dbf-halloween2015
diff libs/vmath/matrix.cc @ 1:c3f5c32cb210
barfed all the libraries in the source tree to make porting easier
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 01 Nov 2015 00:36:56 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/vmath/matrix.cc Sun Nov 01 00:36:56 2015 +0200 1.3 @@ -0,0 +1,853 @@ 1.4 +#include <cstdio> 1.5 +#include <cmath> 1.6 +#include "matrix.h" 1.7 +#include "vector.h" 1.8 +#include "quat.h" 1.9 + 1.10 +using namespace std; 1.11 + 1.12 +// ----------- Matrix3x3 -------------- 1.13 + 1.14 +Matrix3x3 Matrix3x3::identity = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1); 1.15 + 1.16 +Matrix3x3::Matrix3x3() 1.17 +{ 1.18 + *this = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1); 1.19 +} 1.20 + 1.21 +Matrix3x3::Matrix3x3( scalar_t m11, scalar_t m12, scalar_t m13, 1.22 + scalar_t m21, scalar_t m22, scalar_t m23, 1.23 + scalar_t m31, scalar_t m32, scalar_t m33) 1.24 +{ 1.25 + m[0][0] = m11; m[0][1] = m12; m[0][2] = m13; 1.26 + m[1][0] = m21; m[1][1] = m22; m[1][2] = m23; 1.27 + m[2][0] = m31; m[2][1] = m32; m[2][2] = m33; 1.28 +} 1.29 + 1.30 +Matrix3x3::Matrix3x3(const Vector3 &ivec, const Vector3 &jvec, const Vector3 &kvec) 1.31 +{ 1.32 + set_row_vector(ivec, 0); 1.33 + set_row_vector(jvec, 1); 1.34 + set_row_vector(kvec, 2); 1.35 +} 1.36 + 1.37 +Matrix3x3::Matrix3x3(const mat3_t cmat) 1.38 +{ 1.39 + memcpy(m, cmat, sizeof(mat3_t)); 1.40 +} 1.41 + 1.42 +Matrix3x3::Matrix3x3(const Matrix4x4 &mat4x4) 1.43 +{ 1.44 + for(int i=0; i<3; i++) { 1.45 + for(int j=0; j<3; j++) { 1.46 + m[i][j] = mat4x4[i][j]; 1.47 + } 1.48 + } 1.49 +} 1.50 + 1.51 +Matrix3x3 operator +(const Matrix3x3 &m1, const Matrix3x3 &m2) 1.52 +{ 1.53 + Matrix3x3 res; 1.54 + const scalar_t *op1 = m1.m[0], *op2 = m2.m[0]; 1.55 + scalar_t *dest = res.m[0]; 1.56 + 1.57 + for(int i=0; i<9; i++) { 1.58 + *dest++ = *op1++ + *op2++; 1.59 + } 1.60 + return res; 1.61 +} 1.62 + 1.63 +Matrix3x3 operator -(const Matrix3x3 &m1, const Matrix3x3 &m2) 1.64 +{ 1.65 + Matrix3x3 res; 1.66 + const scalar_t *op1 = m1.m[0], *op2 = m2.m[0]; 1.67 + scalar_t *dest = res.m[0]; 1.68 + 1.69 + for(int i=0; i<9; i++) { 1.70 + *dest++ = *op1++ - *op2++; 1.71 + } 1.72 + return res; 1.73 +} 1.74 + 1.75 +Matrix3x3 operator *(const Matrix3x3 &m1, const Matrix3x3 &m2) 1.76 +{ 1.77 + Matrix3x3 res; 1.78 + for(int i=0; i<3; i++) { 1.79 + for(int j=0; j<3; j++) { 1.80 + res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j]; 1.81 + } 1.82 + } 1.83 + return res; 1.84 +} 1.85 + 1.86 +void operator +=(Matrix3x3 &m1, const Matrix3x3 &m2) 1.87 +{ 1.88 + scalar_t *op1 = m1.m[0]; 1.89 + const scalar_t *op2 = m2.m[0]; 1.90 + 1.91 + for(int i=0; i<9; i++) { 1.92 + *op1++ += *op2++; 1.93 + } 1.94 +} 1.95 + 1.96 +void operator -=(Matrix3x3 &m1, const Matrix3x3 &m2) 1.97 +{ 1.98 + scalar_t *op1 = m1.m[0]; 1.99 + const scalar_t *op2 = m2.m[0]; 1.100 + 1.101 + for(int i=0; i<9; i++) { 1.102 + *op1++ -= *op2++; 1.103 + } 1.104 +} 1.105 + 1.106 +void operator *=(Matrix3x3 &m1, const Matrix3x3 &m2) 1.107 +{ 1.108 + Matrix3x3 res; 1.109 + for(int i=0; i<3; i++) { 1.110 + for(int j=0; j<3; j++) { 1.111 + res.m[i][j] = m1.m[i][0] * m2.m[0][j] + m1.m[i][1] * m2.m[1][j] + m1.m[i][2] * m2.m[2][j]; 1.112 + } 1.113 + } 1.114 + memcpy(m1.m, res.m, 9 * sizeof(scalar_t)); 1.115 +} 1.116 + 1.117 +Matrix3x3 operator *(const Matrix3x3 &mat, scalar_t scalar) 1.118 +{ 1.119 + Matrix3x3 res; 1.120 + const scalar_t *mptr = mat.m[0]; 1.121 + scalar_t *dptr = res.m[0]; 1.122 + 1.123 + for(int i=0; i<9; i++) { 1.124 + *dptr++ = *mptr++ * scalar; 1.125 + } 1.126 + return res; 1.127 +} 1.128 + 1.129 +Matrix3x3 operator *(scalar_t scalar, const Matrix3x3 &mat) 1.130 +{ 1.131 + Matrix3x3 res; 1.132 + const scalar_t *mptr = mat.m[0]; 1.133 + scalar_t *dptr = res.m[0]; 1.134 + 1.135 + for(int i=0; i<9; i++) { 1.136 + *dptr++ = *mptr++ * scalar; 1.137 + } 1.138 + return res; 1.139 +} 1.140 + 1.141 +void operator *=(Matrix3x3 &mat, scalar_t scalar) 1.142 +{ 1.143 + scalar_t *mptr = mat.m[0]; 1.144 + 1.145 + for(int i=0; i<9; i++) { 1.146 + *mptr++ *= scalar; 1.147 + } 1.148 +} 1.149 + 1.150 +void Matrix3x3::translate(const Vector2 &trans) 1.151 +{ 1.152 + Matrix3x3 tmat(1, 0, trans.x, 0, 1, trans.y, 0, 0, 1); 1.153 + *this *= tmat; 1.154 +} 1.155 + 1.156 +void Matrix3x3::set_translation(const Vector2 &trans) 1.157 +{ 1.158 + *this = Matrix3x3(1, 0, trans.x, 0, 1, trans.y, 0, 0, 1); 1.159 +} 1.160 + 1.161 +void Matrix3x3::rotate(scalar_t angle) 1.162 +{ 1.163 + scalar_t cos_a = cos(angle); 1.164 + scalar_t sin_a = sin(angle); 1.165 + Matrix3x3 rmat( cos_a, -sin_a, 0, 1.166 + sin_a, cos_a, 0, 1.167 + 0, 0, 1); 1.168 + *this *= rmat; 1.169 +} 1.170 + 1.171 +void Matrix3x3::set_rotation(scalar_t angle) 1.172 +{ 1.173 + scalar_t cos_a = cos(angle); 1.174 + scalar_t sin_a = sin(angle); 1.175 + *this = Matrix3x3(cos_a, -sin_a, 0, sin_a, cos_a, 0, 0, 0, 1); 1.176 +} 1.177 + 1.178 +void Matrix3x3::rotate(const Vector3 &euler_angles) 1.179 +{ 1.180 + Matrix3x3 xrot, yrot, zrot; 1.181 + 1.182 + xrot = Matrix3x3( 1, 0, 0, 1.183 + 0, cos(euler_angles.x), -sin(euler_angles.x), 1.184 + 0, sin(euler_angles.x), cos(euler_angles.x)); 1.185 + 1.186 + yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y), 1.187 + 0, 1, 0, 1.188 + -sin(euler_angles.y), 0, cos(euler_angles.y)); 1.189 + 1.190 + zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0, 1.191 + sin(euler_angles.z), cos(euler_angles.z), 0, 1.192 + 0, 0, 1); 1.193 + 1.194 + *this *= xrot * yrot * zrot; 1.195 +} 1.196 + 1.197 +void Matrix3x3::set_rotation(const Vector3 &euler_angles) 1.198 +{ 1.199 + Matrix3x3 xrot, yrot, zrot; 1.200 + 1.201 + xrot = Matrix3x3( 1, 0, 0, 1.202 + 0, cos(euler_angles.x), -sin(euler_angles.x), 1.203 + 0, sin(euler_angles.x), cos(euler_angles.x)); 1.204 + 1.205 + yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y), 1.206 + 0, 1, 0, 1.207 + -sin(euler_angles.y), 0, cos(euler_angles.y)); 1.208 + 1.209 + zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0, 1.210 + sin(euler_angles.z), cos(euler_angles.z), 0, 1.211 + 0, 0, 1); 1.212 + 1.213 + *this = xrot * yrot * zrot; 1.214 +} 1.215 + 1.216 +void Matrix3x3::rotate(const Vector3 &axis, scalar_t angle) 1.217 +{ 1.218 + scalar_t sina = (scalar_t)sin(angle); 1.219 + scalar_t cosa = (scalar_t)cos(angle); 1.220 + scalar_t invcosa = 1-cosa; 1.221 + scalar_t nxsq = axis.x * axis.x; 1.222 + scalar_t nysq = axis.y * axis.y; 1.223 + scalar_t nzsq = axis.z * axis.z; 1.224 + 1.225 + Matrix3x3 xform; 1.226 + xform.m[0][0] = nxsq + (1-nxsq) * cosa; 1.227 + xform.m[0][1] = axis.x * axis.y * invcosa - axis.z * sina; 1.228 + xform.m[0][2] = axis.x * axis.z * invcosa + axis.y * sina; 1.229 + 1.230 + xform.m[1][0] = axis.x * axis.y * invcosa + axis.z * sina; 1.231 + xform.m[1][1] = nysq + (1-nysq) * cosa; 1.232 + xform.m[1][2] = axis.y * axis.z * invcosa - axis.x * sina; 1.233 + 1.234 + xform.m[2][0] = axis.x * axis.z * invcosa - axis.y * sina; 1.235 + xform.m[2][1] = axis.y * axis.z * invcosa + axis.x * sina; 1.236 + xform.m[2][2] = nzsq + (1-nzsq) * cosa; 1.237 + 1.238 + *this *= xform; 1.239 +} 1.240 + 1.241 +void Matrix3x3::set_rotation(const Vector3 &axis, scalar_t angle) 1.242 +{ 1.243 + scalar_t sina = (scalar_t)sin(angle); 1.244 + scalar_t cosa = (scalar_t)cos(angle); 1.245 + scalar_t invcosa = 1-cosa; 1.246 + scalar_t nxsq = axis.x * axis.x; 1.247 + scalar_t nysq = axis.y * axis.y; 1.248 + scalar_t nzsq = axis.z * axis.z; 1.249 + 1.250 + reset_identity(); 1.251 + m[0][0] = nxsq + (1-nxsq) * cosa; 1.252 + m[0][1] = axis.x * axis.y * invcosa - axis.z * sina; 1.253 + m[0][2] = axis.x * axis.z * invcosa + axis.y * sina; 1.254 + m[1][0] = axis.x * axis.y * invcosa + axis.z * sina; 1.255 + m[1][1] = nysq + (1-nysq) * cosa; 1.256 + m[1][2] = axis.y * axis.z * invcosa - axis.x * sina; 1.257 + m[2][0] = axis.x * axis.z * invcosa - axis.y * sina; 1.258 + m[2][1] = axis.y * axis.z * invcosa + axis.x * sina; 1.259 + m[2][2] = nzsq + (1-nzsq) * cosa; 1.260 +} 1.261 + 1.262 +// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes 1.263 +// article "Quaternion Calculus and Fast Animation". 1.264 +// adapted from: http://www.geometrictools.com/LibMathematics/Algebra/Wm5Quaternion.inl 1.265 +Quaternion Matrix3x3::get_rotation_quat() const 1.266 +{ 1.267 + static const int next[3] = {1, 2, 0}; 1.268 + 1.269 + float quat[4]; 1.270 + 1.271 + scalar_t trace = m[0][0] + m[1][1] + m[2][2]; 1.272 + scalar_t root; 1.273 + 1.274 + if(trace > 0.0f) { 1.275 + // |w| > 1/2 1.276 + root = sqrt(trace + 1.0f); // 2w 1.277 + quat[0] = 0.5f * root; 1.278 + root = 0.5f / root; // 1 / 4w 1.279 + quat[1] = (m[2][1] - m[1][2]) * root; 1.280 + quat[2] = (m[0][2] - m[2][0]) * root; 1.281 + quat[3] = (m[1][0] - m[0][1]) * root; 1.282 + } else { 1.283 + // |w| <= 1/2 1.284 + int i = 0; 1.285 + if(m[1][1] > m[0][0]) { 1.286 + i = 1; 1.287 + } 1.288 + if(m[2][2] > m[i][i]) { 1.289 + i = 2; 1.290 + } 1.291 + int j = next[i]; 1.292 + int k = next[j]; 1.293 + 1.294 + root = sqrt(m[i][i] - m[j][j] - m[k][k] + 1.0f); 1.295 + quat[i + 1] = 0.5f * root; 1.296 + root = 0.5f / root; 1.297 + quat[0] = (m[k][j] - m[j][k]) * root; 1.298 + quat[j + 1] = (m[j][i] - m[i][j]) * root; 1.299 + quat[k + 1] = (m[k][i] - m[i][k]) * root; 1.300 + } 1.301 + return Quaternion(quat[0], quat[1], quat[2], quat[3]); 1.302 +} 1.303 + 1.304 +void Matrix3x3::scale(const Vector3 &scale_vec) 1.305 +{ 1.306 + Matrix3x3 smat( scale_vec.x, 0, 0, 1.307 + 0, scale_vec.y, 0, 1.308 + 0, 0, scale_vec.z); 1.309 + *this *= smat; 1.310 +} 1.311 + 1.312 +void Matrix3x3::set_scaling(const Vector3 &scale_vec) 1.313 +{ 1.314 + *this = Matrix3x3( scale_vec.x, 0, 0, 1.315 + 0, scale_vec.y, 0, 1.316 + 0, 0, scale_vec.z); 1.317 +} 1.318 + 1.319 +void Matrix3x3::set_column_vector(const Vector3 &vec, unsigned int col_index) 1.320 +{ 1.321 + m[0][col_index] = vec.x; 1.322 + m[1][col_index] = vec.y; 1.323 + m[2][col_index] = vec.z; 1.324 +} 1.325 + 1.326 +void Matrix3x3::set_row_vector(const Vector3 &vec, unsigned int row_index) 1.327 +{ 1.328 + m[row_index][0] = vec.x; 1.329 + m[row_index][1] = vec.y; 1.330 + m[row_index][2] = vec.z; 1.331 +} 1.332 + 1.333 +Vector3 Matrix3x3::get_column_vector(unsigned int col_index) const 1.334 +{ 1.335 + return Vector3(m[0][col_index], m[1][col_index], m[2][col_index]); 1.336 +} 1.337 + 1.338 +Vector3 Matrix3x3::get_row_vector(unsigned int row_index) const 1.339 +{ 1.340 + return Vector3(m[row_index][0], m[row_index][1], m[row_index][2]); 1.341 +} 1.342 + 1.343 +void Matrix3x3::transpose() 1.344 +{ 1.345 + Matrix3x3 tmp = *this; 1.346 + for(int i=0; i<3; i++) { 1.347 + for(int j=0; j<3; j++) { 1.348 + m[i][j] = tmp[j][i]; 1.349 + } 1.350 + } 1.351 +} 1.352 + 1.353 +Matrix3x3 Matrix3x3::transposed() const 1.354 +{ 1.355 + Matrix3x3 res; 1.356 + for(int i=0; i<3; i++) { 1.357 + for(int j=0; j<3; j++) { 1.358 + res[i][j] = m[j][i]; 1.359 + } 1.360 + } 1.361 + return res; 1.362 +} 1.363 + 1.364 +scalar_t Matrix3x3::determinant() const 1.365 +{ 1.366 + return m[0][0] * (m[1][1]*m[2][2] - m[1][2]*m[2][1]) - 1.367 + m[0][1] * (m[1][0]*m[2][2] - m[1][2]*m[2][0]) + 1.368 + m[0][2] * (m[1][0]*m[2][1] - m[1][1]*m[2][0]); 1.369 +} 1.370 + 1.371 +Matrix3x3 Matrix3x3::inverse() const 1.372 +{ 1.373 + // TODO: implement 3x3 inverse 1.374 + return *this; 1.375 +} 1.376 + 1.377 +ostream &operator <<(ostream &out, const Matrix3x3 &mat) 1.378 +{ 1.379 + for(int i=0; i<3; i++) { 1.380 + char str[100]; 1.381 + sprintf(str, "[ %12.5f %12.5f %12.5f ]\n", (float)mat.m[i][0], (float)mat.m[i][1], (float)mat.m[i][2]); 1.382 + out << str; 1.383 + } 1.384 + return out; 1.385 +} 1.386 + 1.387 + 1.388 + 1.389 +/* ----------------- Matrix4x4 implementation --------------- */ 1.390 + 1.391 +Matrix4x4 Matrix4x4::identity = Matrix4x4(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); 1.392 + 1.393 +Matrix4x4::Matrix4x4() 1.394 +{ 1.395 + *this = Matrix4x4(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); 1.396 +} 1.397 + 1.398 +Matrix4x4::Matrix4x4( scalar_t m11, scalar_t m12, scalar_t m13, scalar_t m14, 1.399 + scalar_t m21, scalar_t m22, scalar_t m23, scalar_t m24, 1.400 + scalar_t m31, scalar_t m32, scalar_t m33, scalar_t m34, 1.401 + scalar_t m41, scalar_t m42, scalar_t m43, scalar_t m44) 1.402 +{ 1.403 + m[0][0] = m11; m[0][1] = m12; m[0][2] = m13; m[0][3] = m14; 1.404 + m[1][0] = m21; m[1][1] = m22; m[1][2] = m23; m[1][3] = m24; 1.405 + m[2][0] = m31; m[2][1] = m32; m[2][2] = m33; m[2][3] = m34; 1.406 + m[3][0] = m41; m[3][1] = m42; m[3][2] = m43; m[3][3] = m44; 1.407 +} 1.408 + 1.409 +Matrix4x4::Matrix4x4(const mat4_t cmat) 1.410 +{ 1.411 + memcpy(m, cmat, sizeof(mat4_t)); 1.412 +} 1.413 + 1.414 +Matrix4x4::Matrix4x4(const Matrix3x3 &mat3x3) 1.415 +{ 1.416 + reset_identity(); 1.417 + for(int i=0; i<3; i++) { 1.418 + for(int j=0; j<3; j++) { 1.419 + m[i][j] = mat3x3[i][j]; 1.420 + } 1.421 + } 1.422 +} 1.423 + 1.424 +Matrix4x4 operator +(const Matrix4x4 &m1, const Matrix4x4 &m2) 1.425 +{ 1.426 + Matrix4x4 res; 1.427 + const scalar_t *op1 = m1.m[0], *op2 = m2.m[0]; 1.428 + scalar_t *dest = res.m[0]; 1.429 + 1.430 + for(int i=0; i<16; i++) { 1.431 + *dest++ = *op1++ + *op2++; 1.432 + } 1.433 + return res; 1.434 +} 1.435 + 1.436 +Matrix4x4 operator -(const Matrix4x4 &m1, const Matrix4x4 &m2) 1.437 +{ 1.438 + Matrix4x4 res; 1.439 + const scalar_t *op1 = m1.m[0], *op2 = m2.m[0]; 1.440 + scalar_t *dest = res.m[0]; 1.441 + 1.442 + for(int i=0; i<16; i++) { 1.443 + *dest++ = *op1++ - *op2++; 1.444 + } 1.445 + return res; 1.446 +} 1.447 + 1.448 +void operator +=(Matrix4x4 &m1, const Matrix4x4 &m2) 1.449 +{ 1.450 + scalar_t *op1 = m1.m[0]; 1.451 + const scalar_t *op2 = m2.m[0]; 1.452 + 1.453 + for(int i=0; i<16; i++) { 1.454 + *op1++ += *op2++; 1.455 + } 1.456 +} 1.457 + 1.458 +void operator -=(Matrix4x4 &m1, const Matrix4x4 &m2) 1.459 +{ 1.460 + scalar_t *op1 = m1.m[0]; 1.461 + const scalar_t *op2 = m2.m[0]; 1.462 + 1.463 + for(int i=0; i<16; i++) { 1.464 + *op1++ -= *op2++; 1.465 + } 1.466 +} 1.467 + 1.468 +Matrix4x4 operator *(const Matrix4x4 &mat, scalar_t scalar) 1.469 +{ 1.470 + Matrix4x4 res; 1.471 + const scalar_t *mptr = mat.m[0]; 1.472 + scalar_t *dptr = res.m[0]; 1.473 + 1.474 + for(int i=0; i<16; i++) { 1.475 + *dptr++ = *mptr++ * scalar; 1.476 + } 1.477 + return res; 1.478 +} 1.479 + 1.480 +Matrix4x4 operator *(scalar_t scalar, const Matrix4x4 &mat) 1.481 +{ 1.482 + Matrix4x4 res; 1.483 + const scalar_t *mptr = mat.m[0]; 1.484 + scalar_t *dptr = res.m[0]; 1.485 + 1.486 + for(int i=0; i<16; i++) { 1.487 + *dptr++ = *mptr++ * scalar; 1.488 + } 1.489 + return res; 1.490 +} 1.491 + 1.492 +void operator *=(Matrix4x4 &mat, scalar_t scalar) 1.493 +{ 1.494 + scalar_t *mptr = mat.m[0]; 1.495 + 1.496 + for(int i=0; i<16; i++) { 1.497 + *mptr++ *= scalar; 1.498 + } 1.499 +} 1.500 + 1.501 +void Matrix4x4::translate(const Vector3 &trans) 1.502 +{ 1.503 + Matrix4x4 tmat(1, 0, 0, trans.x, 0, 1, 0, trans.y, 0, 0, 1, trans.z, 0, 0, 0, 1); 1.504 + *this *= tmat; 1.505 +} 1.506 + 1.507 +void Matrix4x4::set_translation(const Vector3 &trans) 1.508 +{ 1.509 + *this = Matrix4x4(1, 0, 0, trans.x, 0, 1, 0, trans.y, 0, 0, 1, trans.z, 0, 0, 0, 1); 1.510 +} 1.511 + 1.512 +Vector3 Matrix4x4::get_translation() const 1.513 +{ 1.514 + return Vector3(m[0][3], m[1][3], m[2][3]); 1.515 +} 1.516 + 1.517 +void Matrix4x4::rotate(const Vector3 &euler_angles) 1.518 +{ 1.519 + Matrix3x3 xrot, yrot, zrot; 1.520 + 1.521 + xrot = Matrix3x3( 1, 0, 0, 1.522 + 0, cos(euler_angles.x), -sin(euler_angles.x), 1.523 + 0, sin(euler_angles.x), cos(euler_angles.x)); 1.524 + 1.525 + yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y), 1.526 + 0, 1, 0, 1.527 + -sin(euler_angles.y), 0, cos(euler_angles.y)); 1.528 + 1.529 + zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0, 1.530 + sin(euler_angles.z), cos(euler_angles.z), 0, 1.531 + 0, 0, 1); 1.532 + 1.533 + *this *= Matrix4x4(xrot * yrot * zrot); 1.534 +} 1.535 + 1.536 +void Matrix4x4::set_rotation(const Vector3 &euler_angles) 1.537 +{ 1.538 + Matrix3x3 xrot, yrot, zrot; 1.539 + 1.540 + xrot = Matrix3x3( 1, 0, 0, 1.541 + 0, cos(euler_angles.x), -sin(euler_angles.x), 1.542 + 0, sin(euler_angles.x), cos(euler_angles.x)); 1.543 + 1.544 + yrot = Matrix3x3( cos(euler_angles.y), 0, sin(euler_angles.y), 1.545 + 0, 1, 0, 1.546 + -sin(euler_angles.y), 0, cos(euler_angles.y)); 1.547 + 1.548 + zrot = Matrix3x3( cos(euler_angles.z), -sin(euler_angles.z), 0, 1.549 + sin(euler_angles.z), cos(euler_angles.z), 0, 1.550 + 0, 0, 1); 1.551 + 1.552 + *this = Matrix4x4(xrot * yrot * zrot); 1.553 +} 1.554 + 1.555 +void Matrix4x4::rotate(const Vector3 &axis, scalar_t angle) 1.556 +{ 1.557 + scalar_t sina = (scalar_t)sin(angle); 1.558 + scalar_t cosa = (scalar_t)cos(angle); 1.559 + scalar_t invcosa = 1-cosa; 1.560 + scalar_t nxsq = axis.x * axis.x; 1.561 + scalar_t nysq = axis.y * axis.y; 1.562 + scalar_t nzsq = axis.z * axis.z; 1.563 + 1.564 + Matrix4x4 xform; 1.565 + xform[0][0] = nxsq + (1-nxsq) * cosa; 1.566 + xform[0][1] = axis.x * axis.y * invcosa - axis.z * sina; 1.567 + xform[0][2] = axis.x * axis.z * invcosa + axis.y * sina; 1.568 + xform[1][0] = axis.x * axis.y * invcosa + axis.z * sina; 1.569 + xform[1][1] = nysq + (1-nysq) * cosa; 1.570 + xform[1][2] = axis.y * axis.z * invcosa - axis.x * sina; 1.571 + xform[2][0] = axis.x * axis.z * invcosa - axis.y * sina; 1.572 + xform[2][1] = axis.y * axis.z * invcosa + axis.x * sina; 1.573 + xform[2][2] = nzsq + (1-nzsq) * cosa; 1.574 + 1.575 + *this *= xform; 1.576 +} 1.577 + 1.578 +void Matrix4x4::set_rotation(const Vector3 &axis, scalar_t angle) 1.579 +{ 1.580 + scalar_t sina = (scalar_t)sin(angle); 1.581 + scalar_t cosa = (scalar_t)cos(angle); 1.582 + scalar_t invcosa = 1-cosa; 1.583 + scalar_t nxsq = axis.x * axis.x; 1.584 + scalar_t nysq = axis.y * axis.y; 1.585 + scalar_t nzsq = axis.z * axis.z; 1.586 + 1.587 + reset_identity(); 1.588 + m[0][0] = nxsq + (1-nxsq) * cosa; 1.589 + m[0][1] = axis.x * axis.y * invcosa - axis.z * sina; 1.590 + m[0][2] = axis.x * axis.z * invcosa + axis.y * sina; 1.591 + m[1][0] = axis.x * axis.y * invcosa + axis.z * sina; 1.592 + m[1][1] = nysq + (1-nysq) * cosa; 1.593 + m[1][2] = axis.y * axis.z * invcosa - axis.x * sina; 1.594 + m[2][0] = axis.x * axis.z * invcosa - axis.y * sina; 1.595 + m[2][1] = axis.y * axis.z * invcosa + axis.x * sina; 1.596 + m[2][2] = nzsq + (1-nzsq) * cosa; 1.597 +} 1.598 + 1.599 +void Matrix4x4::rotate(const Quaternion &quat) 1.600 +{ 1.601 + *this *= quat.get_rotation_matrix(); 1.602 +} 1.603 + 1.604 +void Matrix4x4::set_rotation(const Quaternion &quat) 1.605 +{ 1.606 + *this = quat.get_rotation_matrix(); 1.607 +} 1.608 + 1.609 +Quaternion Matrix4x4::get_rotation_quat() const 1.610 +{ 1.611 + Matrix3x3 mat3 = *this; 1.612 + return mat3.get_rotation_quat(); 1.613 +} 1.614 + 1.615 +void Matrix4x4::scale(const Vector4 &scale_vec) 1.616 +{ 1.617 + Matrix4x4 smat( scale_vec.x, 0, 0, 0, 1.618 + 0, scale_vec.y, 0, 0, 1.619 + 0, 0, scale_vec.z, 0, 1.620 + 0, 0, 0, scale_vec.w); 1.621 + *this *= smat; 1.622 +} 1.623 + 1.624 +void Matrix4x4::set_scaling(const Vector4 &scale_vec) 1.625 +{ 1.626 + *this = Matrix4x4( scale_vec.x, 0, 0, 0, 1.627 + 0, scale_vec.y, 0, 0, 1.628 + 0, 0, scale_vec.z, 0, 1.629 + 0, 0, 0, scale_vec.w); 1.630 +} 1.631 + 1.632 +Vector3 Matrix4x4::get_scaling() const 1.633 +{ 1.634 + Vector3 vi = get_row_vector(0); 1.635 + Vector3 vj = get_row_vector(1); 1.636 + Vector3 vk = get_row_vector(2); 1.637 + 1.638 + return Vector3(vi.length(), vj.length(), vk.length()); 1.639 +} 1.640 + 1.641 +void Matrix4x4::set_frustum(float left, float right, float bottom, float top, float znear, float zfar) 1.642 +{ 1.643 + float dx = right - left; 1.644 + float dy = top - bottom; 1.645 + float dz = zfar - znear; 1.646 + 1.647 + float a = (right + left) / dx; 1.648 + float b = (top + bottom) / dy; 1.649 + float c = -(zfar + znear) / dz; 1.650 + float d = -2.0 * zfar * znear / dz; 1.651 + 1.652 + *this = Matrix4x4(2.0 * znear / dx, 0, a, 0, 1.653 + 0, 2.0 * znear / dy, b, 0, 1.654 + 0, 0, c, d, 1.655 + 0, 0, -1, 0); 1.656 +} 1.657 + 1.658 +void Matrix4x4::set_perspective(float vfov, float aspect, float znear, float zfar) 1.659 +{ 1.660 + float f = 1.0f / tan(vfov * 0.5f); 1.661 + float dz = znear - zfar; 1.662 + 1.663 + reset_identity(); 1.664 + 1.665 + m[0][0] = f / aspect; 1.666 + m[1][1] = f; 1.667 + m[2][2] = (zfar + znear) / dz; 1.668 + m[3][2] = -1.0f; 1.669 + m[2][3] = 2.0f * zfar * znear / dz; 1.670 + m[3][3] = 0.0f; 1.671 +} 1.672 + 1.673 +void Matrix4x4::set_orthographic(float left, float right, float bottom, float top, float znear, float zfar) 1.674 +{ 1.675 + float dx = right - left; 1.676 + float dy = top - bottom; 1.677 + float dz = zfar - znear; 1.678 + 1.679 + reset_identity(); 1.680 + 1.681 + m[0][0] = 2.0 / dx; 1.682 + m[1][1] = 2.0 / dy; 1.683 + m[2][2] = -2.0 / dz; 1.684 + m[0][3] = -(right + left) / dx; 1.685 + m[1][3] = -(top + bottom) / dy; 1.686 + m[2][3] = -(zfar + znear) / dz; 1.687 +} 1.688 + 1.689 +void Matrix4x4::set_lookat(const Vector3 &pos, const Vector3 &targ, const Vector3 &up) 1.690 +{ 1.691 + Vector3 vk = (targ - pos).normalized(); 1.692 + Vector3 vj = up.normalized(); 1.693 + Vector3 vi = cross_product(vk, vj).normalized(); 1.694 + vj = cross_product(vi, vk); 1.695 + 1.696 + *this = Matrix4x4( 1.697 + vi.x, vi.y, vi.z, 0, 1.698 + vj.x, vj.y, vj.z, 0, 1.699 + -vk.x, -vk.y, -vk.z, 0, 1.700 + 0, 0, 0, 1); 1.701 + translate(-pos); 1.702 +} 1.703 + 1.704 +void Matrix4x4::set_column_vector(const Vector4 &vec, unsigned int col_index) 1.705 +{ 1.706 + m[0][col_index] = vec.x; 1.707 + m[1][col_index] = vec.y; 1.708 + m[2][col_index] = vec.z; 1.709 + m[3][col_index] = vec.w; 1.710 +} 1.711 + 1.712 +void Matrix4x4::set_row_vector(const Vector4 &vec, unsigned int row_index) 1.713 +{ 1.714 + m[row_index][0] = vec.x; 1.715 + m[row_index][1] = vec.y; 1.716 + m[row_index][2] = vec.z; 1.717 + m[row_index][3] = vec.w; 1.718 +} 1.719 + 1.720 +Vector4 Matrix4x4::get_column_vector(unsigned int col_index) const 1.721 +{ 1.722 + return Vector4(m[0][col_index], m[1][col_index], m[2][col_index], m[3][col_index]); 1.723 +} 1.724 + 1.725 +Vector4 Matrix4x4::get_row_vector(unsigned int row_index) const 1.726 +{ 1.727 + return Vector4(m[row_index][0], m[row_index][1], m[row_index][2], m[row_index][3]); 1.728 +} 1.729 + 1.730 +void Matrix4x4::transpose() 1.731 +{ 1.732 + Matrix4x4 tmp = *this; 1.733 + for(int i=0; i<4; i++) { 1.734 + for(int j=0; j<4; j++) { 1.735 + m[i][j] = tmp[j][i]; 1.736 + } 1.737 + } 1.738 +} 1.739 + 1.740 +Matrix4x4 Matrix4x4::transposed() const 1.741 +{ 1.742 + Matrix4x4 res; 1.743 + for(int i=0; i<4; i++) { 1.744 + for(int j=0; j<4; j++) { 1.745 + res[i][j] = m[j][i]; 1.746 + } 1.747 + } 1.748 + return res; 1.749 +} 1.750 + 1.751 +scalar_t Matrix4x4::determinant() const 1.752 +{ 1.753 + scalar_t det11 = (m[1][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) - 1.754 + (m[1][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) + 1.755 + (m[1][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])); 1.756 + 1.757 + scalar_t det12 = (m[1][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) - 1.758 + (m[1][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) + 1.759 + (m[1][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])); 1.760 + 1.761 + scalar_t det13 = (m[1][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) - 1.762 + (m[1][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) + 1.763 + (m[1][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1])); 1.764 + 1.765 + scalar_t det14 = (m[1][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) - 1.766 + (m[1][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) + 1.767 + (m[1][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1])); 1.768 + 1.769 + return m[0][0] * det11 - m[0][1] * det12 + m[0][2] * det13 - m[0][3] * det14; 1.770 +} 1.771 + 1.772 + 1.773 +Matrix4x4 Matrix4x4::adjoint() const 1.774 +{ 1.775 + Matrix4x4 coef; 1.776 + 1.777 + coef.m[0][0] = (m[1][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) - 1.778 + (m[1][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) + 1.779 + (m[1][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])); 1.780 + coef.m[0][1] = (m[1][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) - 1.781 + (m[1][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) + 1.782 + (m[1][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])); 1.783 + coef.m[0][2] = (m[1][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) - 1.784 + (m[1][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) + 1.785 + (m[1][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1])); 1.786 + coef.m[0][3] = (m[1][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) - 1.787 + (m[1][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) + 1.788 + (m[1][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1])); 1.789 + 1.790 + coef.m[1][0] = (m[0][1] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) - 1.791 + (m[0][2] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) + 1.792 + (m[0][3] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])); 1.793 + coef.m[1][1] = (m[0][0] * (m[2][2] * m[3][3] - m[3][2] * m[2][3])) - 1.794 + (m[0][2] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) + 1.795 + (m[0][3] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])); 1.796 + coef.m[1][2] = (m[0][0] * (m[2][1] * m[3][3] - m[3][1] * m[2][3])) - 1.797 + (m[0][1] * (m[2][0] * m[3][3] - m[3][0] * m[2][3])) + 1.798 + (m[0][3] * (m[2][0] * m[3][1] - m[3][0] * m[2][1])); 1.799 + coef.m[1][3] = (m[0][0] * (m[2][1] * m[3][2] - m[3][1] * m[2][2])) - 1.800 + (m[0][1] * (m[2][0] * m[3][2] - m[3][0] * m[2][2])) + 1.801 + (m[0][2] * (m[2][0] * m[3][1] - m[3][0] * m[2][1])); 1.802 + 1.803 + coef.m[2][0] = (m[0][1] * (m[1][2] * m[3][3] - m[3][2] * m[1][3])) - 1.804 + (m[0][2] * (m[1][1] * m[3][3] - m[3][1] * m[1][3])) + 1.805 + (m[0][3] * (m[1][1] * m[3][2] - m[3][1] * m[1][2])); 1.806 + coef.m[2][1] = (m[0][0] * (m[1][2] * m[3][3] - m[3][2] * m[1][3])) - 1.807 + (m[0][2] * (m[1][0] * m[3][3] - m[3][0] * m[1][3])) + 1.808 + (m[0][3] * (m[1][0] * m[3][2] - m[3][0] * m[1][2])); 1.809 + coef.m[2][2] = (m[0][0] * (m[1][1] * m[3][3] - m[3][1] * m[1][3])) - 1.810 + (m[0][1] * (m[1][0] * m[3][3] - m[3][0] * m[1][3])) + 1.811 + (m[0][3] * (m[1][0] * m[3][1] - m[3][0] * m[1][1])); 1.812 + coef.m[2][3] = (m[0][0] * (m[1][1] * m[3][2] - m[3][1] * m[1][2])) - 1.813 + (m[0][1] * (m[1][0] * m[3][2] - m[3][0] * m[1][2])) + 1.814 + (m[0][2] * (m[1][0] * m[3][1] - m[3][0] * m[1][1])); 1.815 + 1.816 + coef.m[3][0] = (m[0][1] * (m[1][2] * m[2][3] - m[2][2] * m[1][3])) - 1.817 + (m[0][2] * (m[1][1] * m[2][3] - m[2][1] * m[1][3])) + 1.818 + (m[0][3] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])); 1.819 + coef.m[3][1] = (m[0][0] * (m[1][2] * m[2][3] - m[2][2] * m[1][3])) - 1.820 + (m[0][2] * (m[1][0] * m[2][3] - m[2][0] * m[1][3])) + 1.821 + (m[0][3] * (m[1][0] * m[2][2] - m[2][0] * m[1][2])); 1.822 + coef.m[3][2] = (m[0][0] * (m[1][1] * m[2][3] - m[2][1] * m[1][3])) - 1.823 + (m[0][1] * (m[1][0] * m[2][3] - m[2][0] * m[1][3])) + 1.824 + (m[0][3] * (m[1][0] * m[2][1] - m[2][0] * m[1][1])); 1.825 + coef.m[3][3] = (m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])) - 1.826 + (m[0][1] * (m[1][0] * m[2][2] - m[2][0] * m[1][2])) + 1.827 + (m[0][2] * (m[1][0] * m[2][1] - m[2][0] * m[1][1])); 1.828 + 1.829 + coef.transpose(); 1.830 + 1.831 + for(int i=0; i<4; i++) { 1.832 + for(int j=0; j<4; j++) { 1.833 + coef.m[i][j] = j%2 ? -coef.m[i][j] : coef.m[i][j]; 1.834 + if(i%2) coef.m[i][j] = -coef.m[i][j]; 1.835 + } 1.836 + } 1.837 + 1.838 + return coef; 1.839 +} 1.840 + 1.841 +Matrix4x4 Matrix4x4::inverse() const 1.842 +{ 1.843 + Matrix4x4 adj = adjoint(); 1.844 + 1.845 + return adj * (1.0f / determinant()); 1.846 +} 1.847 + 1.848 +ostream &operator <<(ostream &out, const Matrix4x4 &mat) 1.849 +{ 1.850 + for(int i=0; i<4; i++) { 1.851 + char str[100]; 1.852 + sprintf(str, "[ %12.5f %12.5f %12.5f %12.5f ]\n", (float)mat.m[i][0], (float)mat.m[i][1], (float)mat.m[i][2], (float)mat.m[i][3]); 1.853 + out << str; 1.854 + } 1.855 + return out; 1.856 +}