dbf-halloween2015
diff libs/libjpeg/jdphuff.c @ 1:c3f5c32cb210
barfed all the libraries in the source tree to make porting easier
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 01 Nov 2015 00:36:56 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jdphuff.c Sun Nov 01 00:36:56 2015 +0200 1.3 @@ -0,0 +1,668 @@ 1.4 +/* 1.5 + * jdphuff.c 1.6 + * 1.7 + * Copyright (C) 1995-1997, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains Huffman entropy decoding routines for progressive JPEG. 1.12 + * 1.13 + * Much of the complexity here has to do with supporting input suspension. 1.14 + * If the data source module demands suspension, we want to be able to back 1.15 + * up to the start of the current MCU. To do this, we copy state variables 1.16 + * into local working storage, and update them back to the permanent 1.17 + * storage only upon successful completion of an MCU. 1.18 + */ 1.19 + 1.20 +#define JPEG_INTERNALS 1.21 +#include "jinclude.h" 1.22 +#include "jpeglib.h" 1.23 +#include "jdhuff.h" /* Declarations shared with jdhuff.c */ 1.24 + 1.25 + 1.26 +#ifdef D_PROGRESSIVE_SUPPORTED 1.27 + 1.28 +/* 1.29 + * Expanded entropy decoder object for progressive Huffman decoding. 1.30 + * 1.31 + * The savable_state subrecord contains fields that change within an MCU, 1.32 + * but must not be updated permanently until we complete the MCU. 1.33 + */ 1.34 + 1.35 +typedef struct { 1.36 + unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ 1.37 + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 1.38 +} savable_state; 1.39 + 1.40 +/* This macro is to work around compilers with missing or broken 1.41 + * structure assignment. You'll need to fix this code if you have 1.42 + * such a compiler and you change MAX_COMPS_IN_SCAN. 1.43 + */ 1.44 + 1.45 +#ifndef NO_STRUCT_ASSIGN 1.46 +#define ASSIGN_STATE(dest,src) ((dest) = (src)) 1.47 +#else 1.48 +#if MAX_COMPS_IN_SCAN == 4 1.49 +#define ASSIGN_STATE(dest,src) \ 1.50 + ((dest).EOBRUN = (src).EOBRUN, \ 1.51 + (dest).last_dc_val[0] = (src).last_dc_val[0], \ 1.52 + (dest).last_dc_val[1] = (src).last_dc_val[1], \ 1.53 + (dest).last_dc_val[2] = (src).last_dc_val[2], \ 1.54 + (dest).last_dc_val[3] = (src).last_dc_val[3]) 1.55 +#endif 1.56 +#endif 1.57 + 1.58 + 1.59 +typedef struct { 1.60 + struct jpeg_entropy_decoder pub; /* public fields */ 1.61 + 1.62 + /* These fields are loaded into local variables at start of each MCU. 1.63 + * In case of suspension, we exit WITHOUT updating them. 1.64 + */ 1.65 + bitread_perm_state bitstate; /* Bit buffer at start of MCU */ 1.66 + savable_state saved; /* Other state at start of MCU */ 1.67 + 1.68 + /* These fields are NOT loaded into local working state. */ 1.69 + unsigned int restarts_to_go; /* MCUs left in this restart interval */ 1.70 + 1.71 + /* Pointers to derived tables (these workspaces have image lifespan) */ 1.72 + d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; 1.73 + 1.74 + d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ 1.75 +} phuff_entropy_decoder; 1.76 + 1.77 +typedef phuff_entropy_decoder * phuff_entropy_ptr; 1.78 + 1.79 +/* Forward declarations */ 1.80 +METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, 1.81 + JBLOCKROW *MCU_data)); 1.82 +METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, 1.83 + JBLOCKROW *MCU_data)); 1.84 +METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, 1.85 + JBLOCKROW *MCU_data)); 1.86 +METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, 1.87 + JBLOCKROW *MCU_data)); 1.88 + 1.89 + 1.90 +/* 1.91 + * Initialize for a Huffman-compressed scan. 1.92 + */ 1.93 + 1.94 +METHODDEF(void) 1.95 +start_pass_phuff_decoder (j_decompress_ptr cinfo) 1.96 +{ 1.97 + phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 1.98 + boolean is_DC_band, bad; 1.99 + int ci, coefi, tbl; 1.100 + int *coef_bit_ptr; 1.101 + jpeg_component_info * compptr; 1.102 + 1.103 + is_DC_band = (cinfo->Ss == 0); 1.104 + 1.105 + /* Validate scan parameters */ 1.106 + bad = FALSE; 1.107 + if (is_DC_band) { 1.108 + if (cinfo->Se != 0) 1.109 + bad = TRUE; 1.110 + } else { 1.111 + /* need not check Ss/Se < 0 since they came from unsigned bytes */ 1.112 + if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) 1.113 + bad = TRUE; 1.114 + /* AC scans may have only one component */ 1.115 + if (cinfo->comps_in_scan != 1) 1.116 + bad = TRUE; 1.117 + } 1.118 + if (cinfo->Ah != 0) { 1.119 + /* Successive approximation refinement scan: must have Al = Ah-1. */ 1.120 + if (cinfo->Al != cinfo->Ah-1) 1.121 + bad = TRUE; 1.122 + } 1.123 + if (cinfo->Al > 13) /* need not check for < 0 */ 1.124 + bad = TRUE; 1.125 + /* Arguably the maximum Al value should be less than 13 for 8-bit precision, 1.126 + * but the spec doesn't say so, and we try to be liberal about what we 1.127 + * accept. Note: large Al values could result in out-of-range DC 1.128 + * coefficients during early scans, leading to bizarre displays due to 1.129 + * overflows in the IDCT math. But we won't crash. 1.130 + */ 1.131 + if (bad) 1.132 + ERREXIT4(cinfo, JERR_BAD_PROGRESSION, 1.133 + cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); 1.134 + /* Update progression status, and verify that scan order is legal. 1.135 + * Note that inter-scan inconsistencies are treated as warnings 1.136 + * not fatal errors ... not clear if this is right way to behave. 1.137 + */ 1.138 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.139 + int cindex = cinfo->cur_comp_info[ci]->component_index; 1.140 + coef_bit_ptr = & cinfo->coef_bits[cindex][0]; 1.141 + if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ 1.142 + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); 1.143 + for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { 1.144 + int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; 1.145 + if (cinfo->Ah != expected) 1.146 + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); 1.147 + coef_bit_ptr[coefi] = cinfo->Al; 1.148 + } 1.149 + } 1.150 + 1.151 + /* Select MCU decoding routine */ 1.152 + if (cinfo->Ah == 0) { 1.153 + if (is_DC_band) 1.154 + entropy->pub.decode_mcu = decode_mcu_DC_first; 1.155 + else 1.156 + entropy->pub.decode_mcu = decode_mcu_AC_first; 1.157 + } else { 1.158 + if (is_DC_band) 1.159 + entropy->pub.decode_mcu = decode_mcu_DC_refine; 1.160 + else 1.161 + entropy->pub.decode_mcu = decode_mcu_AC_refine; 1.162 + } 1.163 + 1.164 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.165 + compptr = cinfo->cur_comp_info[ci]; 1.166 + /* Make sure requested tables are present, and compute derived tables. 1.167 + * We may build same derived table more than once, but it's not expensive. 1.168 + */ 1.169 + if (is_DC_band) { 1.170 + if (cinfo->Ah == 0) { /* DC refinement needs no table */ 1.171 + tbl = compptr->dc_tbl_no; 1.172 + jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, 1.173 + & entropy->derived_tbls[tbl]); 1.174 + } 1.175 + } else { 1.176 + tbl = compptr->ac_tbl_no; 1.177 + jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, 1.178 + & entropy->derived_tbls[tbl]); 1.179 + /* remember the single active table */ 1.180 + entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; 1.181 + } 1.182 + /* Initialize DC predictions to 0 */ 1.183 + entropy->saved.last_dc_val[ci] = 0; 1.184 + } 1.185 + 1.186 + /* Initialize bitread state variables */ 1.187 + entropy->bitstate.bits_left = 0; 1.188 + entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ 1.189 + entropy->pub.insufficient_data = FALSE; 1.190 + 1.191 + /* Initialize private state variables */ 1.192 + entropy->saved.EOBRUN = 0; 1.193 + 1.194 + /* Initialize restart counter */ 1.195 + entropy->restarts_to_go = cinfo->restart_interval; 1.196 +} 1.197 + 1.198 + 1.199 +/* 1.200 + * Figure F.12: extend sign bit. 1.201 + * On some machines, a shift and add will be faster than a table lookup. 1.202 + */ 1.203 + 1.204 +#ifdef AVOID_TABLES 1.205 + 1.206 +#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) 1.207 + 1.208 +#else 1.209 + 1.210 +#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) 1.211 + 1.212 +static const int extend_test[16] = /* entry n is 2**(n-1) */ 1.213 + { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1.214 + 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; 1.215 + 1.216 +static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ 1.217 + { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, 1.218 + ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, 1.219 + ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, 1.220 + ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; 1.221 + 1.222 +#endif /* AVOID_TABLES */ 1.223 + 1.224 + 1.225 +/* 1.226 + * Check for a restart marker & resynchronize decoder. 1.227 + * Returns FALSE if must suspend. 1.228 + */ 1.229 + 1.230 +LOCAL(boolean) 1.231 +process_restart (j_decompress_ptr cinfo) 1.232 +{ 1.233 + phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 1.234 + int ci; 1.235 + 1.236 + /* Throw away any unused bits remaining in bit buffer; */ 1.237 + /* include any full bytes in next_marker's count of discarded bytes */ 1.238 + cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; 1.239 + entropy->bitstate.bits_left = 0; 1.240 + 1.241 + /* Advance past the RSTn marker */ 1.242 + if (! (*cinfo->marker->read_restart_marker) (cinfo)) 1.243 + return FALSE; 1.244 + 1.245 + /* Re-initialize DC predictions to 0 */ 1.246 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) 1.247 + entropy->saved.last_dc_val[ci] = 0; 1.248 + /* Re-init EOB run count, too */ 1.249 + entropy->saved.EOBRUN = 0; 1.250 + 1.251 + /* Reset restart counter */ 1.252 + entropy->restarts_to_go = cinfo->restart_interval; 1.253 + 1.254 + /* Reset out-of-data flag, unless read_restart_marker left us smack up 1.255 + * against a marker. In that case we will end up treating the next data 1.256 + * segment as empty, and we can avoid producing bogus output pixels by 1.257 + * leaving the flag set. 1.258 + */ 1.259 + if (cinfo->unread_marker == 0) 1.260 + entropy->pub.insufficient_data = FALSE; 1.261 + 1.262 + return TRUE; 1.263 +} 1.264 + 1.265 + 1.266 +/* 1.267 + * Huffman MCU decoding. 1.268 + * Each of these routines decodes and returns one MCU's worth of 1.269 + * Huffman-compressed coefficients. 1.270 + * The coefficients are reordered from zigzag order into natural array order, 1.271 + * but are not dequantized. 1.272 + * 1.273 + * The i'th block of the MCU is stored into the block pointed to by 1.274 + * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. 1.275 + * 1.276 + * We return FALSE if data source requested suspension. In that case no 1.277 + * changes have been made to permanent state. (Exception: some output 1.278 + * coefficients may already have been assigned. This is harmless for 1.279 + * spectral selection, since we'll just re-assign them on the next call. 1.280 + * Successive approximation AC refinement has to be more careful, however.) 1.281 + */ 1.282 + 1.283 +/* 1.284 + * MCU decoding for DC initial scan (either spectral selection, 1.285 + * or first pass of successive approximation). 1.286 + */ 1.287 + 1.288 +METHODDEF(boolean) 1.289 +decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.290 +{ 1.291 + phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 1.292 + int Al = cinfo->Al; 1.293 + register int s, r; 1.294 + int blkn, ci; 1.295 + JBLOCKROW block; 1.296 + BITREAD_STATE_VARS; 1.297 + savable_state state; 1.298 + d_derived_tbl * tbl; 1.299 + jpeg_component_info * compptr; 1.300 + 1.301 + /* Process restart marker if needed; may have to suspend */ 1.302 + if (cinfo->restart_interval) { 1.303 + if (entropy->restarts_to_go == 0) 1.304 + if (! process_restart(cinfo)) 1.305 + return FALSE; 1.306 + } 1.307 + 1.308 + /* If we've run out of data, just leave the MCU set to zeroes. 1.309 + * This way, we return uniform gray for the remainder of the segment. 1.310 + */ 1.311 + if (! entropy->pub.insufficient_data) { 1.312 + 1.313 + /* Load up working state */ 1.314 + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 1.315 + ASSIGN_STATE(state, entropy->saved); 1.316 + 1.317 + /* Outer loop handles each block in the MCU */ 1.318 + 1.319 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.320 + block = MCU_data[blkn]; 1.321 + ci = cinfo->MCU_membership[blkn]; 1.322 + compptr = cinfo->cur_comp_info[ci]; 1.323 + tbl = entropy->derived_tbls[compptr->dc_tbl_no]; 1.324 + 1.325 + /* Decode a single block's worth of coefficients */ 1.326 + 1.327 + /* Section F.2.2.1: decode the DC coefficient difference */ 1.328 + HUFF_DECODE(s, br_state, tbl, return FALSE, label1); 1.329 + if (s) { 1.330 + CHECK_BIT_BUFFER(br_state, s, return FALSE); 1.331 + r = GET_BITS(s); 1.332 + s = HUFF_EXTEND(r, s); 1.333 + } 1.334 + 1.335 + /* Convert DC difference to actual value, update last_dc_val */ 1.336 + s += state.last_dc_val[ci]; 1.337 + state.last_dc_val[ci] = s; 1.338 + /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ 1.339 + (*block)[0] = (JCOEF) (s << Al); 1.340 + } 1.341 + 1.342 + /* Completed MCU, so update state */ 1.343 + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 1.344 + ASSIGN_STATE(entropy->saved, state); 1.345 + } 1.346 + 1.347 + /* Account for restart interval (no-op if not using restarts) */ 1.348 + entropy->restarts_to_go--; 1.349 + 1.350 + return TRUE; 1.351 +} 1.352 + 1.353 + 1.354 +/* 1.355 + * MCU decoding for AC initial scan (either spectral selection, 1.356 + * or first pass of successive approximation). 1.357 + */ 1.358 + 1.359 +METHODDEF(boolean) 1.360 +decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.361 +{ 1.362 + phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 1.363 + int Se = cinfo->Se; 1.364 + int Al = cinfo->Al; 1.365 + register int s, k, r; 1.366 + unsigned int EOBRUN; 1.367 + JBLOCKROW block; 1.368 + BITREAD_STATE_VARS; 1.369 + d_derived_tbl * tbl; 1.370 + 1.371 + /* Process restart marker if needed; may have to suspend */ 1.372 + if (cinfo->restart_interval) { 1.373 + if (entropy->restarts_to_go == 0) 1.374 + if (! process_restart(cinfo)) 1.375 + return FALSE; 1.376 + } 1.377 + 1.378 + /* If we've run out of data, just leave the MCU set to zeroes. 1.379 + * This way, we return uniform gray for the remainder of the segment. 1.380 + */ 1.381 + if (! entropy->pub.insufficient_data) { 1.382 + 1.383 + /* Load up working state. 1.384 + * We can avoid loading/saving bitread state if in an EOB run. 1.385 + */ 1.386 + EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ 1.387 + 1.388 + /* There is always only one block per MCU */ 1.389 + 1.390 + if (EOBRUN > 0) /* if it's a band of zeroes... */ 1.391 + EOBRUN--; /* ...process it now (we do nothing) */ 1.392 + else { 1.393 + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 1.394 + block = MCU_data[0]; 1.395 + tbl = entropy->ac_derived_tbl; 1.396 + 1.397 + for (k = cinfo->Ss; k <= Se; k++) { 1.398 + HUFF_DECODE(s, br_state, tbl, return FALSE, label2); 1.399 + r = s >> 4; 1.400 + s &= 15; 1.401 + if (s) { 1.402 + k += r; 1.403 + CHECK_BIT_BUFFER(br_state, s, return FALSE); 1.404 + r = GET_BITS(s); 1.405 + s = HUFF_EXTEND(r, s); 1.406 + /* Scale and output coefficient in natural (dezigzagged) order */ 1.407 + (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); 1.408 + } else { 1.409 + if (r == 15) { /* ZRL */ 1.410 + k += 15; /* skip 15 zeroes in band */ 1.411 + } else { /* EOBr, run length is 2^r + appended bits */ 1.412 + EOBRUN = 1 << r; 1.413 + if (r) { /* EOBr, r > 0 */ 1.414 + CHECK_BIT_BUFFER(br_state, r, return FALSE); 1.415 + r = GET_BITS(r); 1.416 + EOBRUN += r; 1.417 + } 1.418 + EOBRUN--; /* this band is processed at this moment */ 1.419 + break; /* force end-of-band */ 1.420 + } 1.421 + } 1.422 + } 1.423 + 1.424 + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 1.425 + } 1.426 + 1.427 + /* Completed MCU, so update state */ 1.428 + entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ 1.429 + } 1.430 + 1.431 + /* Account for restart interval (no-op if not using restarts) */ 1.432 + entropy->restarts_to_go--; 1.433 + 1.434 + return TRUE; 1.435 +} 1.436 + 1.437 + 1.438 +/* 1.439 + * MCU decoding for DC successive approximation refinement scan. 1.440 + * Note: we assume such scans can be multi-component, although the spec 1.441 + * is not very clear on the point. 1.442 + */ 1.443 + 1.444 +METHODDEF(boolean) 1.445 +decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.446 +{ 1.447 + phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 1.448 + int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 1.449 + int blkn; 1.450 + JBLOCKROW block; 1.451 + BITREAD_STATE_VARS; 1.452 + 1.453 + /* Process restart marker if needed; may have to suspend */ 1.454 + if (cinfo->restart_interval) { 1.455 + if (entropy->restarts_to_go == 0) 1.456 + if (! process_restart(cinfo)) 1.457 + return FALSE; 1.458 + } 1.459 + 1.460 + /* Not worth the cycles to check insufficient_data here, 1.461 + * since we will not change the data anyway if we read zeroes. 1.462 + */ 1.463 + 1.464 + /* Load up working state */ 1.465 + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 1.466 + 1.467 + /* Outer loop handles each block in the MCU */ 1.468 + 1.469 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.470 + block = MCU_data[blkn]; 1.471 + 1.472 + /* Encoded data is simply the next bit of the two's-complement DC value */ 1.473 + CHECK_BIT_BUFFER(br_state, 1, return FALSE); 1.474 + if (GET_BITS(1)) 1.475 + (*block)[0] |= p1; 1.476 + /* Note: since we use |=, repeating the assignment later is safe */ 1.477 + } 1.478 + 1.479 + /* Completed MCU, so update state */ 1.480 + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 1.481 + 1.482 + /* Account for restart interval (no-op if not using restarts) */ 1.483 + entropy->restarts_to_go--; 1.484 + 1.485 + return TRUE; 1.486 +} 1.487 + 1.488 + 1.489 +/* 1.490 + * MCU decoding for AC successive approximation refinement scan. 1.491 + */ 1.492 + 1.493 +METHODDEF(boolean) 1.494 +decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.495 +{ 1.496 + phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 1.497 + int Se = cinfo->Se; 1.498 + int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 1.499 + int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ 1.500 + register int s, k, r; 1.501 + unsigned int EOBRUN; 1.502 + JBLOCKROW block; 1.503 + JCOEFPTR thiscoef; 1.504 + BITREAD_STATE_VARS; 1.505 + d_derived_tbl * tbl; 1.506 + int num_newnz; 1.507 + int newnz_pos[DCTSIZE2]; 1.508 + 1.509 + /* Process restart marker if needed; may have to suspend */ 1.510 + if (cinfo->restart_interval) { 1.511 + if (entropy->restarts_to_go == 0) 1.512 + if (! process_restart(cinfo)) 1.513 + return FALSE; 1.514 + } 1.515 + 1.516 + /* If we've run out of data, don't modify the MCU. 1.517 + */ 1.518 + if (! entropy->pub.insufficient_data) { 1.519 + 1.520 + /* Load up working state */ 1.521 + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 1.522 + EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ 1.523 + 1.524 + /* There is always only one block per MCU */ 1.525 + block = MCU_data[0]; 1.526 + tbl = entropy->ac_derived_tbl; 1.527 + 1.528 + /* If we are forced to suspend, we must undo the assignments to any newly 1.529 + * nonzero coefficients in the block, because otherwise we'd get confused 1.530 + * next time about which coefficients were already nonzero. 1.531 + * But we need not undo addition of bits to already-nonzero coefficients; 1.532 + * instead, we can test the current bit to see if we already did it. 1.533 + */ 1.534 + num_newnz = 0; 1.535 + 1.536 + /* initialize coefficient loop counter to start of band */ 1.537 + k = cinfo->Ss; 1.538 + 1.539 + if (EOBRUN == 0) { 1.540 + for (; k <= Se; k++) { 1.541 + HUFF_DECODE(s, br_state, tbl, goto undoit, label3); 1.542 + r = s >> 4; 1.543 + s &= 15; 1.544 + if (s) { 1.545 + if (s != 1) /* size of new coef should always be 1 */ 1.546 + WARNMS(cinfo, JWRN_HUFF_BAD_CODE); 1.547 + CHECK_BIT_BUFFER(br_state, 1, goto undoit); 1.548 + if (GET_BITS(1)) 1.549 + s = p1; /* newly nonzero coef is positive */ 1.550 + else 1.551 + s = m1; /* newly nonzero coef is negative */ 1.552 + } else { 1.553 + if (r != 15) { 1.554 + EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ 1.555 + if (r) { 1.556 + CHECK_BIT_BUFFER(br_state, r, goto undoit); 1.557 + r = GET_BITS(r); 1.558 + EOBRUN += r; 1.559 + } 1.560 + break; /* rest of block is handled by EOB logic */ 1.561 + } 1.562 + /* note s = 0 for processing ZRL */ 1.563 + } 1.564 + /* Advance over already-nonzero coefs and r still-zero coefs, 1.565 + * appending correction bits to the nonzeroes. A correction bit is 1 1.566 + * if the absolute value of the coefficient must be increased. 1.567 + */ 1.568 + do { 1.569 + thiscoef = *block + jpeg_natural_order[k]; 1.570 + if (*thiscoef != 0) { 1.571 + CHECK_BIT_BUFFER(br_state, 1, goto undoit); 1.572 + if (GET_BITS(1)) { 1.573 + if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ 1.574 + if (*thiscoef >= 0) 1.575 + *thiscoef += p1; 1.576 + else 1.577 + *thiscoef += m1; 1.578 + } 1.579 + } 1.580 + } else { 1.581 + if (--r < 0) 1.582 + break; /* reached target zero coefficient */ 1.583 + } 1.584 + k++; 1.585 + } while (k <= Se); 1.586 + if (s) { 1.587 + int pos = jpeg_natural_order[k]; 1.588 + /* Output newly nonzero coefficient */ 1.589 + (*block)[pos] = (JCOEF) s; 1.590 + /* Remember its position in case we have to suspend */ 1.591 + newnz_pos[num_newnz++] = pos; 1.592 + } 1.593 + } 1.594 + } 1.595 + 1.596 + if (EOBRUN > 0) { 1.597 + /* Scan any remaining coefficient positions after the end-of-band 1.598 + * (the last newly nonzero coefficient, if any). Append a correction 1.599 + * bit to each already-nonzero coefficient. A correction bit is 1 1.600 + * if the absolute value of the coefficient must be increased. 1.601 + */ 1.602 + for (; k <= Se; k++) { 1.603 + thiscoef = *block + jpeg_natural_order[k]; 1.604 + if (*thiscoef != 0) { 1.605 + CHECK_BIT_BUFFER(br_state, 1, goto undoit); 1.606 + if (GET_BITS(1)) { 1.607 + if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ 1.608 + if (*thiscoef >= 0) 1.609 + *thiscoef += p1; 1.610 + else 1.611 + *thiscoef += m1; 1.612 + } 1.613 + } 1.614 + } 1.615 + } 1.616 + /* Count one block completed in EOB run */ 1.617 + EOBRUN--; 1.618 + } 1.619 + 1.620 + /* Completed MCU, so update state */ 1.621 + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 1.622 + entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ 1.623 + } 1.624 + 1.625 + /* Account for restart interval (no-op if not using restarts) */ 1.626 + entropy->restarts_to_go--; 1.627 + 1.628 + return TRUE; 1.629 + 1.630 +undoit: 1.631 + /* Re-zero any output coefficients that we made newly nonzero */ 1.632 + while (num_newnz > 0) 1.633 + (*block)[newnz_pos[--num_newnz]] = 0; 1.634 + 1.635 + return FALSE; 1.636 +} 1.637 + 1.638 + 1.639 +/* 1.640 + * Module initialization routine for progressive Huffman entropy decoding. 1.641 + */ 1.642 + 1.643 +GLOBAL(void) 1.644 +jinit_phuff_decoder (j_decompress_ptr cinfo) 1.645 +{ 1.646 + phuff_entropy_ptr entropy; 1.647 + int *coef_bit_ptr; 1.648 + int ci, i; 1.649 + 1.650 + entropy = (phuff_entropy_ptr) 1.651 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.652 + SIZEOF(phuff_entropy_decoder)); 1.653 + cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; 1.654 + entropy->pub.start_pass = start_pass_phuff_decoder; 1.655 + 1.656 + /* Mark derived tables unallocated */ 1.657 + for (i = 0; i < NUM_HUFF_TBLS; i++) { 1.658 + entropy->derived_tbls[i] = NULL; 1.659 + } 1.660 + 1.661 + /* Create progression status table */ 1.662 + cinfo->coef_bits = (int (*)[DCTSIZE2]) 1.663 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.664 + cinfo->num_components*DCTSIZE2*SIZEOF(int)); 1.665 + coef_bit_ptr = & cinfo->coef_bits[0][0]; 1.666 + for (ci = 0; ci < cinfo->num_components; ci++) 1.667 + for (i = 0; i < DCTSIZE2; i++) 1.668 + *coef_bit_ptr++ = -1; 1.669 +} 1.670 + 1.671 +#endif /* D_PROGRESSIVE_SUPPORTED */