rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jcdctmgr.c
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1994-1996, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This file contains the forward-DCT management logic.
|
nuclear@1
|
9 * This code selects a particular DCT implementation to be used,
|
nuclear@1
|
10 * and it performs related housekeeping chores including coefficient
|
nuclear@1
|
11 * quantization.
|
nuclear@1
|
12 */
|
nuclear@1
|
13
|
nuclear@1
|
14 #define JPEG_INTERNALS
|
nuclear@1
|
15 #include "jinclude.h"
|
nuclear@1
|
16 #include "jpeglib.h"
|
nuclear@1
|
17 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@1
|
18
|
nuclear@1
|
19
|
nuclear@1
|
20 /* Private subobject for this module */
|
nuclear@1
|
21
|
nuclear@1
|
22 typedef struct {
|
nuclear@1
|
23 struct jpeg_forward_dct pub; /* public fields */
|
nuclear@1
|
24
|
nuclear@1
|
25 /* Pointer to the DCT routine actually in use */
|
nuclear@1
|
26 forward_DCT_method_ptr do_dct;
|
nuclear@1
|
27
|
nuclear@1
|
28 /* The actual post-DCT divisors --- not identical to the quant table
|
nuclear@1
|
29 * entries, because of scaling (especially for an unnormalized DCT).
|
nuclear@1
|
30 * Each table is given in normal array order.
|
nuclear@1
|
31 */
|
nuclear@1
|
32 DCTELEM * divisors[NUM_QUANT_TBLS];
|
nuclear@1
|
33
|
nuclear@1
|
34 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
35 /* Same as above for the floating-point case. */
|
nuclear@1
|
36 float_DCT_method_ptr do_float_dct;
|
nuclear@1
|
37 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
nuclear@1
|
38 #endif
|
nuclear@1
|
39 } my_fdct_controller;
|
nuclear@1
|
40
|
nuclear@1
|
41 typedef my_fdct_controller * my_fdct_ptr;
|
nuclear@1
|
42
|
nuclear@1
|
43
|
nuclear@1
|
44 /*
|
nuclear@1
|
45 * Initialize for a processing pass.
|
nuclear@1
|
46 * Verify that all referenced Q-tables are present, and set up
|
nuclear@1
|
47 * the divisor table for each one.
|
nuclear@1
|
48 * In the current implementation, DCT of all components is done during
|
nuclear@1
|
49 * the first pass, even if only some components will be output in the
|
nuclear@1
|
50 * first scan. Hence all components should be examined here.
|
nuclear@1
|
51 */
|
nuclear@1
|
52
|
nuclear@1
|
53 METHODDEF(void)
|
nuclear@1
|
54 start_pass_fdctmgr (j_compress_ptr cinfo)
|
nuclear@1
|
55 {
|
nuclear@1
|
56 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
nuclear@1
|
57 int ci, qtblno, i;
|
nuclear@1
|
58 jpeg_component_info *compptr;
|
nuclear@1
|
59 JQUANT_TBL * qtbl;
|
nuclear@1
|
60 DCTELEM * dtbl;
|
nuclear@1
|
61
|
nuclear@1
|
62 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
nuclear@1
|
63 ci++, compptr++) {
|
nuclear@1
|
64 qtblno = compptr->quant_tbl_no;
|
nuclear@1
|
65 /* Make sure specified quantization table is present */
|
nuclear@1
|
66 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
nuclear@1
|
67 cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
nuclear@1
|
68 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
nuclear@1
|
69 qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
nuclear@1
|
70 /* Compute divisors for this quant table */
|
nuclear@1
|
71 /* We may do this more than once for same table, but it's not a big deal */
|
nuclear@1
|
72 switch (cinfo->dct_method) {
|
nuclear@1
|
73 #ifdef DCT_ISLOW_SUPPORTED
|
nuclear@1
|
74 case JDCT_ISLOW:
|
nuclear@1
|
75 /* For LL&M IDCT method, divisors are equal to raw quantization
|
nuclear@1
|
76 * coefficients multiplied by 8 (to counteract scaling).
|
nuclear@1
|
77 */
|
nuclear@1
|
78 if (fdct->divisors[qtblno] == NULL) {
|
nuclear@1
|
79 fdct->divisors[qtblno] = (DCTELEM *)
|
nuclear@1
|
80 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
81 DCTSIZE2 * SIZEOF(DCTELEM));
|
nuclear@1
|
82 }
|
nuclear@1
|
83 dtbl = fdct->divisors[qtblno];
|
nuclear@1
|
84 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@1
|
85 dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
nuclear@1
|
86 }
|
nuclear@1
|
87 break;
|
nuclear@1
|
88 #endif
|
nuclear@1
|
89 #ifdef DCT_IFAST_SUPPORTED
|
nuclear@1
|
90 case JDCT_IFAST:
|
nuclear@1
|
91 {
|
nuclear@1
|
92 /* For AA&N IDCT method, divisors are equal to quantization
|
nuclear@1
|
93 * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
nuclear@1
|
94 * scalefactor[0] = 1
|
nuclear@1
|
95 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
nuclear@1
|
96 * We apply a further scale factor of 8.
|
nuclear@1
|
97 */
|
nuclear@1
|
98 #define CONST_BITS 14
|
nuclear@1
|
99 static const INT16 aanscales[DCTSIZE2] = {
|
nuclear@1
|
100 /* precomputed values scaled up by 14 bits */
|
nuclear@1
|
101 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
nuclear@1
|
102 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
nuclear@1
|
103 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
nuclear@1
|
104 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
nuclear@1
|
105 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
nuclear@1
|
106 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
nuclear@1
|
107 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
nuclear@1
|
108 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
nuclear@1
|
109 };
|
nuclear@1
|
110 SHIFT_TEMPS
|
nuclear@1
|
111
|
nuclear@1
|
112 if (fdct->divisors[qtblno] == NULL) {
|
nuclear@1
|
113 fdct->divisors[qtblno] = (DCTELEM *)
|
nuclear@1
|
114 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
115 DCTSIZE2 * SIZEOF(DCTELEM));
|
nuclear@1
|
116 }
|
nuclear@1
|
117 dtbl = fdct->divisors[qtblno];
|
nuclear@1
|
118 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@1
|
119 dtbl[i] = (DCTELEM)
|
nuclear@1
|
120 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
nuclear@1
|
121 (INT32) aanscales[i]),
|
nuclear@1
|
122 CONST_BITS-3);
|
nuclear@1
|
123 }
|
nuclear@1
|
124 }
|
nuclear@1
|
125 break;
|
nuclear@1
|
126 #endif
|
nuclear@1
|
127 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
128 case JDCT_FLOAT:
|
nuclear@1
|
129 {
|
nuclear@1
|
130 /* For float AA&N IDCT method, divisors are equal to quantization
|
nuclear@1
|
131 * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
nuclear@1
|
132 * scalefactor[0] = 1
|
nuclear@1
|
133 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
nuclear@1
|
134 * We apply a further scale factor of 8.
|
nuclear@1
|
135 * What's actually stored is 1/divisor so that the inner loop can
|
nuclear@1
|
136 * use a multiplication rather than a division.
|
nuclear@1
|
137 */
|
nuclear@1
|
138 FAST_FLOAT * fdtbl;
|
nuclear@1
|
139 int row, col;
|
nuclear@1
|
140 static const double aanscalefactor[DCTSIZE] = {
|
nuclear@1
|
141 1.0, 1.387039845, 1.306562965, 1.175875602,
|
nuclear@1
|
142 1.0, 0.785694958, 0.541196100, 0.275899379
|
nuclear@1
|
143 };
|
nuclear@1
|
144
|
nuclear@1
|
145 if (fdct->float_divisors[qtblno] == NULL) {
|
nuclear@1
|
146 fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
nuclear@1
|
147 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
148 DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
nuclear@1
|
149 }
|
nuclear@1
|
150 fdtbl = fdct->float_divisors[qtblno];
|
nuclear@1
|
151 i = 0;
|
nuclear@1
|
152 for (row = 0; row < DCTSIZE; row++) {
|
nuclear@1
|
153 for (col = 0; col < DCTSIZE; col++) {
|
nuclear@1
|
154 fdtbl[i] = (FAST_FLOAT)
|
nuclear@1
|
155 (1.0 / (((double) qtbl->quantval[i] *
|
nuclear@1
|
156 aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
nuclear@1
|
157 i++;
|
nuclear@1
|
158 }
|
nuclear@1
|
159 }
|
nuclear@1
|
160 }
|
nuclear@1
|
161 break;
|
nuclear@1
|
162 #endif
|
nuclear@1
|
163 default:
|
nuclear@1
|
164 ERREXIT(cinfo, JERR_NOT_COMPILED);
|
nuclear@1
|
165 break;
|
nuclear@1
|
166 }
|
nuclear@1
|
167 }
|
nuclear@1
|
168 }
|
nuclear@1
|
169
|
nuclear@1
|
170
|
nuclear@1
|
171 /*
|
nuclear@1
|
172 * Perform forward DCT on one or more blocks of a component.
|
nuclear@1
|
173 *
|
nuclear@1
|
174 * The input samples are taken from the sample_data[] array starting at
|
nuclear@1
|
175 * position start_row/start_col, and moving to the right for any additional
|
nuclear@1
|
176 * blocks. The quantized coefficients are returned in coef_blocks[].
|
nuclear@1
|
177 */
|
nuclear@1
|
178
|
nuclear@1
|
179 METHODDEF(void)
|
nuclear@1
|
180 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
181 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
nuclear@1
|
182 JDIMENSION start_row, JDIMENSION start_col,
|
nuclear@1
|
183 JDIMENSION num_blocks)
|
nuclear@1
|
184 /* This version is used for integer DCT implementations. */
|
nuclear@1
|
185 {
|
nuclear@1
|
186 /* This routine is heavily used, so it's worth coding it tightly. */
|
nuclear@1
|
187 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
nuclear@1
|
188 forward_DCT_method_ptr do_dct = fdct->do_dct;
|
nuclear@1
|
189 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
nuclear@1
|
190 DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
nuclear@1
|
191 JDIMENSION bi;
|
nuclear@1
|
192
|
nuclear@1
|
193 sample_data += start_row; /* fold in the vertical offset once */
|
nuclear@1
|
194
|
nuclear@1
|
195 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
nuclear@1
|
196 /* Load data into workspace, applying unsigned->signed conversion */
|
nuclear@1
|
197 { register DCTELEM *workspaceptr;
|
nuclear@1
|
198 register JSAMPROW elemptr;
|
nuclear@1
|
199 register int elemr;
|
nuclear@1
|
200
|
nuclear@1
|
201 workspaceptr = workspace;
|
nuclear@1
|
202 for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
nuclear@1
|
203 elemptr = sample_data[elemr] + start_col;
|
nuclear@1
|
204 #if DCTSIZE == 8 /* unroll the inner loop */
|
nuclear@1
|
205 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
206 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
207 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
208 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
209 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
210 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
211 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
212 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
213 #else
|
nuclear@1
|
214 { register int elemc;
|
nuclear@1
|
215 for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
nuclear@1
|
216 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
nuclear@1
|
217 }
|
nuclear@1
|
218 }
|
nuclear@1
|
219 #endif
|
nuclear@1
|
220 }
|
nuclear@1
|
221 }
|
nuclear@1
|
222
|
nuclear@1
|
223 /* Perform the DCT */
|
nuclear@1
|
224 (*do_dct) (workspace);
|
nuclear@1
|
225
|
nuclear@1
|
226 /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
nuclear@1
|
227 { register DCTELEM temp, qval;
|
nuclear@1
|
228 register int i;
|
nuclear@1
|
229 register JCOEFPTR output_ptr = coef_blocks[bi];
|
nuclear@1
|
230
|
nuclear@1
|
231 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@1
|
232 qval = divisors[i];
|
nuclear@1
|
233 temp = workspace[i];
|
nuclear@1
|
234 /* Divide the coefficient value by qval, ensuring proper rounding.
|
nuclear@1
|
235 * Since C does not specify the direction of rounding for negative
|
nuclear@1
|
236 * quotients, we have to force the dividend positive for portability.
|
nuclear@1
|
237 *
|
nuclear@1
|
238 * In most files, at least half of the output values will be zero
|
nuclear@1
|
239 * (at default quantization settings, more like three-quarters...)
|
nuclear@1
|
240 * so we should ensure that this case is fast. On many machines,
|
nuclear@1
|
241 * a comparison is enough cheaper than a divide to make a special test
|
nuclear@1
|
242 * a win. Since both inputs will be nonnegative, we need only test
|
nuclear@1
|
243 * for a < b to discover whether a/b is 0.
|
nuclear@1
|
244 * If your machine's division is fast enough, define FAST_DIVIDE.
|
nuclear@1
|
245 */
|
nuclear@1
|
246 #ifdef FAST_DIVIDE
|
nuclear@1
|
247 #define DIVIDE_BY(a,b) a /= b
|
nuclear@1
|
248 #else
|
nuclear@1
|
249 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
nuclear@1
|
250 #endif
|
nuclear@1
|
251 if (temp < 0) {
|
nuclear@1
|
252 temp = -temp;
|
nuclear@1
|
253 temp += qval>>1; /* for rounding */
|
nuclear@1
|
254 DIVIDE_BY(temp, qval);
|
nuclear@1
|
255 temp = -temp;
|
nuclear@1
|
256 } else {
|
nuclear@1
|
257 temp += qval>>1; /* for rounding */
|
nuclear@1
|
258 DIVIDE_BY(temp, qval);
|
nuclear@1
|
259 }
|
nuclear@1
|
260 output_ptr[i] = (JCOEF) temp;
|
nuclear@1
|
261 }
|
nuclear@1
|
262 }
|
nuclear@1
|
263 }
|
nuclear@1
|
264 }
|
nuclear@1
|
265
|
nuclear@1
|
266
|
nuclear@1
|
267 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
268
|
nuclear@1
|
269 METHODDEF(void)
|
nuclear@1
|
270 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
nuclear@1
|
271 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
nuclear@1
|
272 JDIMENSION start_row, JDIMENSION start_col,
|
nuclear@1
|
273 JDIMENSION num_blocks)
|
nuclear@1
|
274 /* This version is used for floating-point DCT implementations. */
|
nuclear@1
|
275 {
|
nuclear@1
|
276 /* This routine is heavily used, so it's worth coding it tightly. */
|
nuclear@1
|
277 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
nuclear@1
|
278 float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
nuclear@1
|
279 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
nuclear@1
|
280 FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
nuclear@1
|
281 JDIMENSION bi;
|
nuclear@1
|
282
|
nuclear@1
|
283 sample_data += start_row; /* fold in the vertical offset once */
|
nuclear@1
|
284
|
nuclear@1
|
285 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
nuclear@1
|
286 /* Load data into workspace, applying unsigned->signed conversion */
|
nuclear@1
|
287 { register FAST_FLOAT *workspaceptr;
|
nuclear@1
|
288 register JSAMPROW elemptr;
|
nuclear@1
|
289 register int elemr;
|
nuclear@1
|
290
|
nuclear@1
|
291 workspaceptr = workspace;
|
nuclear@1
|
292 for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
nuclear@1
|
293 elemptr = sample_data[elemr] + start_col;
|
nuclear@1
|
294 #if DCTSIZE == 8 /* unroll the inner loop */
|
nuclear@1
|
295 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
296 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
297 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
298 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
299 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
300 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
301 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
302 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
303 #else
|
nuclear@1
|
304 { register int elemc;
|
nuclear@1
|
305 for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
nuclear@1
|
306 *workspaceptr++ = (FAST_FLOAT)
|
nuclear@1
|
307 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
nuclear@1
|
308 }
|
nuclear@1
|
309 }
|
nuclear@1
|
310 #endif
|
nuclear@1
|
311 }
|
nuclear@1
|
312 }
|
nuclear@1
|
313
|
nuclear@1
|
314 /* Perform the DCT */
|
nuclear@1
|
315 (*do_dct) (workspace);
|
nuclear@1
|
316
|
nuclear@1
|
317 /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
nuclear@1
|
318 { register FAST_FLOAT temp;
|
nuclear@1
|
319 register int i;
|
nuclear@1
|
320 register JCOEFPTR output_ptr = coef_blocks[bi];
|
nuclear@1
|
321
|
nuclear@1
|
322 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@1
|
323 /* Apply the quantization and scaling factor */
|
nuclear@1
|
324 temp = workspace[i] * divisors[i];
|
nuclear@1
|
325 /* Round to nearest integer.
|
nuclear@1
|
326 * Since C does not specify the direction of rounding for negative
|
nuclear@1
|
327 * quotients, we have to force the dividend positive for portability.
|
nuclear@1
|
328 * The maximum coefficient size is +-16K (for 12-bit data), so this
|
nuclear@1
|
329 * code should work for either 16-bit or 32-bit ints.
|
nuclear@1
|
330 */
|
nuclear@1
|
331 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
nuclear@1
|
332 }
|
nuclear@1
|
333 }
|
nuclear@1
|
334 }
|
nuclear@1
|
335 }
|
nuclear@1
|
336
|
nuclear@1
|
337 #endif /* DCT_FLOAT_SUPPORTED */
|
nuclear@1
|
338
|
nuclear@1
|
339
|
nuclear@1
|
340 /*
|
nuclear@1
|
341 * Initialize FDCT manager.
|
nuclear@1
|
342 */
|
nuclear@1
|
343
|
nuclear@1
|
344 GLOBAL(void)
|
nuclear@1
|
345 jinit_forward_dct (j_compress_ptr cinfo)
|
nuclear@1
|
346 {
|
nuclear@1
|
347 my_fdct_ptr fdct;
|
nuclear@1
|
348 int i;
|
nuclear@1
|
349
|
nuclear@1
|
350 fdct = (my_fdct_ptr)
|
nuclear@1
|
351 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
352 SIZEOF(my_fdct_controller));
|
nuclear@1
|
353 cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
nuclear@1
|
354 fdct->pub.start_pass = start_pass_fdctmgr;
|
nuclear@1
|
355
|
nuclear@1
|
356 switch (cinfo->dct_method) {
|
nuclear@1
|
357 #ifdef DCT_ISLOW_SUPPORTED
|
nuclear@1
|
358 case JDCT_ISLOW:
|
nuclear@1
|
359 fdct->pub.forward_DCT = forward_DCT;
|
nuclear@1
|
360 fdct->do_dct = jpeg_fdct_islow;
|
nuclear@1
|
361 break;
|
nuclear@1
|
362 #endif
|
nuclear@1
|
363 #ifdef DCT_IFAST_SUPPORTED
|
nuclear@1
|
364 case JDCT_IFAST:
|
nuclear@1
|
365 fdct->pub.forward_DCT = forward_DCT;
|
nuclear@1
|
366 fdct->do_dct = jpeg_fdct_ifast;
|
nuclear@1
|
367 break;
|
nuclear@1
|
368 #endif
|
nuclear@1
|
369 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
370 case JDCT_FLOAT:
|
nuclear@1
|
371 fdct->pub.forward_DCT = forward_DCT_float;
|
nuclear@1
|
372 fdct->do_float_dct = jpeg_fdct_float;
|
nuclear@1
|
373 break;
|
nuclear@1
|
374 #endif
|
nuclear@1
|
375 default:
|
nuclear@1
|
376 ERREXIT(cinfo, JERR_NOT_COMPILED);
|
nuclear@1
|
377 break;
|
nuclear@1
|
378 }
|
nuclear@1
|
379
|
nuclear@1
|
380 /* Mark divisor tables unallocated */
|
nuclear@1
|
381 for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
nuclear@1
|
382 fdct->divisors[i] = NULL;
|
nuclear@1
|
383 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
384 fdct->float_divisors[i] = NULL;
|
nuclear@1
|
385 #endif
|
nuclear@1
|
386 }
|
nuclear@1
|
387 }
|