dbf-halloween2015

annotate libs/vmath/quat_c.c @ 4:4316c0c879e9

fixed RUN script for macosx
author John Tsiombikas <nuclear@member.fsf.org>
date Sun, 01 Nov 2015 06:18:18 +0200
parents
children
rev   line source
nuclear@1 1 /*
nuclear@1 2 libvmath - a vector math library
nuclear@1 3 Copyright (C) 2004-2011 John Tsiombikas <nuclear@member.fsf.org>
nuclear@1 4
nuclear@1 5 This program is free software: you can redistribute it and/or modify
nuclear@1 6 it under the terms of the GNU Lesser General Public License as published
nuclear@1 7 by the Free Software Foundation, either version 3 of the License, or
nuclear@1 8 (at your option) any later version.
nuclear@1 9
nuclear@1 10 This program is distributed in the hope that it will be useful,
nuclear@1 11 but WITHOUT ANY WARRANTY; without even the implied warranty of
nuclear@1 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
nuclear@1 13 GNU Lesser General Public License for more details.
nuclear@1 14
nuclear@1 15 You should have received a copy of the GNU Lesser General Public License
nuclear@1 16 along with this program. If not, see <http://www.gnu.org/licenses/>.
nuclear@1 17 */
nuclear@1 18
nuclear@1 19
nuclear@1 20 #include <stdio.h>
nuclear@1 21 #include <math.h>
nuclear@1 22 #include "quat.h"
nuclear@1 23
nuclear@1 24 void quat_print(FILE *fp, quat_t q)
nuclear@1 25 {
nuclear@1 26 fprintf(fp, "([ %.4f %.4f %.4f ] %.4f)", q.x, q.y, q.z, q.w);
nuclear@1 27 }
nuclear@1 28
nuclear@1 29 quat_t quat_rotate(quat_t q, scalar_t angle, scalar_t x, scalar_t y, scalar_t z)
nuclear@1 30 {
nuclear@1 31 quat_t rq;
nuclear@1 32 scalar_t half_angle = angle * 0.5;
nuclear@1 33 scalar_t sin_half = sin(half_angle);
nuclear@1 34
nuclear@1 35 rq.w = cos(half_angle);
nuclear@1 36 rq.x = x * sin_half;
nuclear@1 37 rq.y = y * sin_half;
nuclear@1 38 rq.z = z * sin_half;
nuclear@1 39
nuclear@1 40 return quat_mul(q, rq);
nuclear@1 41 }
nuclear@1 42
nuclear@1 43 quat_t quat_rotate_quat(quat_t q, quat_t rotq)
nuclear@1 44 {
nuclear@1 45 return quat_mul(quat_mul(rotq, q), quat_conjugate(rotq));
nuclear@1 46 }
nuclear@1 47
nuclear@1 48 quat_t quat_slerp(quat_t q1, quat_t q2, scalar_t t)
nuclear@1 49 {
nuclear@1 50 quat_t res;
nuclear@1 51 scalar_t a, b, angle, sin_angle, dot;
nuclear@1 52
nuclear@1 53 dot = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z;
nuclear@1 54 if(dot < 0.0) {
nuclear@1 55 /* make sure we interpolate across the shortest arc */
nuclear@1 56 q1.x = -q1.x;
nuclear@1 57 q1.y = -q1.y;
nuclear@1 58 q1.z = -q1.z;
nuclear@1 59 q1.w = -q1.w;
nuclear@1 60 dot = -dot;
nuclear@1 61 }
nuclear@1 62
nuclear@1 63 /* clamp dot to [-1, 1] in order to avoid domain errors in acos due to
nuclear@1 64 * floating point imprecisions
nuclear@1 65 */
nuclear@1 66 if(dot < -1.0) dot = -1.0;
nuclear@1 67 if(dot > 1.0) dot = 1.0;
nuclear@1 68
nuclear@1 69 angle = acos(dot);
nuclear@1 70 sin_angle = sin(angle);
nuclear@1 71
nuclear@1 72 if(fabs(sin_angle) < SMALL_NUMBER) {
nuclear@1 73 /* for very small angles or completely opposite orientations
nuclear@1 74 * use linear interpolation to avoid div/zero (in the first case it makes sense,
nuclear@1 75 * the second case is pretty much undefined anyway I guess ...
nuclear@1 76 */
nuclear@1 77 a = 1.0f - t;
nuclear@1 78 b = t;
nuclear@1 79 } else {
nuclear@1 80 a = sin((1.0f - t) * angle) / sin_angle;
nuclear@1 81 b = sin(t * angle) / sin_angle;
nuclear@1 82 }
nuclear@1 83
nuclear@1 84 res.x = q1.x * a + q2.x * b;
nuclear@1 85 res.y = q1.y * a + q2.y * b;
nuclear@1 86 res.z = q1.z * a + q2.z * b;
nuclear@1 87 res.w = q1.w * a + q2.w * b;
nuclear@1 88 return res;
nuclear@1 89 }