dbf-halloween2015

annotate libs/vmath/vmath.inl @ 3:c37fe5d8a4ed

windows port
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 01 Nov 2015 06:04:28 +0200
parents
children
rev   line source
nuclear@1 1 /*
nuclear@1 2 libvmath - a vector math library
nuclear@1 3 Copyright (C) 2004-2011 John Tsiombikas <nuclear@member.fsf.org>
nuclear@1 4
nuclear@1 5 This program is free software: you can redistribute it and/or modify
nuclear@1 6 it under the terms of the GNU Lesser General Public License as published
nuclear@1 7 by the Free Software Foundation, either version 3 of the License, or
nuclear@1 8 (at your option) any later version.
nuclear@1 9
nuclear@1 10 This program is distributed in the hope that it will be useful,
nuclear@1 11 but WITHOUT ANY WARRANTY; without even the implied warranty of
nuclear@1 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
nuclear@1 13 GNU Lesser General Public License for more details.
nuclear@1 14
nuclear@1 15 You should have received a copy of the GNU Lesser General Public License
nuclear@1 16 along with this program. If not, see <http://www.gnu.org/licenses/>.
nuclear@1 17 */
nuclear@1 18
nuclear@1 19 #include <stdlib.h>
nuclear@1 20
nuclear@1 21 static inline scalar_t smoothstep(float a, float b, float x)
nuclear@1 22 {
nuclear@1 23 if(x < a) return 0.0;
nuclear@1 24 if(x >= b) return 1.0;
nuclear@1 25
nuclear@1 26 x = (x - a) / (b - a);
nuclear@1 27 return x * x * (3.0 - 2.0 * x);
nuclear@1 28 }
nuclear@1 29
nuclear@1 30 /** Generates a random number in [0, range) */
nuclear@1 31 static inline scalar_t frand(scalar_t range)
nuclear@1 32 {
nuclear@1 33 return range * (scalar_t)rand() / (scalar_t)RAND_MAX;
nuclear@1 34 }
nuclear@1 35
nuclear@1 36 /** Generates a random vector on the surface of a sphere */
nuclear@1 37 static inline vec3_t sphrand(scalar_t rad)
nuclear@1 38 {
nuclear@1 39 scalar_t u = (scalar_t)rand() / RAND_MAX;
nuclear@1 40 scalar_t v = (scalar_t)rand() / RAND_MAX;
nuclear@1 41
nuclear@1 42 scalar_t theta = 2.0 * M_PI * u;
nuclear@1 43 scalar_t phi = acos(2.0 * v - 1.0);
nuclear@1 44
nuclear@1 45 vec3_t res;
nuclear@1 46 res.x = rad * cos(theta) * sin(phi);
nuclear@1 47 res.y = rad * sin(theta) * sin(phi);
nuclear@1 48 res.z = rad * cos(phi);
nuclear@1 49 return res;
nuclear@1 50 }
nuclear@1 51
nuclear@1 52 /** linear interpolation */
nuclear@1 53 static inline scalar_t lerp(scalar_t a, scalar_t b, scalar_t t)
nuclear@1 54 {
nuclear@1 55 return a + (b - a) * t;
nuclear@1 56 }