@1: scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); nuclear@1: scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); nuclear@1: } nuclear@1: } nuclear@1: nuclear@1: #endif /* C_PROGRESSIVE_SUPPORTED */