dbf-halloween2015
diff libs/libjpeg/jfdctfst.c @ 1:c3f5c32cb210
barfed all the libraries in the source tree to make porting easier
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 01 Nov 2015 00:36:56 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jfdctfst.c Sun Nov 01 00:36:56 2015 +0200 1.3 @@ -0,0 +1,224 @@ 1.4 +/* 1.5 + * jfdctfst.c 1.6 + * 1.7 + * Copyright (C) 1994-1996, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains a fast, not so accurate integer implementation of the 1.12 + * forward DCT (Discrete Cosine Transform). 1.13 + * 1.14 + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 1.15 + * on each column. Direct algorithms are also available, but they are 1.16 + * much more complex and seem not to be any faster when reduced to code. 1.17 + * 1.18 + * This implementation is based on Arai, Agui, and Nakajima's algorithm for 1.19 + * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 1.20 + * Japanese, but the algorithm is described in the Pennebaker & Mitchell 1.21 + * JPEG textbook (see REFERENCES section in file README). The following code 1.22 + * is based directly on figure 4-8 in P&M. 1.23 + * While an 8-point DCT cannot be done in less than 11 multiplies, it is 1.24 + * possible to arrange the computation so that many of the multiplies are 1.25 + * simple scalings of the final outputs. These multiplies can then be 1.26 + * folded into the multiplications or divisions by the JPEG quantization 1.27 + * table entries. The AA&N method leaves only 5 multiplies and 29 adds 1.28 + * to be done in the DCT itself. 1.29 + * The primary disadvantage of this method is that with fixed-point math, 1.30 + * accuracy is lost due to imprecise representation of the scaled 1.31 + * quantization values. The smaller the quantization table entry, the less 1.32 + * precise the scaled value, so this implementation does worse with high- 1.33 + * quality-setting files than with low-quality ones. 1.34 + */ 1.35 + 1.36 +#define JPEG_INTERNALS 1.37 +#include "jinclude.h" 1.38 +#include "jpeglib.h" 1.39 +#include "jdct.h" /* Private declarations for DCT subsystem */ 1.40 + 1.41 +#ifdef DCT_IFAST_SUPPORTED 1.42 + 1.43 + 1.44 +/* 1.45 + * This module is specialized to the case DCTSIZE = 8. 1.46 + */ 1.47 + 1.48 +#if DCTSIZE != 8 1.49 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 1.50 +#endif 1.51 + 1.52 + 1.53 +/* Scaling decisions are generally the same as in the LL&M algorithm; 1.54 + * see jfdctint.c for more details. However, we choose to descale 1.55 + * (right shift) multiplication products as soon as they are formed, 1.56 + * rather than carrying additional fractional bits into subsequent additions. 1.57 + * This compromises accuracy slightly, but it lets us save a few shifts. 1.58 + * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 1.59 + * everywhere except in the multiplications proper; this saves a good deal 1.60 + * of work on 16-bit-int machines. 1.61 + * 1.62 + * Again to save a few shifts, the intermediate results between pass 1 and 1.63 + * pass 2 are not upscaled, but are represented only to integral precision. 1.64 + * 1.65 + * A final compromise is to represent the multiplicative constants to only 1.66 + * 8 fractional bits, rather than 13. This saves some shifting work on some 1.67 + * machines, and may also reduce the cost of multiplication (since there 1.68 + * are fewer one-bits in the constants). 1.69 + */ 1.70 + 1.71 +#define CONST_BITS 8 1.72 + 1.73 + 1.74 +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 1.75 + * causing a lot of useless floating-point operations at run time. 1.76 + * To get around this we use the following pre-calculated constants. 1.77 + * If you change CONST_BITS you may want to add appropriate values. 1.78 + * (With a reasonable C compiler, you can just rely on the FIX() macro...) 1.79 + */ 1.80 + 1.81 +#if CONST_BITS == 8 1.82 +#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ 1.83 +#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ 1.84 +#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ 1.85 +#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ 1.86 +#else 1.87 +#define FIX_0_382683433 FIX(0.382683433) 1.88 +#define FIX_0_541196100 FIX(0.541196100) 1.89 +#define FIX_0_707106781 FIX(0.707106781) 1.90 +#define FIX_1_306562965 FIX(1.306562965) 1.91 +#endif 1.92 + 1.93 + 1.94 +/* We can gain a little more speed, with a further compromise in accuracy, 1.95 + * by omitting the addition in a descaling shift. This yields an incorrectly 1.96 + * rounded result half the time... 1.97 + */ 1.98 + 1.99 +#ifndef USE_ACCURATE_ROUNDING 1.100 +#undef DESCALE 1.101 +#define DESCALE(x,n) RIGHT_SHIFT(x, n) 1.102 +#endif 1.103 + 1.104 + 1.105 +/* Multiply a DCTELEM variable by an INT32 constant, and immediately 1.106 + * descale to yield a DCTELEM result. 1.107 + */ 1.108 + 1.109 +#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 1.110 + 1.111 + 1.112 +/* 1.113 + * Perform the forward DCT on one block of samples. 1.114 + */ 1.115 + 1.116 +GLOBAL(void) 1.117 +jpeg_fdct_ifast (DCTELEM * data) 1.118 +{ 1.119 + DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 1.120 + DCTELEM tmp10, tmp11, tmp12, tmp13; 1.121 + DCTELEM z1, z2, z3, z4, z5, z11, z13; 1.122 + DCTELEM *dataptr; 1.123 + int ctr; 1.124 + SHIFT_TEMPS 1.125 + 1.126 + /* Pass 1: process rows. */ 1.127 + 1.128 + dataptr = data; 1.129 + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 1.130 + tmp0 = dataptr[0] + dataptr[7]; 1.131 + tmp7 = dataptr[0] - dataptr[7]; 1.132 + tmp1 = dataptr[1] + dataptr[6]; 1.133 + tmp6 = dataptr[1] - dataptr[6]; 1.134 + tmp2 = dataptr[2] + dataptr[5]; 1.135 + tmp5 = dataptr[2] - dataptr[5]; 1.136 + tmp3 = dataptr[3] + dataptr[4]; 1.137 + tmp4 = dataptr[3] - dataptr[4]; 1.138 + 1.139 + /* Even part */ 1.140 + 1.141 + tmp10 = tmp0 + tmp3; /* phase 2 */ 1.142 + tmp13 = tmp0 - tmp3; 1.143 + tmp11 = tmp1 + tmp2; 1.144 + tmp12 = tmp1 - tmp2; 1.145 + 1.146 + dataptr[0] = tmp10 + tmp11; /* phase 3 */ 1.147 + dataptr[4] = tmp10 - tmp11; 1.148 + 1.149 + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 1.150 + dataptr[2] = tmp13 + z1; /* phase 5 */ 1.151 + dataptr[6] = tmp13 - z1; 1.152 + 1.153 + /* Odd part */ 1.154 + 1.155 + tmp10 = tmp4 + tmp5; /* phase 2 */ 1.156 + tmp11 = tmp5 + tmp6; 1.157 + tmp12 = tmp6 + tmp7; 1.158 + 1.159 + /* The rotator is modified from fig 4-8 to avoid extra negations. */ 1.160 + z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 1.161 + z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 1.162 + z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 1.163 + z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 1.164 + 1.165 + z11 = tmp7 + z3; /* phase 5 */ 1.166 + z13 = tmp7 - z3; 1.167 + 1.168 + dataptr[5] = z13 + z2; /* phase 6 */ 1.169 + dataptr[3] = z13 - z2; 1.170 + dataptr[1] = z11 + z4; 1.171 + dataptr[7] = z11 - z4; 1.172 + 1.173 + dataptr += DCTSIZE; /* advance pointer to next row */ 1.174 + } 1.175 + 1.176 + /* Pass 2: process columns. */ 1.177 + 1.178 + dataptr = data; 1.179 + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 1.180 + tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 1.181 + tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 1.182 + tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 1.183 + tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 1.184 + tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 1.185 + tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 1.186 + tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 1.187 + tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 1.188 + 1.189 + /* Even part */ 1.190 + 1.191 + tmp10 = tmp0 + tmp3; /* phase 2 */ 1.192 + tmp13 = tmp0 - tmp3; 1.193 + tmp11 = tmp1 + tmp2; 1.194 + tmp12 = tmp1 - tmp2; 1.195 + 1.196 + dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 1.197 + dataptr[DCTSIZE*4] = tmp10 - tmp11; 1.198 + 1.199 + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 1.200 + dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 1.201 + dataptr[DCTSIZE*6] = tmp13 - z1; 1.202 + 1.203 + /* Odd part */ 1.204 + 1.205 + tmp10 = tmp4 + tmp5; /* phase 2 */ 1.206 + tmp11 = tmp5 + tmp6; 1.207 + tmp12 = tmp6 + tmp7; 1.208 + 1.209 + /* The rotator is modified from fig 4-8 to avoid extra negations. */ 1.210 + z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 1.211 + z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 1.212 + z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 1.213 + z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 1.214 + 1.215 + z11 = tmp7 + z3; /* phase 5 */ 1.216 + z13 = tmp7 - z3; 1.217 + 1.218 + dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 1.219 + dataptr[DCTSIZE*3] = z13 - z2; 1.220 + dataptr[DCTSIZE*1] = z11 + z4; 1.221 + dataptr[DCTSIZE*7] = z11 - z4; 1.222 + 1.223 + dataptr++; /* advance pointer to next column */ 1.224 + } 1.225 +} 1.226 + 1.227 +#endif /* DCT_IFAST_SUPPORTED */