dbf-halloween2015
diff libs/libjpeg/jdhuff.c @ 1:c3f5c32cb210
barfed all the libraries in the source tree to make porting easier
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 01 Nov 2015 00:36:56 +0200 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jdhuff.c Sun Nov 01 00:36:56 2015 +0200 1.3 @@ -0,0 +1,651 @@ 1.4 +/* 1.5 + * jdhuff.c 1.6 + * 1.7 + * Copyright (C) 1991-1997, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains Huffman entropy decoding routines. 1.12 + * 1.13 + * Much of the complexity here has to do with supporting input suspension. 1.14 + * If the data source module demands suspension, we want to be able to back 1.15 + * up to the start of the current MCU. To do this, we copy state variables 1.16 + * into local working storage, and update them back to the permanent 1.17 + * storage only upon successful completion of an MCU. 1.18 + */ 1.19 + 1.20 +#define JPEG_INTERNALS 1.21 +#include "jinclude.h" 1.22 +#include "jpeglib.h" 1.23 +#include "jdhuff.h" /* Declarations shared with jdphuff.c */ 1.24 + 1.25 + 1.26 +/* 1.27 + * Expanded entropy decoder object for Huffman decoding. 1.28 + * 1.29 + * The savable_state subrecord contains fields that change within an MCU, 1.30 + * but must not be updated permanently until we complete the MCU. 1.31 + */ 1.32 + 1.33 +typedef struct { 1.34 + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 1.35 +} savable_state; 1.36 + 1.37 +/* This macro is to work around compilers with missing or broken 1.38 + * structure assignment. You'll need to fix this code if you have 1.39 + * such a compiler and you change MAX_COMPS_IN_SCAN. 1.40 + */ 1.41 + 1.42 +#ifndef NO_STRUCT_ASSIGN 1.43 +#define ASSIGN_STATE(dest,src) ((dest) = (src)) 1.44 +#else 1.45 +#if MAX_COMPS_IN_SCAN == 4 1.46 +#define ASSIGN_STATE(dest,src) \ 1.47 + ((dest).last_dc_val[0] = (src).last_dc_val[0], \ 1.48 + (dest).last_dc_val[1] = (src).last_dc_val[1], \ 1.49 + (dest).last_dc_val[2] = (src).last_dc_val[2], \ 1.50 + (dest).last_dc_val[3] = (src).last_dc_val[3]) 1.51 +#endif 1.52 +#endif 1.53 + 1.54 + 1.55 +typedef struct { 1.56 + struct jpeg_entropy_decoder pub; /* public fields */ 1.57 + 1.58 + /* These fields are loaded into local variables at start of each MCU. 1.59 + * In case of suspension, we exit WITHOUT updating them. 1.60 + */ 1.61 + bitread_perm_state bitstate; /* Bit buffer at start of MCU */ 1.62 + savable_state saved; /* Other state at start of MCU */ 1.63 + 1.64 + /* These fields are NOT loaded into local working state. */ 1.65 + unsigned int restarts_to_go; /* MCUs left in this restart interval */ 1.66 + 1.67 + /* Pointers to derived tables (these workspaces have image lifespan) */ 1.68 + d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; 1.69 + d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; 1.70 + 1.71 + /* Precalculated info set up by start_pass for use in decode_mcu: */ 1.72 + 1.73 + /* Pointers to derived tables to be used for each block within an MCU */ 1.74 + d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 1.75 + d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 1.76 + /* Whether we care about the DC and AC coefficient values for each block */ 1.77 + boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; 1.78 + boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; 1.79 +} huff_entropy_decoder; 1.80 + 1.81 +typedef huff_entropy_decoder * huff_entropy_ptr; 1.82 + 1.83 + 1.84 +/* 1.85 + * Initialize for a Huffman-compressed scan. 1.86 + */ 1.87 + 1.88 +METHODDEF(void) 1.89 +start_pass_huff_decoder (j_decompress_ptr cinfo) 1.90 +{ 1.91 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.92 + int ci, blkn, dctbl, actbl; 1.93 + jpeg_component_info * compptr; 1.94 + 1.95 + /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 1.96 + * This ought to be an error condition, but we make it a warning because 1.97 + * there are some baseline files out there with all zeroes in these bytes. 1.98 + */ 1.99 + if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || 1.100 + cinfo->Ah != 0 || cinfo->Al != 0) 1.101 + WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 1.102 + 1.103 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.104 + compptr = cinfo->cur_comp_info[ci]; 1.105 + dctbl = compptr->dc_tbl_no; 1.106 + actbl = compptr->ac_tbl_no; 1.107 + /* Compute derived values for Huffman tables */ 1.108 + /* We may do this more than once for a table, but it's not expensive */ 1.109 + jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, 1.110 + & entropy->dc_derived_tbls[dctbl]); 1.111 + jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, 1.112 + & entropy->ac_derived_tbls[actbl]); 1.113 + /* Initialize DC predictions to 0 */ 1.114 + entropy->saved.last_dc_val[ci] = 0; 1.115 + } 1.116 + 1.117 + /* Precalculate decoding info for each block in an MCU of this scan */ 1.118 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.119 + ci = cinfo->MCU_membership[blkn]; 1.120 + compptr = cinfo->cur_comp_info[ci]; 1.121 + /* Precalculate which table to use for each block */ 1.122 + entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; 1.123 + entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; 1.124 + /* Decide whether we really care about the coefficient values */ 1.125 + if (compptr->component_needed) { 1.126 + entropy->dc_needed[blkn] = TRUE; 1.127 + /* we don't need the ACs if producing a 1/8th-size image */ 1.128 + entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); 1.129 + } else { 1.130 + entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; 1.131 + } 1.132 + } 1.133 + 1.134 + /* Initialize bitread state variables */ 1.135 + entropy->bitstate.bits_left = 0; 1.136 + entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ 1.137 + entropy->pub.insufficient_data = FALSE; 1.138 + 1.139 + /* Initialize restart counter */ 1.140 + entropy->restarts_to_go = cinfo->restart_interval; 1.141 +} 1.142 + 1.143 + 1.144 +/* 1.145 + * Compute the derived values for a Huffman table. 1.146 + * This routine also performs some validation checks on the table. 1.147 + * 1.148 + * Note this is also used by jdphuff.c. 1.149 + */ 1.150 + 1.151 +GLOBAL(void) 1.152 +jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, 1.153 + d_derived_tbl ** pdtbl) 1.154 +{ 1.155 + JHUFF_TBL *htbl; 1.156 + d_derived_tbl *dtbl; 1.157 + int p, i, l, si, numsymbols; 1.158 + int lookbits, ctr; 1.159 + char huffsize[257]; 1.160 + unsigned int huffcode[257]; 1.161 + unsigned int code; 1.162 + 1.163 + /* Note that huffsize[] and huffcode[] are filled in code-length order, 1.164 + * paralleling the order of the symbols themselves in htbl->huffval[]. 1.165 + */ 1.166 + 1.167 + /* Find the input Huffman table */ 1.168 + if (tblno < 0 || tblno >= NUM_HUFF_TBLS) 1.169 + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 1.170 + htbl = 1.171 + isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; 1.172 + if (htbl == NULL) 1.173 + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 1.174 + 1.175 + /* Allocate a workspace if we haven't already done so. */ 1.176 + if (*pdtbl == NULL) 1.177 + *pdtbl = (d_derived_tbl *) 1.178 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.179 + SIZEOF(d_derived_tbl)); 1.180 + dtbl = *pdtbl; 1.181 + dtbl->pub = htbl; /* fill in back link */ 1.182 + 1.183 + /* Figure C.1: make table of Huffman code length for each symbol */ 1.184 + 1.185 + p = 0; 1.186 + for (l = 1; l <= 16; l++) { 1.187 + i = (int) htbl->bits[l]; 1.188 + if (i < 0 || p + i > 256) /* protect against table overrun */ 1.189 + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 1.190 + while (i--) 1.191 + huffsize[p++] = (char) l; 1.192 + } 1.193 + huffsize[p] = 0; 1.194 + numsymbols = p; 1.195 + 1.196 + /* Figure C.2: generate the codes themselves */ 1.197 + /* We also validate that the counts represent a legal Huffman code tree. */ 1.198 + 1.199 + code = 0; 1.200 + si = huffsize[0]; 1.201 + p = 0; 1.202 + while (huffsize[p]) { 1.203 + while (((int) huffsize[p]) == si) { 1.204 + huffcode[p++] = code; 1.205 + code++; 1.206 + } 1.207 + /* code is now 1 more than the last code used for codelength si; but 1.208 + * it must still fit in si bits, since no code is allowed to be all ones. 1.209 + */ 1.210 + if (((INT32) code) >= (((INT32) 1) << si)) 1.211 + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 1.212 + code <<= 1; 1.213 + si++; 1.214 + } 1.215 + 1.216 + /* Figure F.15: generate decoding tables for bit-sequential decoding */ 1.217 + 1.218 + p = 0; 1.219 + for (l = 1; l <= 16; l++) { 1.220 + if (htbl->bits[l]) { 1.221 + /* valoffset[l] = huffval[] index of 1st symbol of code length l, 1.222 + * minus the minimum code of length l 1.223 + */ 1.224 + dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; 1.225 + p += htbl->bits[l]; 1.226 + dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ 1.227 + } else { 1.228 + dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ 1.229 + } 1.230 + } 1.231 + dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ 1.232 + 1.233 + /* Compute lookahead tables to speed up decoding. 1.234 + * First we set all the table entries to 0, indicating "too long"; 1.235 + * then we iterate through the Huffman codes that are short enough and 1.236 + * fill in all the entries that correspond to bit sequences starting 1.237 + * with that code. 1.238 + */ 1.239 + 1.240 + MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); 1.241 + 1.242 + p = 0; 1.243 + for (l = 1; l <= HUFF_LOOKAHEAD; l++) { 1.244 + for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { 1.245 + /* l = current code's length, p = its index in huffcode[] & huffval[]. */ 1.246 + /* Generate left-justified code followed by all possible bit sequences */ 1.247 + lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); 1.248 + for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { 1.249 + dtbl->look_nbits[lookbits] = l; 1.250 + dtbl->look_sym[lookbits] = htbl->huffval[p]; 1.251 + lookbits++; 1.252 + } 1.253 + } 1.254 + } 1.255 + 1.256 + /* Validate symbols as being reasonable. 1.257 + * For AC tables, we make no check, but accept all byte values 0..255. 1.258 + * For DC tables, we require the symbols to be in range 0..15. 1.259 + * (Tighter bounds could be applied depending on the data depth and mode, 1.260 + * but this is sufficient to ensure safe decoding.) 1.261 + */ 1.262 + if (isDC) { 1.263 + for (i = 0; i < numsymbols; i++) { 1.264 + int sym = htbl->huffval[i]; 1.265 + if (sym < 0 || sym > 15) 1.266 + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 1.267 + } 1.268 + } 1.269 +} 1.270 + 1.271 + 1.272 +/* 1.273 + * Out-of-line code for bit fetching (shared with jdphuff.c). 1.274 + * See jdhuff.h for info about usage. 1.275 + * Note: current values of get_buffer and bits_left are passed as parameters, 1.276 + * but are returned in the corresponding fields of the state struct. 1.277 + * 1.278 + * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width 1.279 + * of get_buffer to be used. (On machines with wider words, an even larger 1.280 + * buffer could be used.) However, on some machines 32-bit shifts are 1.281 + * quite slow and take time proportional to the number of places shifted. 1.282 + * (This is true with most PC compilers, for instance.) In this case it may 1.283 + * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the 1.284 + * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. 1.285 + */ 1.286 + 1.287 +#ifdef SLOW_SHIFT_32 1.288 +#define MIN_GET_BITS 15 /* minimum allowable value */ 1.289 +#else 1.290 +#define MIN_GET_BITS (BIT_BUF_SIZE-7) 1.291 +#endif 1.292 + 1.293 + 1.294 +GLOBAL(boolean) 1.295 +jpeg_fill_bit_buffer (bitread_working_state * state, 1.296 + register bit_buf_type get_buffer, register int bits_left, 1.297 + int nbits) 1.298 +/* Load up the bit buffer to a depth of at least nbits */ 1.299 +{ 1.300 + /* Copy heavily used state fields into locals (hopefully registers) */ 1.301 + register const JOCTET * next_input_byte = state->next_input_byte; 1.302 + register size_t bytes_in_buffer = state->bytes_in_buffer; 1.303 + j_decompress_ptr cinfo = state->cinfo; 1.304 + 1.305 + /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ 1.306 + /* (It is assumed that no request will be for more than that many bits.) */ 1.307 + /* We fail to do so only if we hit a marker or are forced to suspend. */ 1.308 + 1.309 + if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ 1.310 + while (bits_left < MIN_GET_BITS) { 1.311 + register int c; 1.312 + 1.313 + /* Attempt to read a byte */ 1.314 + if (bytes_in_buffer == 0) { 1.315 + if (! (*cinfo->src->fill_input_buffer) (cinfo)) 1.316 + return FALSE; 1.317 + next_input_byte = cinfo->src->next_input_byte; 1.318 + bytes_in_buffer = cinfo->src->bytes_in_buffer; 1.319 + } 1.320 + bytes_in_buffer--; 1.321 + c = GETJOCTET(*next_input_byte++); 1.322 + 1.323 + /* If it's 0xFF, check and discard stuffed zero byte */ 1.324 + if (c == 0xFF) { 1.325 + /* Loop here to discard any padding FF's on terminating marker, 1.326 + * so that we can save a valid unread_marker value. NOTE: we will 1.327 + * accept multiple FF's followed by a 0 as meaning a single FF data 1.328 + * byte. This data pattern is not valid according to the standard. 1.329 + */ 1.330 + do { 1.331 + if (bytes_in_buffer == 0) { 1.332 + if (! (*cinfo->src->fill_input_buffer) (cinfo)) 1.333 + return FALSE; 1.334 + next_input_byte = cinfo->src->next_input_byte; 1.335 + bytes_in_buffer = cinfo->src->bytes_in_buffer; 1.336 + } 1.337 + bytes_in_buffer--; 1.338 + c = GETJOCTET(*next_input_byte++); 1.339 + } while (c == 0xFF); 1.340 + 1.341 + if (c == 0) { 1.342 + /* Found FF/00, which represents an FF data byte */ 1.343 + c = 0xFF; 1.344 + } else { 1.345 + /* Oops, it's actually a marker indicating end of compressed data. 1.346 + * Save the marker code for later use. 1.347 + * Fine point: it might appear that we should save the marker into 1.348 + * bitread working state, not straight into permanent state. But 1.349 + * once we have hit a marker, we cannot need to suspend within the 1.350 + * current MCU, because we will read no more bytes from the data 1.351 + * source. So it is OK to update permanent state right away. 1.352 + */ 1.353 + cinfo->unread_marker = c; 1.354 + /* See if we need to insert some fake zero bits. */ 1.355 + goto no_more_bytes; 1.356 + } 1.357 + } 1.358 + 1.359 + /* OK, load c into get_buffer */ 1.360 + get_buffer = (get_buffer << 8) | c; 1.361 + bits_left += 8; 1.362 + } /* end while */ 1.363 + } else { 1.364 + no_more_bytes: 1.365 + /* We get here if we've read the marker that terminates the compressed 1.366 + * data segment. There should be enough bits in the buffer register 1.367 + * to satisfy the request; if so, no problem. 1.368 + */ 1.369 + if (nbits > bits_left) { 1.370 + /* Uh-oh. Report corrupted data to user and stuff zeroes into 1.371 + * the data stream, so that we can produce some kind of image. 1.372 + * We use a nonvolatile flag to ensure that only one warning message 1.373 + * appears per data segment. 1.374 + */ 1.375 + if (! cinfo->entropy->insufficient_data) { 1.376 + WARNMS(cinfo, JWRN_HIT_MARKER); 1.377 + cinfo->entropy->insufficient_data = TRUE; 1.378 + } 1.379 + /* Fill the buffer with zero bits */ 1.380 + get_buffer <<= MIN_GET_BITS - bits_left; 1.381 + bits_left = MIN_GET_BITS; 1.382 + } 1.383 + } 1.384 + 1.385 + /* Unload the local registers */ 1.386 + state->next_input_byte = next_input_byte; 1.387 + state->bytes_in_buffer = bytes_in_buffer; 1.388 + state->get_buffer = get_buffer; 1.389 + state->bits_left = bits_left; 1.390 + 1.391 + return TRUE; 1.392 +} 1.393 + 1.394 + 1.395 +/* 1.396 + * Out-of-line code for Huffman code decoding. 1.397 + * See jdhuff.h for info about usage. 1.398 + */ 1.399 + 1.400 +GLOBAL(int) 1.401 +jpeg_huff_decode (bitread_working_state * state, 1.402 + register bit_buf_type get_buffer, register int bits_left, 1.403 + d_derived_tbl * htbl, int min_bits) 1.404 +{ 1.405 + register int l = min_bits; 1.406 + register INT32 code; 1.407 + 1.408 + /* HUFF_DECODE has determined that the code is at least min_bits */ 1.409 + /* bits long, so fetch that many bits in one swoop. */ 1.410 + 1.411 + CHECK_BIT_BUFFER(*state, l, return -1); 1.412 + code = GET_BITS(l); 1.413 + 1.414 + /* Collect the rest of the Huffman code one bit at a time. */ 1.415 + /* This is per Figure F.16 in the JPEG spec. */ 1.416 + 1.417 + while (code > htbl->maxcode[l]) { 1.418 + code <<= 1; 1.419 + CHECK_BIT_BUFFER(*state, 1, return -1); 1.420 + code |= GET_BITS(1); 1.421 + l++; 1.422 + } 1.423 + 1.424 + /* Unload the local registers */ 1.425 + state->get_buffer = get_buffer; 1.426 + state->bits_left = bits_left; 1.427 + 1.428 + /* With garbage input we may reach the sentinel value l = 17. */ 1.429 + 1.430 + if (l > 16) { 1.431 + WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); 1.432 + return 0; /* fake a zero as the safest result */ 1.433 + } 1.434 + 1.435 + return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; 1.436 +} 1.437 + 1.438 + 1.439 +/* 1.440 + * Figure F.12: extend sign bit. 1.441 + * On some machines, a shift and add will be faster than a table lookup. 1.442 + */ 1.443 + 1.444 +#ifdef AVOID_TABLES 1.445 + 1.446 +#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) 1.447 + 1.448 +#else 1.449 + 1.450 +#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) 1.451 + 1.452 +static const int extend_test[16] = /* entry n is 2**(n-1) */ 1.453 + { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1.454 + 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; 1.455 + 1.456 +static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ 1.457 + { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, 1.458 + ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, 1.459 + ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, 1.460 + ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; 1.461 + 1.462 +#endif /* AVOID_TABLES */ 1.463 + 1.464 + 1.465 +/* 1.466 + * Check for a restart marker & resynchronize decoder. 1.467 + * Returns FALSE if must suspend. 1.468 + */ 1.469 + 1.470 +LOCAL(boolean) 1.471 +process_restart (j_decompress_ptr cinfo) 1.472 +{ 1.473 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.474 + int ci; 1.475 + 1.476 + /* Throw away any unused bits remaining in bit buffer; */ 1.477 + /* include any full bytes in next_marker's count of discarded bytes */ 1.478 + cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; 1.479 + entropy->bitstate.bits_left = 0; 1.480 + 1.481 + /* Advance past the RSTn marker */ 1.482 + if (! (*cinfo->marker->read_restart_marker) (cinfo)) 1.483 + return FALSE; 1.484 + 1.485 + /* Re-initialize DC predictions to 0 */ 1.486 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) 1.487 + entropy->saved.last_dc_val[ci] = 0; 1.488 + 1.489 + /* Reset restart counter */ 1.490 + entropy->restarts_to_go = cinfo->restart_interval; 1.491 + 1.492 + /* Reset out-of-data flag, unless read_restart_marker left us smack up 1.493 + * against a marker. In that case we will end up treating the next data 1.494 + * segment as empty, and we can avoid producing bogus output pixels by 1.495 + * leaving the flag set. 1.496 + */ 1.497 + if (cinfo->unread_marker == 0) 1.498 + entropy->pub.insufficient_data = FALSE; 1.499 + 1.500 + return TRUE; 1.501 +} 1.502 + 1.503 + 1.504 +/* 1.505 + * Decode and return one MCU's worth of Huffman-compressed coefficients. 1.506 + * The coefficients are reordered from zigzag order into natural array order, 1.507 + * but are not dequantized. 1.508 + * 1.509 + * The i'th block of the MCU is stored into the block pointed to by 1.510 + * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. 1.511 + * (Wholesale zeroing is usually a little faster than retail...) 1.512 + * 1.513 + * Returns FALSE if data source requested suspension. In that case no 1.514 + * changes have been made to permanent state. (Exception: some output 1.515 + * coefficients may already have been assigned. This is harmless for 1.516 + * this module, since we'll just re-assign them on the next call.) 1.517 + */ 1.518 + 1.519 +METHODDEF(boolean) 1.520 +decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.521 +{ 1.522 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.523 + int blkn; 1.524 + BITREAD_STATE_VARS; 1.525 + savable_state state; 1.526 + 1.527 + /* Process restart marker if needed; may have to suspend */ 1.528 + if (cinfo->restart_interval) { 1.529 + if (entropy->restarts_to_go == 0) 1.530 + if (! process_restart(cinfo)) 1.531 + return FALSE; 1.532 + } 1.533 + 1.534 + /* If we've run out of data, just leave the MCU set to zeroes. 1.535 + * This way, we return uniform gray for the remainder of the segment. 1.536 + */ 1.537 + if (! entropy->pub.insufficient_data) { 1.538 + 1.539 + /* Load up working state */ 1.540 + BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 1.541 + ASSIGN_STATE(state, entropy->saved); 1.542 + 1.543 + /* Outer loop handles each block in the MCU */ 1.544 + 1.545 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.546 + JBLOCKROW block = MCU_data[blkn]; 1.547 + d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; 1.548 + d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; 1.549 + register int s, k, r; 1.550 + 1.551 + /* Decode a single block's worth of coefficients */ 1.552 + 1.553 + /* Section F.2.2.1: decode the DC coefficient difference */ 1.554 + HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); 1.555 + if (s) { 1.556 + CHECK_BIT_BUFFER(br_state, s, return FALSE); 1.557 + r = GET_BITS(s); 1.558 + s = HUFF_EXTEND(r, s); 1.559 + } 1.560 + 1.561 + if (entropy->dc_needed[blkn]) { 1.562 + /* Convert DC difference to actual value, update last_dc_val */ 1.563 + int ci = cinfo->MCU_membership[blkn]; 1.564 + s += state.last_dc_val[ci]; 1.565 + state.last_dc_val[ci] = s; 1.566 + /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ 1.567 + (*block)[0] = (JCOEF) s; 1.568 + } 1.569 + 1.570 + if (entropy->ac_needed[blkn]) { 1.571 + 1.572 + /* Section F.2.2.2: decode the AC coefficients */ 1.573 + /* Since zeroes are skipped, output area must be cleared beforehand */ 1.574 + for (k = 1; k < DCTSIZE2; k++) { 1.575 + HUFF_DECODE(s, br_state, actbl, return FALSE, label2); 1.576 + 1.577 + r = s >> 4; 1.578 + s &= 15; 1.579 + 1.580 + if (s) { 1.581 + k += r; 1.582 + CHECK_BIT_BUFFER(br_state, s, return FALSE); 1.583 + r = GET_BITS(s); 1.584 + s = HUFF_EXTEND(r, s); 1.585 + /* Output coefficient in natural (dezigzagged) order. 1.586 + * Note: the extra entries in jpeg_natural_order[] will save us 1.587 + * if k >= DCTSIZE2, which could happen if the data is corrupted. 1.588 + */ 1.589 + (*block)[jpeg_natural_order[k]] = (JCOEF) s; 1.590 + } else { 1.591 + if (r != 15) 1.592 + break; 1.593 + k += 15; 1.594 + } 1.595 + } 1.596 + 1.597 + } else { 1.598 + 1.599 + /* Section F.2.2.2: decode the AC coefficients */ 1.600 + /* In this path we just discard the values */ 1.601 + for (k = 1; k < DCTSIZE2; k++) { 1.602 + HUFF_DECODE(s, br_state, actbl, return FALSE, label3); 1.603 + 1.604 + r = s >> 4; 1.605 + s &= 15; 1.606 + 1.607 + if (s) { 1.608 + k += r; 1.609 + CHECK_BIT_BUFFER(br_state, s, return FALSE); 1.610 + DROP_BITS(s); 1.611 + } else { 1.612 + if (r != 15) 1.613 + break; 1.614 + k += 15; 1.615 + } 1.616 + } 1.617 + 1.618 + } 1.619 + } 1.620 + 1.621 + /* Completed MCU, so update state */ 1.622 + BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 1.623 + ASSIGN_STATE(entropy->saved, state); 1.624 + } 1.625 + 1.626 + /* Account for restart interval (no-op if not using restarts) */ 1.627 + entropy->restarts_to_go--; 1.628 + 1.629 + return TRUE; 1.630 +} 1.631 + 1.632 + 1.633 +/* 1.634 + * Module initialization routine for Huffman entropy decoding. 1.635 + */ 1.636 + 1.637 +GLOBAL(void) 1.638 +jinit_huff_decoder (j_decompress_ptr cinfo) 1.639 +{ 1.640 + huff_entropy_ptr entropy; 1.641 + int i; 1.642 + 1.643 + entropy = (huff_entropy_ptr) 1.644 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.645 + SIZEOF(huff_entropy_decoder)); 1.646 + cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; 1.647 + entropy->pub.start_pass = start_pass_huff_decoder; 1.648 + entropy->pub.decode_mcu = decode_mcu; 1.649 + 1.650 + /* Mark tables unallocated */ 1.651 + for (i = 0; i < NUM_HUFF_TBLS; i++) { 1.652 + entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; 1.653 + } 1.654 +}