dbf-halloween2015
diff libs/libjpeg/jdmainct.c @ 1:c3f5c32cb210
barfed all the libraries in the source tree to make porting easier
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 01 Nov 2015 00:36:56 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jdmainct.c Sun Nov 01 00:36:56 2015 +0200 1.3 @@ -0,0 +1,512 @@ 1.4 +/* 1.5 + * jdmainct.c 1.6 + * 1.7 + * Copyright (C) 1994-1996, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains the main buffer controller for decompression. 1.12 + * The main buffer lies between the JPEG decompressor proper and the 1.13 + * post-processor; it holds downsampled data in the JPEG colorspace. 1.14 + * 1.15 + * Note that this code is bypassed in raw-data mode, since the application 1.16 + * supplies the equivalent of the main buffer in that case. 1.17 + */ 1.18 + 1.19 +#define JPEG_INTERNALS 1.20 +#include "jinclude.h" 1.21 +#include "jpeglib.h" 1.22 + 1.23 + 1.24 +/* 1.25 + * In the current system design, the main buffer need never be a full-image 1.26 + * buffer; any full-height buffers will be found inside the coefficient or 1.27 + * postprocessing controllers. Nonetheless, the main controller is not 1.28 + * trivial. Its responsibility is to provide context rows for upsampling/ 1.29 + * rescaling, and doing this in an efficient fashion is a bit tricky. 1.30 + * 1.31 + * Postprocessor input data is counted in "row groups". A row group 1.32 + * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) 1.33 + * sample rows of each component. (We require DCT_scaled_size values to be 1.34 + * chosen such that these numbers are integers. In practice DCT_scaled_size 1.35 + * values will likely be powers of two, so we actually have the stronger 1.36 + * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) 1.37 + * Upsampling will typically produce max_v_samp_factor pixel rows from each 1.38 + * row group (times any additional scale factor that the upsampler is 1.39 + * applying). 1.40 + * 1.41 + * The coefficient controller will deliver data to us one iMCU row at a time; 1.42 + * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or 1.43 + * exactly min_DCT_scaled_size row groups. (This amount of data corresponds 1.44 + * to one row of MCUs when the image is fully interleaved.) Note that the 1.45 + * number of sample rows varies across components, but the number of row 1.46 + * groups does not. Some garbage sample rows may be included in the last iMCU 1.47 + * row at the bottom of the image. 1.48 + * 1.49 + * Depending on the vertical scaling algorithm used, the upsampler may need 1.50 + * access to the sample row(s) above and below its current input row group. 1.51 + * The upsampler is required to set need_context_rows TRUE at global selection 1.52 + * time if so. When need_context_rows is FALSE, this controller can simply 1.53 + * obtain one iMCU row at a time from the coefficient controller and dole it 1.54 + * out as row groups to the postprocessor. 1.55 + * 1.56 + * When need_context_rows is TRUE, this controller guarantees that the buffer 1.57 + * passed to postprocessing contains at least one row group's worth of samples 1.58 + * above and below the row group(s) being processed. Note that the context 1.59 + * rows "above" the first passed row group appear at negative row offsets in 1.60 + * the passed buffer. At the top and bottom of the image, the required 1.61 + * context rows are manufactured by duplicating the first or last real sample 1.62 + * row; this avoids having special cases in the upsampling inner loops. 1.63 + * 1.64 + * The amount of context is fixed at one row group just because that's a 1.65 + * convenient number for this controller to work with. The existing 1.66 + * upsamplers really only need one sample row of context. An upsampler 1.67 + * supporting arbitrary output rescaling might wish for more than one row 1.68 + * group of context when shrinking the image; tough, we don't handle that. 1.69 + * (This is justified by the assumption that downsizing will be handled mostly 1.70 + * by adjusting the DCT_scaled_size values, so that the actual scale factor at 1.71 + * the upsample step needn't be much less than one.) 1.72 + * 1.73 + * To provide the desired context, we have to retain the last two row groups 1.74 + * of one iMCU row while reading in the next iMCU row. (The last row group 1.75 + * can't be processed until we have another row group for its below-context, 1.76 + * and so we have to save the next-to-last group too for its above-context.) 1.77 + * We could do this most simply by copying data around in our buffer, but 1.78 + * that'd be very slow. We can avoid copying any data by creating a rather 1.79 + * strange pointer structure. Here's how it works. We allocate a workspace 1.80 + * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number 1.81 + * of row groups per iMCU row). We create two sets of redundant pointers to 1.82 + * the workspace. Labeling the physical row groups 0 to M+1, the synthesized 1.83 + * pointer lists look like this: 1.84 + * M+1 M-1 1.85 + * master pointer --> 0 master pointer --> 0 1.86 + * 1 1 1.87 + * ... ... 1.88 + * M-3 M-3 1.89 + * M-2 M 1.90 + * M-1 M+1 1.91 + * M M-2 1.92 + * M+1 M-1 1.93 + * 0 0 1.94 + * We read alternate iMCU rows using each master pointer; thus the last two 1.95 + * row groups of the previous iMCU row remain un-overwritten in the workspace. 1.96 + * The pointer lists are set up so that the required context rows appear to 1.97 + * be adjacent to the proper places when we pass the pointer lists to the 1.98 + * upsampler. 1.99 + * 1.100 + * The above pictures describe the normal state of the pointer lists. 1.101 + * At top and bottom of the image, we diddle the pointer lists to duplicate 1.102 + * the first or last sample row as necessary (this is cheaper than copying 1.103 + * sample rows around). 1.104 + * 1.105 + * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that 1.106 + * situation each iMCU row provides only one row group so the buffering logic 1.107 + * must be different (eg, we must read two iMCU rows before we can emit the 1.108 + * first row group). For now, we simply do not support providing context 1.109 + * rows when min_DCT_scaled_size is 1. That combination seems unlikely to 1.110 + * be worth providing --- if someone wants a 1/8th-size preview, they probably 1.111 + * want it quick and dirty, so a context-free upsampler is sufficient. 1.112 + */ 1.113 + 1.114 + 1.115 +/* Private buffer controller object */ 1.116 + 1.117 +typedef struct { 1.118 + struct jpeg_d_main_controller pub; /* public fields */ 1.119 + 1.120 + /* Pointer to allocated workspace (M or M+2 row groups). */ 1.121 + JSAMPARRAY buffer[MAX_COMPONENTS]; 1.122 + 1.123 + boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ 1.124 + JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ 1.125 + 1.126 + /* Remaining fields are only used in the context case. */ 1.127 + 1.128 + /* These are the master pointers to the funny-order pointer lists. */ 1.129 + JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ 1.130 + 1.131 + int whichptr; /* indicates which pointer set is now in use */ 1.132 + int context_state; /* process_data state machine status */ 1.133 + JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ 1.134 + JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ 1.135 +} my_main_controller; 1.136 + 1.137 +typedef my_main_controller * my_main_ptr; 1.138 + 1.139 +/* context_state values: */ 1.140 +#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ 1.141 +#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ 1.142 +#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ 1.143 + 1.144 + 1.145 +/* Forward declarations */ 1.146 +METHODDEF(void) process_data_simple_main 1.147 + JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, 1.148 + JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); 1.149 +METHODDEF(void) process_data_context_main 1.150 + JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, 1.151 + JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); 1.152 +#ifdef QUANT_2PASS_SUPPORTED 1.153 +METHODDEF(void) process_data_crank_post 1.154 + JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, 1.155 + JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); 1.156 +#endif 1.157 + 1.158 + 1.159 +LOCAL(void) 1.160 +alloc_funny_pointers (j_decompress_ptr cinfo) 1.161 +/* Allocate space for the funny pointer lists. 1.162 + * This is done only once, not once per pass. 1.163 + */ 1.164 +{ 1.165 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.166 + int ci, rgroup; 1.167 + int M = cinfo->min_DCT_scaled_size; 1.168 + jpeg_component_info *compptr; 1.169 + JSAMPARRAY xbuf; 1.170 + 1.171 + /* Get top-level space for component array pointers. 1.172 + * We alloc both arrays with one call to save a few cycles. 1.173 + */ 1.174 + main->xbuffer[0] = (JSAMPIMAGE) 1.175 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.176 + cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); 1.177 + main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components; 1.178 + 1.179 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.180 + ci++, compptr++) { 1.181 + rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / 1.182 + cinfo->min_DCT_scaled_size; /* height of a row group of component */ 1.183 + /* Get space for pointer lists --- M+4 row groups in each list. 1.184 + * We alloc both pointer lists with one call to save a few cycles. 1.185 + */ 1.186 + xbuf = (JSAMPARRAY) 1.187 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.188 + 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); 1.189 + xbuf += rgroup; /* want one row group at negative offsets */ 1.190 + main->xbuffer[0][ci] = xbuf; 1.191 + xbuf += rgroup * (M + 4); 1.192 + main->xbuffer[1][ci] = xbuf; 1.193 + } 1.194 +} 1.195 + 1.196 + 1.197 +LOCAL(void) 1.198 +make_funny_pointers (j_decompress_ptr cinfo) 1.199 +/* Create the funny pointer lists discussed in the comments above. 1.200 + * The actual workspace is already allocated (in main->buffer), 1.201 + * and the space for the pointer lists is allocated too. 1.202 + * This routine just fills in the curiously ordered lists. 1.203 + * This will be repeated at the beginning of each pass. 1.204 + */ 1.205 +{ 1.206 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.207 + int ci, i, rgroup; 1.208 + int M = cinfo->min_DCT_scaled_size; 1.209 + jpeg_component_info *compptr; 1.210 + JSAMPARRAY buf, xbuf0, xbuf1; 1.211 + 1.212 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.213 + ci++, compptr++) { 1.214 + rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / 1.215 + cinfo->min_DCT_scaled_size; /* height of a row group of component */ 1.216 + xbuf0 = main->xbuffer[0][ci]; 1.217 + xbuf1 = main->xbuffer[1][ci]; 1.218 + /* First copy the workspace pointers as-is */ 1.219 + buf = main->buffer[ci]; 1.220 + for (i = 0; i < rgroup * (M + 2); i++) { 1.221 + xbuf0[i] = xbuf1[i] = buf[i]; 1.222 + } 1.223 + /* In the second list, put the last four row groups in swapped order */ 1.224 + for (i = 0; i < rgroup * 2; i++) { 1.225 + xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; 1.226 + xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; 1.227 + } 1.228 + /* The wraparound pointers at top and bottom will be filled later 1.229 + * (see set_wraparound_pointers, below). Initially we want the "above" 1.230 + * pointers to duplicate the first actual data line. This only needs 1.231 + * to happen in xbuffer[0]. 1.232 + */ 1.233 + for (i = 0; i < rgroup; i++) { 1.234 + xbuf0[i - rgroup] = xbuf0[0]; 1.235 + } 1.236 + } 1.237 +} 1.238 + 1.239 + 1.240 +LOCAL(void) 1.241 +set_wraparound_pointers (j_decompress_ptr cinfo) 1.242 +/* Set up the "wraparound" pointers at top and bottom of the pointer lists. 1.243 + * This changes the pointer list state from top-of-image to the normal state. 1.244 + */ 1.245 +{ 1.246 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.247 + int ci, i, rgroup; 1.248 + int M = cinfo->min_DCT_scaled_size; 1.249 + jpeg_component_info *compptr; 1.250 + JSAMPARRAY xbuf0, xbuf1; 1.251 + 1.252 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.253 + ci++, compptr++) { 1.254 + rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / 1.255 + cinfo->min_DCT_scaled_size; /* height of a row group of component */ 1.256 + xbuf0 = main->xbuffer[0][ci]; 1.257 + xbuf1 = main->xbuffer[1][ci]; 1.258 + for (i = 0; i < rgroup; i++) { 1.259 + xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; 1.260 + xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; 1.261 + xbuf0[rgroup*(M+2) + i] = xbuf0[i]; 1.262 + xbuf1[rgroup*(M+2) + i] = xbuf1[i]; 1.263 + } 1.264 + } 1.265 +} 1.266 + 1.267 + 1.268 +LOCAL(void) 1.269 +set_bottom_pointers (j_decompress_ptr cinfo) 1.270 +/* Change the pointer lists to duplicate the last sample row at the bottom 1.271 + * of the image. whichptr indicates which xbuffer holds the final iMCU row. 1.272 + * Also sets rowgroups_avail to indicate number of nondummy row groups in row. 1.273 + */ 1.274 +{ 1.275 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.276 + int ci, i, rgroup, iMCUheight, rows_left; 1.277 + jpeg_component_info *compptr; 1.278 + JSAMPARRAY xbuf; 1.279 + 1.280 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.281 + ci++, compptr++) { 1.282 + /* Count sample rows in one iMCU row and in one row group */ 1.283 + iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size; 1.284 + rgroup = iMCUheight / cinfo->min_DCT_scaled_size; 1.285 + /* Count nondummy sample rows remaining for this component */ 1.286 + rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); 1.287 + if (rows_left == 0) rows_left = iMCUheight; 1.288 + /* Count nondummy row groups. Should get same answer for each component, 1.289 + * so we need only do it once. 1.290 + */ 1.291 + if (ci == 0) { 1.292 + main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); 1.293 + } 1.294 + /* Duplicate the last real sample row rgroup*2 times; this pads out the 1.295 + * last partial rowgroup and ensures at least one full rowgroup of context. 1.296 + */ 1.297 + xbuf = main->xbuffer[main->whichptr][ci]; 1.298 + for (i = 0; i < rgroup * 2; i++) { 1.299 + xbuf[rows_left + i] = xbuf[rows_left-1]; 1.300 + } 1.301 + } 1.302 +} 1.303 + 1.304 + 1.305 +/* 1.306 + * Initialize for a processing pass. 1.307 + */ 1.308 + 1.309 +METHODDEF(void) 1.310 +start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) 1.311 +{ 1.312 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.313 + 1.314 + switch (pass_mode) { 1.315 + case JBUF_PASS_THRU: 1.316 + if (cinfo->upsample->need_context_rows) { 1.317 + main->pub.process_data = process_data_context_main; 1.318 + make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ 1.319 + main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ 1.320 + main->context_state = CTX_PREPARE_FOR_IMCU; 1.321 + main->iMCU_row_ctr = 0; 1.322 + } else { 1.323 + /* Simple case with no context needed */ 1.324 + main->pub.process_data = process_data_simple_main; 1.325 + } 1.326 + main->buffer_full = FALSE; /* Mark buffer empty */ 1.327 + main->rowgroup_ctr = 0; 1.328 + break; 1.329 +#ifdef QUANT_2PASS_SUPPORTED 1.330 + case JBUF_CRANK_DEST: 1.331 + /* For last pass of 2-pass quantization, just crank the postprocessor */ 1.332 + main->pub.process_data = process_data_crank_post; 1.333 + break; 1.334 +#endif 1.335 + default: 1.336 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.337 + break; 1.338 + } 1.339 +} 1.340 + 1.341 + 1.342 +/* 1.343 + * Process some data. 1.344 + * This handles the simple case where no context is required. 1.345 + */ 1.346 + 1.347 +METHODDEF(void) 1.348 +process_data_simple_main (j_decompress_ptr cinfo, 1.349 + JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, 1.350 + JDIMENSION out_rows_avail) 1.351 +{ 1.352 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.353 + JDIMENSION rowgroups_avail; 1.354 + 1.355 + /* Read input data if we haven't filled the main buffer yet */ 1.356 + if (! main->buffer_full) { 1.357 + if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer)) 1.358 + return; /* suspension forced, can do nothing more */ 1.359 + main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ 1.360 + } 1.361 + 1.362 + /* There are always min_DCT_scaled_size row groups in an iMCU row. */ 1.363 + rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size; 1.364 + /* Note: at the bottom of the image, we may pass extra garbage row groups 1.365 + * to the postprocessor. The postprocessor has to check for bottom 1.366 + * of image anyway (at row resolution), so no point in us doing it too. 1.367 + */ 1.368 + 1.369 + /* Feed the postprocessor */ 1.370 + (*cinfo->post->post_process_data) (cinfo, main->buffer, 1.371 + &main->rowgroup_ctr, rowgroups_avail, 1.372 + output_buf, out_row_ctr, out_rows_avail); 1.373 + 1.374 + /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ 1.375 + if (main->rowgroup_ctr >= rowgroups_avail) { 1.376 + main->buffer_full = FALSE; 1.377 + main->rowgroup_ctr = 0; 1.378 + } 1.379 +} 1.380 + 1.381 + 1.382 +/* 1.383 + * Process some data. 1.384 + * This handles the case where context rows must be provided. 1.385 + */ 1.386 + 1.387 +METHODDEF(void) 1.388 +process_data_context_main (j_decompress_ptr cinfo, 1.389 + JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, 1.390 + JDIMENSION out_rows_avail) 1.391 +{ 1.392 + my_main_ptr main = (my_main_ptr) cinfo->main; 1.393 + 1.394 + /* Read input data if we haven't filled the main buffer yet */ 1.395 + if (! main->buffer_full) { 1.396 + if (! (*cinfo->coef->decompress_data) (cinfo, 1.397 + main->xbuffer[main->whichptr])) 1.398 + return; /* suspension forced, can do nothing more */ 1.399 + main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ 1.400 + main->iMCU_row_ctr++; /* count rows received */ 1.401 + } 1.402 + 1.403 + /* Postprocessor typically will not swallow all the input data it is handed 1.404 + * in one call (due to filling the output buffer first). Must be prepared 1.405 + * to exit and restart. This switch lets us keep track of how far we got. 1.406 + * Note that each case falls through to the next on successful completion. 1.407 + */ 1.408 + switch (main->context_state) { 1.409 + case CTX_POSTPONED_ROW: 1.410 + /* Call postprocessor using previously set pointers for postponed row */ 1.411 + (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr], 1.412 + &main->rowgroup_ctr, main->rowgroups_avail, 1.413 + output_buf, out_row_ctr, out_rows_avail); 1.414 + if (main->rowgroup_ctr < main->rowgroups_avail) 1.415 + return; /* Need to suspend */ 1.416 + main->context_state = CTX_PREPARE_FOR_IMCU; 1.417 + if (*out_row_ctr >= out_rows_avail) 1.418 + return; /* Postprocessor exactly filled output buf */ 1.419 + /*FALLTHROUGH*/ 1.420 + case CTX_PREPARE_FOR_IMCU: 1.421 + /* Prepare to process first M-1 row groups of this iMCU row */ 1.422 + main->rowgroup_ctr = 0; 1.423 + main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1); 1.424 + /* Check for bottom of image: if so, tweak pointers to "duplicate" 1.425 + * the last sample row, and adjust rowgroups_avail to ignore padding rows. 1.426 + */ 1.427 + if (main->iMCU_row_ctr == cinfo->total_iMCU_rows) 1.428 + set_bottom_pointers(cinfo); 1.429 + main->context_state = CTX_PROCESS_IMCU; 1.430 + /*FALLTHROUGH*/ 1.431 + case CTX_PROCESS_IMCU: 1.432 + /* Call postprocessor using previously set pointers */ 1.433 + (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr], 1.434 + &main->rowgroup_ctr, main->rowgroups_avail, 1.435 + output_buf, out_row_ctr, out_rows_avail); 1.436 + if (main->rowgroup_ctr < main->rowgroups_avail) 1.437 + return; /* Need to suspend */ 1.438 + /* After the first iMCU, change wraparound pointers to normal state */ 1.439 + if (main->iMCU_row_ctr == 1) 1.440 + set_wraparound_pointers(cinfo); 1.441 + /* Prepare to load new iMCU row using other xbuffer list */ 1.442 + main->whichptr ^= 1; /* 0=>1 or 1=>0 */ 1.443 + main->buffer_full = FALSE; 1.444 + /* Still need to process last row group of this iMCU row, */ 1.445 + /* which is saved at index M+1 of the other xbuffer */ 1.446 + main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1); 1.447 + main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2); 1.448 + main->context_state = CTX_POSTPONED_ROW; 1.449 + } 1.450 +} 1.451 + 1.452 + 1.453 +/* 1.454 + * Process some data. 1.455 + * Final pass of two-pass quantization: just call the postprocessor. 1.456 + * Source data will be the postprocessor controller's internal buffer. 1.457 + */ 1.458 + 1.459 +#ifdef QUANT_2PASS_SUPPORTED 1.460 + 1.461 +METHODDEF(void) 1.462 +process_data_crank_post (j_decompress_ptr cinfo, 1.463 + JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, 1.464 + JDIMENSION out_rows_avail) 1.465 +{ 1.466 + (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, 1.467 + (JDIMENSION *) NULL, (JDIMENSION) 0, 1.468 + output_buf, out_row_ctr, out_rows_avail); 1.469 +} 1.470 + 1.471 +#endif /* QUANT_2PASS_SUPPORTED */ 1.472 + 1.473 + 1.474 +/* 1.475 + * Initialize main buffer controller. 1.476 + */ 1.477 + 1.478 +GLOBAL(void) 1.479 +jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) 1.480 +{ 1.481 + my_main_ptr main; 1.482 + int ci, rgroup, ngroups; 1.483 + jpeg_component_info *compptr; 1.484 + 1.485 + main = (my_main_ptr) 1.486 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.487 + SIZEOF(my_main_controller)); 1.488 + cinfo->main = (struct jpeg_d_main_controller *) main; 1.489 + main->pub.start_pass = start_pass_main; 1.490 + 1.491 + if (need_full_buffer) /* shouldn't happen */ 1.492 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.493 + 1.494 + /* Allocate the workspace. 1.495 + * ngroups is the number of row groups we need. 1.496 + */ 1.497 + if (cinfo->upsample->need_context_rows) { 1.498 + if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */ 1.499 + ERREXIT(cinfo, JERR_NOTIMPL); 1.500 + alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ 1.501 + ngroups = cinfo->min_DCT_scaled_size + 2; 1.502 + } else { 1.503 + ngroups = cinfo->min_DCT_scaled_size; 1.504 + } 1.505 + 1.506 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.507 + ci++, compptr++) { 1.508 + rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) / 1.509 + cinfo->min_DCT_scaled_size; /* height of a row group of component */ 1.510 + main->buffer[ci] = (*cinfo->mem->alloc_sarray) 1.511 + ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.512 + compptr->width_in_blocks * compptr->DCT_scaled_size, 1.513 + (JDIMENSION) (rgroup * ngroups)); 1.514 + } 1.515 +}