rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jdct.h
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1994-1996, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This include file contains common declarations for the forward and
|
nuclear@1
|
9 * inverse DCT modules. These declarations are private to the DCT managers
|
nuclear@1
|
10 * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
nuclear@1
|
11 * The individual DCT algorithms are kept in separate files to ease
|
nuclear@1
|
12 * machine-dependent tuning (e.g., assembly coding).
|
nuclear@1
|
13 */
|
nuclear@1
|
14
|
nuclear@1
|
15
|
nuclear@1
|
16 /*
|
nuclear@1
|
17 * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
|
nuclear@1
|
18 * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
|
nuclear@1
|
19 * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
|
nuclear@1
|
20 * implementations use an array of type FAST_FLOAT, instead.)
|
nuclear@1
|
21 * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
|
nuclear@1
|
22 * The DCT outputs are returned scaled up by a factor of 8; they therefore
|
nuclear@1
|
23 * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
nuclear@1
|
24 * convention improves accuracy in integer implementations and saves some
|
nuclear@1
|
25 * work in floating-point ones.
|
nuclear@1
|
26 * Quantization of the output coefficients is done by jcdctmgr.c.
|
nuclear@1
|
27 */
|
nuclear@1
|
28
|
nuclear@1
|
29 #if BITS_IN_JSAMPLE == 8
|
nuclear@1
|
30 typedef int DCTELEM; /* 16 or 32 bits is fine */
|
nuclear@1
|
31 #else
|
nuclear@1
|
32 typedef INT32 DCTELEM; /* must have 32 bits */
|
nuclear@1
|
33 #endif
|
nuclear@1
|
34
|
nuclear@1
|
35 typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
|
nuclear@1
|
36 typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
|
nuclear@1
|
37
|
nuclear@1
|
38
|
nuclear@1
|
39 /*
|
nuclear@1
|
40 * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
nuclear@1
|
41 * to an output sample array. The routine must dequantize the input data as
|
nuclear@1
|
42 * well as perform the IDCT; for dequantization, it uses the multiplier table
|
nuclear@1
|
43 * pointed to by compptr->dct_table. The output data is to be placed into the
|
nuclear@1
|
44 * sample array starting at a specified column. (Any row offset needed will
|
nuclear@1
|
45 * be applied to the array pointer before it is passed to the IDCT code.)
|
nuclear@1
|
46 * Note that the number of samples emitted by the IDCT routine is
|
nuclear@1
|
47 * DCT_scaled_size * DCT_scaled_size.
|
nuclear@1
|
48 */
|
nuclear@1
|
49
|
nuclear@1
|
50 /* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
nuclear@1
|
51
|
nuclear@1
|
52 /*
|
nuclear@1
|
53 * Each IDCT routine has its own ideas about the best dct_table element type.
|
nuclear@1
|
54 */
|
nuclear@1
|
55
|
nuclear@1
|
56 typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
nuclear@1
|
57 #if BITS_IN_JSAMPLE == 8
|
nuclear@1
|
58 typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
nuclear@1
|
59 #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
nuclear@1
|
60 #else
|
nuclear@1
|
61 typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
nuclear@1
|
62 #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
nuclear@1
|
63 #endif
|
nuclear@1
|
64 typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
nuclear@1
|
65
|
nuclear@1
|
66
|
nuclear@1
|
67 /*
|
nuclear@1
|
68 * Each IDCT routine is responsible for range-limiting its results and
|
nuclear@1
|
69 * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
nuclear@1
|
70 * be quite far out of range if the input data is corrupt, so a bulletproof
|
nuclear@1
|
71 * range-limiting step is required. We use a mask-and-table-lookup method
|
nuclear@1
|
72 * to do the combined operations quickly. See the comments with
|
nuclear@1
|
73 * prepare_range_limit_table (in jdmaster.c) for more info.
|
nuclear@1
|
74 */
|
nuclear@1
|
75
|
nuclear@1
|
76 #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
|
nuclear@1
|
77
|
nuclear@1
|
78 #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
nuclear@1
|
79
|
nuclear@1
|
80
|
nuclear@1
|
81 /* Short forms of external names for systems with brain-damaged linkers. */
|
nuclear@1
|
82
|
nuclear@1
|
83 #ifdef NEED_SHORT_EXTERNAL_NAMES
|
nuclear@1
|
84 #define jpeg_fdct_islow jFDislow
|
nuclear@1
|
85 #define jpeg_fdct_ifast jFDifast
|
nuclear@1
|
86 #define jpeg_fdct_float jFDfloat
|
nuclear@1
|
87 #define jpeg_idct_islow jRDislow
|
nuclear@1
|
88 #define jpeg_idct_ifast jRDifast
|
nuclear@1
|
89 #define jpeg_idct_float jRDfloat
|
nuclear@1
|
90 #define jpeg_idct_4x4 jRD4x4
|
nuclear@1
|
91 #define jpeg_idct_2x2 jRD2x2
|
nuclear@1
|
92 #define jpeg_idct_1x1 jRD1x1
|
nuclear@1
|
93 #endif /* NEED_SHORT_EXTERNAL_NAMES */
|
nuclear@1
|
94
|
nuclear@1
|
95 /* Extern declarations for the forward and inverse DCT routines. */
|
nuclear@1
|
96
|
nuclear@1
|
97 EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
|
nuclear@1
|
98 EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
|
nuclear@1
|
99 EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
|
nuclear@1
|
100
|
nuclear@1
|
101 EXTERN(void) jpeg_idct_islow
|
nuclear@1
|
102 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
103 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
nuclear@1
|
104 EXTERN(void) jpeg_idct_ifast
|
nuclear@1
|
105 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
106 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
nuclear@1
|
107 EXTERN(void) jpeg_idct_float
|
nuclear@1
|
108 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
109 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
nuclear@1
|
110 EXTERN(void) jpeg_idct_4x4
|
nuclear@1
|
111 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
112 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
nuclear@1
|
113 EXTERN(void) jpeg_idct_2x2
|
nuclear@1
|
114 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
115 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
nuclear@1
|
116 EXTERN(void) jpeg_idct_1x1
|
nuclear@1
|
117 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
118 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
nuclear@1
|
119
|
nuclear@1
|
120
|
nuclear@1
|
121 /*
|
nuclear@1
|
122 * Macros for handling fixed-point arithmetic; these are used by many
|
nuclear@1
|
123 * but not all of the DCT/IDCT modules.
|
nuclear@1
|
124 *
|
nuclear@1
|
125 * All values are expected to be of type INT32.
|
nuclear@1
|
126 * Fractional constants are scaled left by CONST_BITS bits.
|
nuclear@1
|
127 * CONST_BITS is defined within each module using these macros,
|
nuclear@1
|
128 * and may differ from one module to the next.
|
nuclear@1
|
129 */
|
nuclear@1
|
130
|
nuclear@1
|
131 #define ONE ((INT32) 1)
|
nuclear@1
|
132 #define CONST_SCALE (ONE << CONST_BITS)
|
nuclear@1
|
133
|
nuclear@1
|
134 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
nuclear@1
|
135 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
nuclear@1
|
136 * thus causing a lot of useless floating-point operations at run time.
|
nuclear@1
|
137 */
|
nuclear@1
|
138
|
nuclear@1
|
139 #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
nuclear@1
|
140
|
nuclear@1
|
141 /* Descale and correctly round an INT32 value that's scaled by N bits.
|
nuclear@1
|
142 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
nuclear@1
|
143 * the fudge factor is correct for either sign of X.
|
nuclear@1
|
144 */
|
nuclear@1
|
145
|
nuclear@1
|
146 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
nuclear@1
|
147
|
nuclear@1
|
148 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
nuclear@1
|
149 * This macro is used only when the two inputs will actually be no more than
|
nuclear@1
|
150 * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
nuclear@1
|
151 * full 32x32 multiply. This provides a useful speedup on many machines.
|
nuclear@1
|
152 * Unfortunately there is no way to specify a 16x16->32 multiply portably
|
nuclear@1
|
153 * in C, but some C compilers will do the right thing if you provide the
|
nuclear@1
|
154 * correct combination of casts.
|
nuclear@1
|
155 */
|
nuclear@1
|
156
|
nuclear@1
|
157 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
nuclear@1
|
158 #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
nuclear@1
|
159 #endif
|
nuclear@1
|
160 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
nuclear@1
|
161 #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
nuclear@1
|
162 #endif
|
nuclear@1
|
163
|
nuclear@1
|
164 #ifndef MULTIPLY16C16 /* default definition */
|
nuclear@1
|
165 #define MULTIPLY16C16(var,const) ((var) * (const))
|
nuclear@1
|
166 #endif
|
nuclear@1
|
167
|
nuclear@1
|
168 /* Same except both inputs are variables. */
|
nuclear@1
|
169
|
nuclear@1
|
170 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
nuclear@1
|
171 #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
nuclear@1
|
172 #endif
|
nuclear@1
|
173
|
nuclear@1
|
174 #ifndef MULTIPLY16V16 /* default definition */
|
nuclear@1
|
175 #define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
nuclear@1
|
176 #endif
|