dbf-halloween2015

annotate libs/libjpeg/jdmainct.c @ 3:c37fe5d8a4ed

windows port
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 01 Nov 2015 06:04:28 +0200
parents
children
rev   line source
nuclear@1 1 /*
nuclear@1 2 * jdmainct.c
nuclear@1 3 *
nuclear@1 4 * Copyright (C) 1994-1996, Thomas G. Lane.
nuclear@1 5 * This file is part of the Independent JPEG Group's software.
nuclear@1 6 * For conditions of distribution and use, see the accompanying README file.
nuclear@1 7 *
nuclear@1 8 * This file contains the main buffer controller for decompression.
nuclear@1 9 * The main buffer lies between the JPEG decompressor proper and the
nuclear@1 10 * post-processor; it holds downsampled data in the JPEG colorspace.
nuclear@1 11 *
nuclear@1 12 * Note that this code is bypassed in raw-data mode, since the application
nuclear@1 13 * supplies the equivalent of the main buffer in that case.
nuclear@1 14 */
nuclear@1 15
nuclear@1 16 #define JPEG_INTERNALS
nuclear@1 17 #include "jinclude.h"
nuclear@1 18 #include "jpeglib.h"
nuclear@1 19
nuclear@1 20
nuclear@1 21 /*
nuclear@1 22 * In the current system design, the main buffer need never be a full-image
nuclear@1 23 * buffer; any full-height buffers will be found inside the coefficient or
nuclear@1 24 * postprocessing controllers. Nonetheless, the main controller is not
nuclear@1 25 * trivial. Its responsibility is to provide context rows for upsampling/
nuclear@1 26 * rescaling, and doing this in an efficient fashion is a bit tricky.
nuclear@1 27 *
nuclear@1 28 * Postprocessor input data is counted in "row groups". A row group
nuclear@1 29 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
nuclear@1 30 * sample rows of each component. (We require DCT_scaled_size values to be
nuclear@1 31 * chosen such that these numbers are integers. In practice DCT_scaled_size
nuclear@1 32 * values will likely be powers of two, so we actually have the stronger
nuclear@1 33 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
nuclear@1 34 * Upsampling will typically produce max_v_samp_factor pixel rows from each
nuclear@1 35 * row group (times any additional scale factor that the upsampler is
nuclear@1 36 * applying).
nuclear@1 37 *
nuclear@1 38 * The coefficient controller will deliver data to us one iMCU row at a time;
nuclear@1 39 * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
nuclear@1 40 * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
nuclear@1 41 * to one row of MCUs when the image is fully interleaved.) Note that the
nuclear@1 42 * number of sample rows varies across components, but the number of row
nuclear@1 43 * groups does not. Some garbage sample rows may be included in the last iMCU
nuclear@1 44 * row at the bottom of the image.
nuclear@1 45 *
nuclear@1 46 * Depending on the vertical scaling algorithm used, the upsampler may need
nuclear@1 47 * access to the sample row(s) above and below its current input row group.
nuclear@1 48 * The upsampler is required to set need_context_rows TRUE at global selection
nuclear@1 49 * time if so. When need_context_rows is FALSE, this controller can simply
nuclear@1 50 * obtain one iMCU row at a time from the coefficient controller and dole it
nuclear@1 51 * out as row groups to the postprocessor.
nuclear@1 52 *
nuclear@1 53 * When need_context_rows is TRUE, this controller guarantees that the buffer
nuclear@1 54 * passed to postprocessing contains at least one row group's worth of samples
nuclear@1 55 * above and below the row group(s) being processed. Note that the context
nuclear@1 56 * rows "above" the first passed row group appear at negative row offsets in
nuclear@1 57 * the passed buffer. At the top and bottom of the image, the required
nuclear@1 58 * context rows are manufactured by duplicating the first or last real sample
nuclear@1 59 * row; this avoids having special cases in the upsampling inner loops.
nuclear@1 60 *
nuclear@1 61 * The amount of context is fixed at one row group just because that's a
nuclear@1 62 * convenient number for this controller to work with. The existing
nuclear@1 63 * upsamplers really only need one sample row of context. An upsampler
nuclear@1 64 * supporting arbitrary output rescaling might wish for more than one row
nuclear@1 65 * group of context when shrinking the image; tough, we don't handle that.
nuclear@1 66 * (This is justified by the assumption that downsizing will be handled mostly
nuclear@1 67 * by adjusting the DCT_scaled_size values, so that the actual scale factor at
nuclear@1 68 * the upsample step needn't be much less than one.)
nuclear@1 69 *
nuclear@1 70 * To provide the desired context, we have to retain the last two row groups
nuclear@1 71 * of one iMCU row while reading in the next iMCU row. (The last row group
nuclear@1 72 * can't be processed until we have another row group for its below-context,
nuclear@1 73 * and so we have to save the next-to-last group too for its above-context.)
nuclear@1 74 * We could do this most simply by copying data around in our buffer, but
nuclear@1 75 * that'd be very slow. We can avoid copying any data by creating a rather
nuclear@1 76 * strange pointer structure. Here's how it works. We allocate a workspace
nuclear@1 77 * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
nuclear@1 78 * of row groups per iMCU row). We create two sets of redundant pointers to
nuclear@1 79 * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
nuclear@1 80 * pointer lists look like this:
nuclear@1 81 * M+1 M-1
nuclear@1 82 * master pointer --> 0 master pointer --> 0
nuclear@1 83 * 1 1
nuclear@1 84 * ... ...
nuclear@1 85 * M-3 M-3
nuclear@1 86 * M-2 M
nuclear@1 87 * M-1 M+1
nuclear@1 88 * M M-2
nuclear@1 89 * M+1 M-1
nuclear@1 90 * 0 0
nuclear@1 91 * We read alternate iMCU rows using each master pointer; thus the last two
nuclear@1 92 * row groups of the previous iMCU row remain un-overwritten in the workspace.
nuclear@1 93 * The pointer lists are set up so that the required context rows appear to
nuclear@1 94 * be adjacent to the proper places when we pass the pointer lists to the
nuclear@1 95 * upsampler.
nuclear@1 96 *
nuclear@1 97 * The above pictures describe the normal state of the pointer lists.
nuclear@1 98 * At top and bottom of the image, we diddle the pointer lists to duplicate
nuclear@1 99 * the first or last sample row as necessary (this is cheaper than copying
nuclear@1 100 * sample rows around).
nuclear@1 101 *
nuclear@1 102 * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
nuclear@1 103 * situation each iMCU row provides only one row group so the buffering logic
nuclear@1 104 * must be different (eg, we must read two iMCU rows before we can emit the
nuclear@1 105 * first row group). For now, we simply do not support providing context
nuclear@1 106 * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
nuclear@1 107 * be worth providing --- if someone wants a 1/8th-size preview, they probably
nuclear@1 108 * want it quick and dirty, so a context-free upsampler is sufficient.
nuclear@1 109 */
nuclear@1 110
nuclear@1 111
nuclear@1 112 /* Private buffer controller object */
nuclear@1 113
nuclear@1 114 typedef struct {
nuclear@1 115 struct jpeg_d_main_controller pub; /* public fields */
nuclear@1 116
nuclear@1 117 /* Pointer to allocated workspace (M or M+2 row groups). */
nuclear@1 118 JSAMPARRAY buffer[MAX_COMPONENTS];
nuclear@1 119
nuclear@1 120 boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
nuclear@1 121 JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
nuclear@1 122
nuclear@1 123 /* Remaining fields are only used in the context case. */
nuclear@1 124
nuclear@1 125 /* These are the master pointers to the funny-order pointer lists. */
nuclear@1 126 JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
nuclear@1 127
nuclear@1 128 int whichptr; /* indicates which pointer set is now in use */
nuclear@1 129 int context_state; /* process_data state machine status */
nuclear@1 130 JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
nuclear@1 131 JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
nuclear@1 132 } my_main_controller;
nuclear@1 133
nuclear@1 134 typedef my_main_controller * my_main_ptr;
nuclear@1 135
nuclear@1 136 /* context_state values: */
nuclear@1 137 #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
nuclear@1 138 #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
nuclear@1 139 #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
nuclear@1 140
nuclear@1 141
nuclear@1 142 /* Forward declarations */
nuclear@1 143 METHODDEF(void) process_data_simple_main
nuclear@1 144 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
nuclear@1 145 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
nuclear@1 146 METHODDEF(void) process_data_context_main
nuclear@1 147 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
nuclear@1 148 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
nuclear@1 149 #ifdef QUANT_2PASS_SUPPORTED
nuclear@1 150 METHODDEF(void) process_data_crank_post
nuclear@1 151 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
nuclear@1 152 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
nuclear@1 153 #endif
nuclear@1 154
nuclear@1 155
nuclear@1 156 LOCAL(void)
nuclear@1 157 alloc_funny_pointers (j_decompress_ptr cinfo)
nuclear@1 158 /* Allocate space for the funny pointer lists.
nuclear@1 159 * This is done only once, not once per pass.
nuclear@1 160 */
nuclear@1 161 {
nuclear@1 162 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 163 int ci, rgroup;
nuclear@1 164 int M = cinfo->min_DCT_scaled_size;
nuclear@1 165 jpeg_component_info *compptr;
nuclear@1 166 JSAMPARRAY xbuf;
nuclear@1 167
nuclear@1 168 /* Get top-level space for component array pointers.
nuclear@1 169 * We alloc both arrays with one call to save a few cycles.
nuclear@1 170 */
nuclear@1 171 main->xbuffer[0] = (JSAMPIMAGE)
nuclear@1 172 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
nuclear@1 173 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
nuclear@1 174 main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
nuclear@1 175
nuclear@1 176 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@1 177 ci++, compptr++) {
nuclear@1 178 rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
nuclear@1 179 cinfo->min_DCT_scaled_size; /* height of a row group of component */
nuclear@1 180 /* Get space for pointer lists --- M+4 row groups in each list.
nuclear@1 181 * We alloc both pointer lists with one call to save a few cycles.
nuclear@1 182 */
nuclear@1 183 xbuf = (JSAMPARRAY)
nuclear@1 184 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
nuclear@1 185 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
nuclear@1 186 xbuf += rgroup; /* want one row group at negative offsets */
nuclear@1 187 main->xbuffer[0][ci] = xbuf;
nuclear@1 188 xbuf += rgroup * (M + 4);
nuclear@1 189 main->xbuffer[1][ci] = xbuf;
nuclear@1 190 }
nuclear@1 191 }
nuclear@1 192
nuclear@1 193
nuclear@1 194 LOCAL(void)
nuclear@1 195 make_funny_pointers (j_decompress_ptr cinfo)
nuclear@1 196 /* Create the funny pointer lists discussed in the comments above.
nuclear@1 197 * The actual workspace is already allocated (in main->buffer),
nuclear@1 198 * and the space for the pointer lists is allocated too.
nuclear@1 199 * This routine just fills in the curiously ordered lists.
nuclear@1 200 * This will be repeated at the beginning of each pass.
nuclear@1 201 */
nuclear@1 202 {
nuclear@1 203 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 204 int ci, i, rgroup;
nuclear@1 205 int M = cinfo->min_DCT_scaled_size;
nuclear@1 206 jpeg_component_info *compptr;
nuclear@1 207 JSAMPARRAY buf, xbuf0, xbuf1;
nuclear@1 208
nuclear@1 209 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@1 210 ci++, compptr++) {
nuclear@1 211 rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
nuclear@1 212 cinfo->min_DCT_scaled_size; /* height of a row group of component */
nuclear@1 213 xbuf0 = main->xbuffer[0][ci];
nuclear@1 214 xbuf1 = main->xbuffer[1][ci];
nuclear@1 215 /* First copy the workspace pointers as-is */
nuclear@1 216 buf = main->buffer[ci];
nuclear@1 217 for (i = 0; i < rgroup * (M + 2); i++) {
nuclear@1 218 xbuf0[i] = xbuf1[i] = buf[i];
nuclear@1 219 }
nuclear@1 220 /* In the second list, put the last four row groups in swapped order */
nuclear@1 221 for (i = 0; i < rgroup * 2; i++) {
nuclear@1 222 xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
nuclear@1 223 xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
nuclear@1 224 }
nuclear@1 225 /* The wraparound pointers at top and bottom will be filled later
nuclear@1 226 * (see set_wraparound_pointers, below). Initially we want the "above"
nuclear@1 227 * pointers to duplicate the first actual data line. This only needs
nuclear@1 228 * to happen in xbuffer[0].
nuclear@1 229 */
nuclear@1 230 for (i = 0; i < rgroup; i++) {
nuclear@1 231 xbuf0[i - rgroup] = xbuf0[0];
nuclear@1 232 }
nuclear@1 233 }
nuclear@1 234 }
nuclear@1 235
nuclear@1 236
nuclear@1 237 LOCAL(void)
nuclear@1 238 set_wraparound_pointers (j_decompress_ptr cinfo)
nuclear@1 239 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
nuclear@1 240 * This changes the pointer list state from top-of-image to the normal state.
nuclear@1 241 */
nuclear@1 242 {
nuclear@1 243 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 244 int ci, i, rgroup;
nuclear@1 245 int M = cinfo->min_DCT_scaled_size;
nuclear@1 246 jpeg_component_info *compptr;
nuclear@1 247 JSAMPARRAY xbuf0, xbuf1;
nuclear@1 248
nuclear@1 249 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@1 250 ci++, compptr++) {
nuclear@1 251 rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
nuclear@1 252 cinfo->min_DCT_scaled_size; /* height of a row group of component */
nuclear@1 253 xbuf0 = main->xbuffer[0][ci];
nuclear@1 254 xbuf1 = main->xbuffer[1][ci];
nuclear@1 255 for (i = 0; i < rgroup; i++) {
nuclear@1 256 xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
nuclear@1 257 xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
nuclear@1 258 xbuf0[rgroup*(M+2) + i] = xbuf0[i];
nuclear@1 259 xbuf1[rgroup*(M+2) + i] = xbuf1[i];
nuclear@1 260 }
nuclear@1 261 }
nuclear@1 262 }
nuclear@1 263
nuclear@1 264
nuclear@1 265 LOCAL(void)
nuclear@1 266 set_bottom_pointers (j_decompress_ptr cinfo)
nuclear@1 267 /* Change the pointer lists to duplicate the last sample row at the bottom
nuclear@1 268 * of the image. whichptr indicates which xbuffer holds the final iMCU row.
nuclear@1 269 * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
nuclear@1 270 */
nuclear@1 271 {
nuclear@1 272 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 273 int ci, i, rgroup, iMCUheight, rows_left;
nuclear@1 274 jpeg_component_info *compptr;
nuclear@1 275 JSAMPARRAY xbuf;
nuclear@1 276
nuclear@1 277 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@1 278 ci++, compptr++) {
nuclear@1 279 /* Count sample rows in one iMCU row and in one row group */
nuclear@1 280 iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
nuclear@1 281 rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
nuclear@1 282 /* Count nondummy sample rows remaining for this component */
nuclear@1 283 rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
nuclear@1 284 if (rows_left == 0) rows_left = iMCUheight;
nuclear@1 285 /* Count nondummy row groups. Should get same answer for each component,
nuclear@1 286 * so we need only do it once.
nuclear@1 287 */
nuclear@1 288 if (ci == 0) {
nuclear@1 289 main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
nuclear@1 290 }
nuclear@1 291 /* Duplicate the last real sample row rgroup*2 times; this pads out the
nuclear@1 292 * last partial rowgroup and ensures at least one full rowgroup of context.
nuclear@1 293 */
nuclear@1 294 xbuf = main->xbuffer[main->whichptr][ci];
nuclear@1 295 for (i = 0; i < rgroup * 2; i++) {
nuclear@1 296 xbuf[rows_left + i] = xbuf[rows_left-1];
nuclear@1 297 }
nuclear@1 298 }
nuclear@1 299 }
nuclear@1 300
nuclear@1 301
nuclear@1 302 /*
nuclear@1 303 * Initialize for a processing pass.
nuclear@1 304 */
nuclear@1 305
nuclear@1 306 METHODDEF(void)
nuclear@1 307 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
nuclear@1 308 {
nuclear@1 309 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 310
nuclear@1 311 switch (pass_mode) {
nuclear@1 312 case JBUF_PASS_THRU:
nuclear@1 313 if (cinfo->upsample->need_context_rows) {
nuclear@1 314 main->pub.process_data = process_data_context_main;
nuclear@1 315 make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
nuclear@1 316 main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
nuclear@1 317 main->context_state = CTX_PREPARE_FOR_IMCU;
nuclear@1 318 main->iMCU_row_ctr = 0;
nuclear@1 319 } else {
nuclear@1 320 /* Simple case with no context needed */
nuclear@1 321 main->pub.process_data = process_data_simple_main;
nuclear@1 322 }
nuclear@1 323 main->buffer_full = FALSE; /* Mark buffer empty */
nuclear@1 324 main->rowgroup_ctr = 0;
nuclear@1 325 break;
nuclear@1 326 #ifdef QUANT_2PASS_SUPPORTED
nuclear@1 327 case JBUF_CRANK_DEST:
nuclear@1 328 /* For last pass of 2-pass quantization, just crank the postprocessor */
nuclear@1 329 main->pub.process_data = process_data_crank_post;
nuclear@1 330 break;
nuclear@1 331 #endif
nuclear@1 332 default:
nuclear@1 333 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@1 334 break;
nuclear@1 335 }
nuclear@1 336 }
nuclear@1 337
nuclear@1 338
nuclear@1 339 /*
nuclear@1 340 * Process some data.
nuclear@1 341 * This handles the simple case where no context is required.
nuclear@1 342 */
nuclear@1 343
nuclear@1 344 METHODDEF(void)
nuclear@1 345 process_data_simple_main (j_decompress_ptr cinfo,
nuclear@1 346 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
nuclear@1 347 JDIMENSION out_rows_avail)
nuclear@1 348 {
nuclear@1 349 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 350 JDIMENSION rowgroups_avail;
nuclear@1 351
nuclear@1 352 /* Read input data if we haven't filled the main buffer yet */
nuclear@1 353 if (! main->buffer_full) {
nuclear@1 354 if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
nuclear@1 355 return; /* suspension forced, can do nothing more */
nuclear@1 356 main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
nuclear@1 357 }
nuclear@1 358
nuclear@1 359 /* There are always min_DCT_scaled_size row groups in an iMCU row. */
nuclear@1 360 rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
nuclear@1 361 /* Note: at the bottom of the image, we may pass extra garbage row groups
nuclear@1 362 * to the postprocessor. The postprocessor has to check for bottom
nuclear@1 363 * of image anyway (at row resolution), so no point in us doing it too.
nuclear@1 364 */
nuclear@1 365
nuclear@1 366 /* Feed the postprocessor */
nuclear@1 367 (*cinfo->post->post_process_data) (cinfo, main->buffer,
nuclear@1 368 &main->rowgroup_ctr, rowgroups_avail,
nuclear@1 369 output_buf, out_row_ctr, out_rows_avail);
nuclear@1 370
nuclear@1 371 /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
nuclear@1 372 if (main->rowgroup_ctr >= rowgroups_avail) {
nuclear@1 373 main->buffer_full = FALSE;
nuclear@1 374 main->rowgroup_ctr = 0;
nuclear@1 375 }
nuclear@1 376 }
nuclear@1 377
nuclear@1 378
nuclear@1 379 /*
nuclear@1 380 * Process some data.
nuclear@1 381 * This handles the case where context rows must be provided.
nuclear@1 382 */
nuclear@1 383
nuclear@1 384 METHODDEF(void)
nuclear@1 385 process_data_context_main (j_decompress_ptr cinfo,
nuclear@1 386 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
nuclear@1 387 JDIMENSION out_rows_avail)
nuclear@1 388 {
nuclear@1 389 my_main_ptr main = (my_main_ptr) cinfo->main;
nuclear@1 390
nuclear@1 391 /* Read input data if we haven't filled the main buffer yet */
nuclear@1 392 if (! main->buffer_full) {
nuclear@1 393 if (! (*cinfo->coef->decompress_data) (cinfo,
nuclear@1 394 main->xbuffer[main->whichptr]))
nuclear@1 395 return; /* suspension forced, can do nothing more */
nuclear@1 396 main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
nuclear@1 397 main->iMCU_row_ctr++; /* count rows received */
nuclear@1 398 }
nuclear@1 399
nuclear@1 400 /* Postprocessor typically will not swallow all the input data it is handed
nuclear@1 401 * in one call (due to filling the output buffer first). Must be prepared
nuclear@1 402 * to exit and restart. This switch lets us keep track of how far we got.
nuclear@1 403 * Note that each case falls through to the next on successful completion.
nuclear@1 404 */
nuclear@1 405 switch (main->context_state) {
nuclear@1 406 case CTX_POSTPONED_ROW:
nuclear@1 407 /* Call postprocessor using previously set pointers for postponed row */
nuclear@1 408 (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
nuclear@1 409 &main->rowgroup_ctr, main->rowgroups_avail,
nuclear@1 410 output_buf, out_row_ctr, out_rows_avail);
nuclear@1 411 if (main->rowgroup_ctr < main->rowgroups_avail)
nuclear@1 412 return; /* Need to suspend */
nuclear@1 413 main->context_state = CTX_PREPARE_FOR_IMCU;
nuclear@1 414 if (*out_row_ctr >= out_rows_avail)
nuclear@1 415 return; /* Postprocessor exactly filled output buf */
nuclear@1 416 /*FALLTHROUGH*/
nuclear@1 417 case CTX_PREPARE_FOR_IMCU:
nuclear@1 418 /* Prepare to process first M-1 row groups of this iMCU row */
nuclear@1 419 main->rowgroup_ctr = 0;
nuclear@1 420 main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
nuclear@1 421 /* Check for bottom of image: if so, tweak pointers to "duplicate"
nuclear@1 422 * the last sample row, and adjust rowgroups_avail to ignore padding rows.
nuclear@1 423 */
nuclear@1 424 if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
nuclear@1 425 set_bottom_pointers(cinfo);
nuclear@1 426 main->context_state = CTX_PROCESS_IMCU;
nuclear@1 427 /*FALLTHROUGH*/
nuclear@1 428 case CTX_PROCESS_IMCU:
nuclear@1 429 /* Call postprocessor using previously set pointers */
nuclear@1 430 (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
nuclear@1 431 &main->rowgroup_ctr, main->rowgroups_avail,
nuclear@1 432 output_buf, out_row_ctr, out_rows_avail);
nuclear@1 433 if (main->rowgroup_ctr < main->rowgroups_avail)
nuclear@1 434 return; /* Need to suspend */
nuclear@1 435 /* After the first iMCU, change wraparound pointers to normal state */
nuclear@1 436 if (main->iMCU_row_ctr == 1)
nuclear@1 437 set_wraparound_pointers(cinfo);
nuclear@1 438 /* Prepare to load new iMCU row using other xbuffer list */
nuclear@1 439 main->whichptr ^= 1; /* 0=>1 or 1=>0 */
nuclear@1 440 main->buffer_full = FALSE;
nuclear@1 441 /* Still need to process last row group of this iMCU row, */
nuclear@1 442 /* which is saved at index M+1 of the other xbuffer */
nuclear@1 443 main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
nuclear@1 444 main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
nuclear@1 445 main->context_state = CTX_POSTPONED_ROW;
nuclear@1 446 }
nuclear@1 447 }
nuclear@1 448
nuclear@1 449
nuclear@1 450 /*
nuclear@1 451 * Process some data.
nuclear@1 452 * Final pass of two-pass quantization: just call the postprocessor.
nuclear@1 453 * Source data will be the postprocessor controller's internal buffer.
nuclear@1 454 */
nuclear@1 455
nuclear@1 456 #ifdef QUANT_2PASS_SUPPORTED
nuclear@1 457
nuclear@1 458 METHODDEF(void)
nuclear@1 459 process_data_crank_post (j_decompress_ptr cinfo,
nuclear@1 460 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
nuclear@1 461 JDIMENSION out_rows_avail)
nuclear@1 462 {
nuclear@1 463 (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
nuclear@1 464 (JDIMENSION *) NULL, (JDIMENSION) 0,
nuclear@1 465 output_buf, out_row_ctr, out_rows_avail);
nuclear@1 466 }
nuclear@1 467
nuclear@1 468 #endif /* QUANT_2PASS_SUPPORTED */
nuclear@1 469
nuclear@1 470
nuclear@1 471 /*
nuclear@1 472 * Initialize main buffer controller.
nuclear@1 473 */
nuclear@1 474
nuclear@1 475 GLOBAL(void)
nuclear@1 476 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
nuclear@1 477 {
nuclear@1 478 my_main_ptr main;
nuclear@1 479 int ci, rgroup, ngroups;
nuclear@1 480 jpeg_component_info *compptr;
nuclear@1 481
nuclear@1 482 main = (my_main_ptr)
nuclear@1 483 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
nuclear@1 484 SIZEOF(my_main_controller));
nuclear@1 485 cinfo->main = (struct jpeg_d_main_controller *) main;
nuclear@1 486 main->pub.start_pass = start_pass_main;
nuclear@1 487
nuclear@1 488 if (need_full_buffer) /* shouldn't happen */
nuclear@1 489 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
nuclear@1 490
nuclear@1 491 /* Allocate the workspace.
nuclear@1 492 * ngroups is the number of row groups we need.
nuclear@1 493 */
nuclear@1 494 if (cinfo->upsample->need_context_rows) {
nuclear@1 495 if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
nuclear@1 496 ERREXIT(cinfo, JERR_NOTIMPL);
nuclear@1 497 alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
nuclear@1 498 ngroups = cinfo->min_DCT_scaled_size + 2;
nuclear@1 499 } else {
nuclear@1 500 ngroups = cinfo->min_DCT_scaled_size;
nuclear@1 501 }
nuclear@1 502
nuclear@1 503 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
nuclear@1 504 ci++, compptr++) {
nuclear@1 505 rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
nuclear@1 506 cinfo->min_DCT_scaled_size; /* height of a row group of component */
nuclear@1 507 main->buffer[ci] = (*cinfo->mem->alloc_sarray)
nuclear@1 508 ((j_common_ptr) cinfo, JPOOL_IMAGE,
nuclear@1 509 compptr->width_in_blocks * compptr->DCT_scaled_size,
nuclear@1 510 (JDIMENSION) (rgroup * ngroups));
nuclear@1 511 }
nuclear@1 512 }