dbf-halloween2015
diff libs/vorbis/lsp.c @ 1:c3f5c32cb210
barfed all the libraries in the source tree to make porting easier
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 01 Nov 2015 00:36:56 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/vorbis/lsp.c Sun Nov 01 00:36:56 2015 +0200 1.3 @@ -0,0 +1,454 @@ 1.4 +/******************************************************************** 1.5 + * * 1.6 + * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * 1.7 + * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * 1.8 + * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * 1.9 + * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * 1.10 + * * 1.11 + * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * 1.12 + * by the Xiph.Org Foundation http://www.xiph.org/ * 1.13 + * * 1.14 + ******************************************************************** 1.15 + 1.16 + function: LSP (also called LSF) conversion routines 1.17 + last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $ 1.18 + 1.19 + The LSP generation code is taken (with minimal modification and a 1.20 + few bugfixes) from "On the Computation of the LSP Frequencies" by 1.21 + Joseph Rothweiler (see http://www.rothweiler.us for contact info). 1.22 + The paper is available at: 1.23 + 1.24 + http://www.myown1.com/joe/lsf 1.25 + 1.26 + ********************************************************************/ 1.27 + 1.28 +/* Note that the lpc-lsp conversion finds the roots of polynomial with 1.29 + an iterative root polisher (CACM algorithm 283). It *is* possible 1.30 + to confuse this algorithm into not converging; that should only 1.31 + happen with absurdly closely spaced roots (very sharp peaks in the 1.32 + LPC f response) which in turn should be impossible in our use of 1.33 + the code. If this *does* happen anyway, it's a bug in the floor 1.34 + finder; find the cause of the confusion (probably a single bin 1.35 + spike or accidental near-float-limit resolution problems) and 1.36 + correct it. */ 1.37 + 1.38 +#include <math.h> 1.39 +#include <string.h> 1.40 +#include <stdlib.h> 1.41 +#include "lsp.h" 1.42 +#include "os.h" 1.43 +#include "misc.h" 1.44 +#include "lookup.h" 1.45 +#include "scales.h" 1.46 + 1.47 +/* three possible LSP to f curve functions; the exact computation 1.48 + (float), a lookup based float implementation, and an integer 1.49 + implementation. The float lookup is likely the optimal choice on 1.50 + any machine with an FPU. The integer implementation is *not* fixed 1.51 + point (due to the need for a large dynamic range and thus a 1.52 + separately tracked exponent) and thus much more complex than the 1.53 + relatively simple float implementations. It's mostly for future 1.54 + work on a fully fixed point implementation for processors like the 1.55 + ARM family. */ 1.56 + 1.57 +/* define either of these (preferably FLOAT_LOOKUP) to have faster 1.58 + but less precise implementation. */ 1.59 +#undef FLOAT_LOOKUP 1.60 +#undef INT_LOOKUP 1.61 + 1.62 +#ifdef FLOAT_LOOKUP 1.63 +#include "lookup.c" /* catch this in the build system; we #include for 1.64 + compilers (like gcc) that can't inline across 1.65 + modules */ 1.66 + 1.67 +/* side effect: changes *lsp to cosines of lsp */ 1.68 +void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, 1.69 + float amp,float ampoffset){ 1.70 + int i; 1.71 + float wdel=M_PI/ln; 1.72 + vorbis_fpu_control fpu; 1.73 + 1.74 + vorbis_fpu_setround(&fpu); 1.75 + for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); 1.76 + 1.77 + i=0; 1.78 + while(i<n){ 1.79 + int k=map[i]; 1.80 + int qexp; 1.81 + float p=.7071067812f; 1.82 + float q=.7071067812f; 1.83 + float w=vorbis_coslook(wdel*k); 1.84 + float *ftmp=lsp; 1.85 + int c=m>>1; 1.86 + 1.87 + while(c--){ 1.88 + q*=ftmp[0]-w; 1.89 + p*=ftmp[1]-w; 1.90 + ftmp+=2; 1.91 + } 1.92 + 1.93 + if(m&1){ 1.94 + /* odd order filter; slightly assymetric */ 1.95 + /* the last coefficient */ 1.96 + q*=ftmp[0]-w; 1.97 + q*=q; 1.98 + p*=p*(1.f-w*w); 1.99 + }else{ 1.100 + /* even order filter; still symmetric */ 1.101 + q*=q*(1.f+w); 1.102 + p*=p*(1.f-w); 1.103 + } 1.104 + 1.105 + q=frexp(p+q,&qexp); 1.106 + q=vorbis_fromdBlook(amp* 1.107 + vorbis_invsqlook(q)* 1.108 + vorbis_invsq2explook(qexp+m)- 1.109 + ampoffset); 1.110 + 1.111 + do{ 1.112 + curve[i++]*=q; 1.113 + }while(map[i]==k); 1.114 + } 1.115 + vorbis_fpu_restore(fpu); 1.116 +} 1.117 + 1.118 +#else 1.119 + 1.120 +#ifdef INT_LOOKUP 1.121 +#include "lookup.c" /* catch this in the build system; we #include for 1.122 + compilers (like gcc) that can't inline across 1.123 + modules */ 1.124 + 1.125 +static const int MLOOP_1[64]={ 1.126 + 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, 1.127 + 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, 1.128 + 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 1.129 + 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 1.130 +}; 1.131 + 1.132 +static const int MLOOP_2[64]={ 1.133 + 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, 1.134 + 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, 1.135 + 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 1.136 + 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 1.137 +}; 1.138 + 1.139 +static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; 1.140 + 1.141 + 1.142 +/* side effect: changes *lsp to cosines of lsp */ 1.143 +void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, 1.144 + float amp,float ampoffset){ 1.145 + 1.146 + /* 0 <= m < 256 */ 1.147 + 1.148 + /* set up for using all int later */ 1.149 + int i; 1.150 + int ampoffseti=rint(ampoffset*4096.f); 1.151 + int ampi=rint(amp*16.f); 1.152 + long *ilsp=alloca(m*sizeof(*ilsp)); 1.153 + for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); 1.154 + 1.155 + i=0; 1.156 + while(i<n){ 1.157 + int j,k=map[i]; 1.158 + unsigned long pi=46341; /* 2**-.5 in 0.16 */ 1.159 + unsigned long qi=46341; 1.160 + int qexp=0,shift; 1.161 + long wi=vorbis_coslook_i(k*65536/ln); 1.162 + 1.163 + qi*=labs(ilsp[0]-wi); 1.164 + pi*=labs(ilsp[1]-wi); 1.165 + 1.166 + for(j=3;j<m;j+=2){ 1.167 + if(!(shift=MLOOP_1[(pi|qi)>>25])) 1.168 + if(!(shift=MLOOP_2[(pi|qi)>>19])) 1.169 + shift=MLOOP_3[(pi|qi)>>16]; 1.170 + qi=(qi>>shift)*labs(ilsp[j-1]-wi); 1.171 + pi=(pi>>shift)*labs(ilsp[j]-wi); 1.172 + qexp+=shift; 1.173 + } 1.174 + if(!(shift=MLOOP_1[(pi|qi)>>25])) 1.175 + if(!(shift=MLOOP_2[(pi|qi)>>19])) 1.176 + shift=MLOOP_3[(pi|qi)>>16]; 1.177 + 1.178 + /* pi,qi normalized collectively, both tracked using qexp */ 1.179 + 1.180 + if(m&1){ 1.181 + /* odd order filter; slightly assymetric */ 1.182 + /* the last coefficient */ 1.183 + qi=(qi>>shift)*labs(ilsp[j-1]-wi); 1.184 + pi=(pi>>shift)<<14; 1.185 + qexp+=shift; 1.186 + 1.187 + if(!(shift=MLOOP_1[(pi|qi)>>25])) 1.188 + if(!(shift=MLOOP_2[(pi|qi)>>19])) 1.189 + shift=MLOOP_3[(pi|qi)>>16]; 1.190 + 1.191 + pi>>=shift; 1.192 + qi>>=shift; 1.193 + qexp+=shift-14*((m+1)>>1); 1.194 + 1.195 + pi=((pi*pi)>>16); 1.196 + qi=((qi*qi)>>16); 1.197 + qexp=qexp*2+m; 1.198 + 1.199 + pi*=(1<<14)-((wi*wi)>>14); 1.200 + qi+=pi>>14; 1.201 + 1.202 + }else{ 1.203 + /* even order filter; still symmetric */ 1.204 + 1.205 + /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't 1.206 + worth tracking step by step */ 1.207 + 1.208 + pi>>=shift; 1.209 + qi>>=shift; 1.210 + qexp+=shift-7*m; 1.211 + 1.212 + pi=((pi*pi)>>16); 1.213 + qi=((qi*qi)>>16); 1.214 + qexp=qexp*2+m; 1.215 + 1.216 + pi*=(1<<14)-wi; 1.217 + qi*=(1<<14)+wi; 1.218 + qi=(qi+pi)>>14; 1.219 + 1.220 + } 1.221 + 1.222 + 1.223 + /* we've let the normalization drift because it wasn't important; 1.224 + however, for the lookup, things must be normalized again. We 1.225 + need at most one right shift or a number of left shifts */ 1.226 + 1.227 + if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ 1.228 + qi>>=1; qexp++; 1.229 + }else 1.230 + while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ 1.231 + qi<<=1; qexp--; 1.232 + } 1.233 + 1.234 + amp=vorbis_fromdBlook_i(ampi* /* n.4 */ 1.235 + vorbis_invsqlook_i(qi,qexp)- 1.236 + /* m.8, m+n<=8 */ 1.237 + ampoffseti); /* 8.12[0] */ 1.238 + 1.239 + curve[i]*=amp; 1.240 + while(map[++i]==k)curve[i]*=amp; 1.241 + } 1.242 +} 1.243 + 1.244 +#else 1.245 + 1.246 +/* old, nonoptimized but simple version for any poor sap who needs to 1.247 + figure out what the hell this code does, or wants the other 1.248 + fraction of a dB precision */ 1.249 + 1.250 +/* side effect: changes *lsp to cosines of lsp */ 1.251 +void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, 1.252 + float amp,float ampoffset){ 1.253 + int i; 1.254 + float wdel=M_PI/ln; 1.255 + for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); 1.256 + 1.257 + i=0; 1.258 + while(i<n){ 1.259 + int j,k=map[i]; 1.260 + float p=.5f; 1.261 + float q=.5f; 1.262 + float w=2.f*cos(wdel*k); 1.263 + for(j=1;j<m;j+=2){ 1.264 + q *= w-lsp[j-1]; 1.265 + p *= w-lsp[j]; 1.266 + } 1.267 + if(j==m){ 1.268 + /* odd order filter; slightly assymetric */ 1.269 + /* the last coefficient */ 1.270 + q*=w-lsp[j-1]; 1.271 + p*=p*(4.f-w*w); 1.272 + q*=q; 1.273 + }else{ 1.274 + /* even order filter; still symmetric */ 1.275 + p*=p*(2.f-w); 1.276 + q*=q*(2.f+w); 1.277 + } 1.278 + 1.279 + q=fromdB(amp/sqrt(p+q)-ampoffset); 1.280 + 1.281 + curve[i]*=q; 1.282 + while(map[++i]==k)curve[i]*=q; 1.283 + } 1.284 +} 1.285 + 1.286 +#endif 1.287 +#endif 1.288 + 1.289 +static void cheby(float *g, int ord) { 1.290 + int i, j; 1.291 + 1.292 + g[0] *= .5f; 1.293 + for(i=2; i<= ord; i++) { 1.294 + for(j=ord; j >= i; j--) { 1.295 + g[j-2] -= g[j]; 1.296 + g[j] += g[j]; 1.297 + } 1.298 + } 1.299 +} 1.300 + 1.301 +static int comp(const void *a,const void *b){ 1.302 + return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); 1.303 +} 1.304 + 1.305 +/* Newton-Raphson-Maehly actually functioned as a decent root finder, 1.306 + but there are root sets for which it gets into limit cycles 1.307 + (exacerbated by zero suppression) and fails. We can't afford to 1.308 + fail, even if the failure is 1 in 100,000,000, so we now use 1.309 + Laguerre and later polish with Newton-Raphson (which can then 1.310 + afford to fail) */ 1.311 + 1.312 +#define EPSILON 10e-7 1.313 +static int Laguerre_With_Deflation(float *a,int ord,float *r){ 1.314 + int i,m; 1.315 + double *defl=alloca(sizeof(*defl)*(ord+1)); 1.316 + for(i=0;i<=ord;i++)defl[i]=a[i]; 1.317 + 1.318 + for(m=ord;m>0;m--){ 1.319 + double new=0.f,delta; 1.320 + 1.321 + /* iterate a root */ 1.322 + while(1){ 1.323 + double p=defl[m],pp=0.f,ppp=0.f,denom; 1.324 + 1.325 + /* eval the polynomial and its first two derivatives */ 1.326 + for(i=m;i>0;i--){ 1.327 + ppp = new*ppp + pp; 1.328 + pp = new*pp + p; 1.329 + p = new*p + defl[i-1]; 1.330 + } 1.331 + 1.332 + /* Laguerre's method */ 1.333 + denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); 1.334 + if(denom<0) 1.335 + return(-1); /* complex root! The LPC generator handed us a bad filter */ 1.336 + 1.337 + if(pp>0){ 1.338 + denom = pp + sqrt(denom); 1.339 + if(denom<EPSILON)denom=EPSILON; 1.340 + }else{ 1.341 + denom = pp - sqrt(denom); 1.342 + if(denom>-(EPSILON))denom=-(EPSILON); 1.343 + } 1.344 + 1.345 + delta = m*p/denom; 1.346 + new -= delta; 1.347 + 1.348 + if(delta<0.f)delta*=-1; 1.349 + 1.350 + if(fabs(delta/new)<10e-12)break; 1.351 + } 1.352 + 1.353 + r[m-1]=new; 1.354 + 1.355 + /* forward deflation */ 1.356 + 1.357 + for(i=m;i>0;i--) 1.358 + defl[i-1]+=new*defl[i]; 1.359 + defl++; 1.360 + 1.361 + } 1.362 + return(0); 1.363 +} 1.364 + 1.365 + 1.366 +/* for spit-and-polish only */ 1.367 +static int Newton_Raphson(float *a,int ord,float *r){ 1.368 + int i, k, count=0; 1.369 + double error=1.f; 1.370 + double *root=alloca(ord*sizeof(*root)); 1.371 + 1.372 + for(i=0; i<ord;i++) root[i] = r[i]; 1.373 + 1.374 + while(error>1e-20){ 1.375 + error=0; 1.376 + 1.377 + for(i=0; i<ord; i++) { /* Update each point. */ 1.378 + double pp=0.,delta; 1.379 + double rooti=root[i]; 1.380 + double p=a[ord]; 1.381 + for(k=ord-1; k>= 0; k--) { 1.382 + 1.383 + pp= pp* rooti + p; 1.384 + p = p * rooti + a[k]; 1.385 + } 1.386 + 1.387 + delta = p/pp; 1.388 + root[i] -= delta; 1.389 + error+= delta*delta; 1.390 + } 1.391 + 1.392 + if(count>40)return(-1); 1.393 + 1.394 + count++; 1.395 + } 1.396 + 1.397 + /* Replaced the original bubble sort with a real sort. With your 1.398 + help, we can eliminate the bubble sort in our lifetime. --Monty */ 1.399 + 1.400 + for(i=0; i<ord;i++) r[i] = root[i]; 1.401 + return(0); 1.402 +} 1.403 + 1.404 + 1.405 +/* Convert lpc coefficients to lsp coefficients */ 1.406 +int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ 1.407 + int order2=(m+1)>>1; 1.408 + int g1_order,g2_order; 1.409 + float *g1=alloca(sizeof(*g1)*(order2+1)); 1.410 + float *g2=alloca(sizeof(*g2)*(order2+1)); 1.411 + float *g1r=alloca(sizeof(*g1r)*(order2+1)); 1.412 + float *g2r=alloca(sizeof(*g2r)*(order2+1)); 1.413 + int i; 1.414 + 1.415 + /* even and odd are slightly different base cases */ 1.416 + g1_order=(m+1)>>1; 1.417 + g2_order=(m) >>1; 1.418 + 1.419 + /* Compute the lengths of the x polynomials. */ 1.420 + /* Compute the first half of K & R F1 & F2 polynomials. */ 1.421 + /* Compute half of the symmetric and antisymmetric polynomials. */ 1.422 + /* Remove the roots at +1 and -1. */ 1.423 + 1.424 + g1[g1_order] = 1.f; 1.425 + for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; 1.426 + g2[g2_order] = 1.f; 1.427 + for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; 1.428 + 1.429 + if(g1_order>g2_order){ 1.430 + for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; 1.431 + }else{ 1.432 + for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; 1.433 + for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; 1.434 + } 1.435 + 1.436 + /* Convert into polynomials in cos(alpha) */ 1.437 + cheby(g1,g1_order); 1.438 + cheby(g2,g2_order); 1.439 + 1.440 + /* Find the roots of the 2 even polynomials.*/ 1.441 + if(Laguerre_With_Deflation(g1,g1_order,g1r) || 1.442 + Laguerre_With_Deflation(g2,g2_order,g2r)) 1.443 + return(-1); 1.444 + 1.445 + Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ 1.446 + Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ 1.447 + 1.448 + qsort(g1r,g1_order,sizeof(*g1r),comp); 1.449 + qsort(g2r,g2_order,sizeof(*g2r),comp); 1.450 + 1.451 + for(i=0;i<g1_order;i++) 1.452 + lsp[i*2] = acos(g1r[i]); 1.453 + 1.454 + for(i=0;i<g2_order;i++) 1.455 + lsp[i*2+1] = acos(g2r[i]); 1.456 + return(0); 1.457 +}