rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jfdctflt.c
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1994-1996, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This file contains a floating-point implementation of the
|
nuclear@1
|
9 * forward DCT (Discrete Cosine Transform).
|
nuclear@1
|
10 *
|
nuclear@1
|
11 * This implementation should be more accurate than either of the integer
|
nuclear@1
|
12 * DCT implementations. However, it may not give the same results on all
|
nuclear@1
|
13 * machines because of differences in roundoff behavior. Speed will depend
|
nuclear@1
|
14 * on the hardware's floating point capacity.
|
nuclear@1
|
15 *
|
nuclear@1
|
16 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
nuclear@1
|
17 * on each column. Direct algorithms are also available, but they are
|
nuclear@1
|
18 * much more complex and seem not to be any faster when reduced to code.
|
nuclear@1
|
19 *
|
nuclear@1
|
20 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
nuclear@1
|
21 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
nuclear@1
|
22 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
nuclear@1
|
23 * JPEG textbook (see REFERENCES section in file README). The following code
|
nuclear@1
|
24 * is based directly on figure 4-8 in P&M.
|
nuclear@1
|
25 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
nuclear@1
|
26 * possible to arrange the computation so that many of the multiplies are
|
nuclear@1
|
27 * simple scalings of the final outputs. These multiplies can then be
|
nuclear@1
|
28 * folded into the multiplications or divisions by the JPEG quantization
|
nuclear@1
|
29 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
nuclear@1
|
30 * to be done in the DCT itself.
|
nuclear@1
|
31 * The primary disadvantage of this method is that with a fixed-point
|
nuclear@1
|
32 * implementation, accuracy is lost due to imprecise representation of the
|
nuclear@1
|
33 * scaled quantization values. However, that problem does not arise if
|
nuclear@1
|
34 * we use floating point arithmetic.
|
nuclear@1
|
35 */
|
nuclear@1
|
36
|
nuclear@1
|
37 #define JPEG_INTERNALS
|
nuclear@1
|
38 #include "jinclude.h"
|
nuclear@1
|
39 #include "jpeglib.h"
|
nuclear@1
|
40 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@1
|
41
|
nuclear@1
|
42 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
43
|
nuclear@1
|
44
|
nuclear@1
|
45 /*
|
nuclear@1
|
46 * This module is specialized to the case DCTSIZE = 8.
|
nuclear@1
|
47 */
|
nuclear@1
|
48
|
nuclear@1
|
49 #if DCTSIZE != 8
|
nuclear@1
|
50 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
nuclear@1
|
51 #endif
|
nuclear@1
|
52
|
nuclear@1
|
53
|
nuclear@1
|
54 /*
|
nuclear@1
|
55 * Perform the forward DCT on one block of samples.
|
nuclear@1
|
56 */
|
nuclear@1
|
57
|
nuclear@1
|
58 GLOBAL(void)
|
nuclear@1
|
59 jpeg_fdct_float (FAST_FLOAT * data)
|
nuclear@1
|
60 {
|
nuclear@1
|
61 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
nuclear@1
|
62 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
nuclear@1
|
63 FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
nuclear@1
|
64 FAST_FLOAT *dataptr;
|
nuclear@1
|
65 int ctr;
|
nuclear@1
|
66
|
nuclear@1
|
67 /* Pass 1: process rows. */
|
nuclear@1
|
68
|
nuclear@1
|
69 dataptr = data;
|
nuclear@1
|
70 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
nuclear@1
|
71 tmp0 = dataptr[0] + dataptr[7];
|
nuclear@1
|
72 tmp7 = dataptr[0] - dataptr[7];
|
nuclear@1
|
73 tmp1 = dataptr[1] + dataptr[6];
|
nuclear@1
|
74 tmp6 = dataptr[1] - dataptr[6];
|
nuclear@1
|
75 tmp2 = dataptr[2] + dataptr[5];
|
nuclear@1
|
76 tmp5 = dataptr[2] - dataptr[5];
|
nuclear@1
|
77 tmp3 = dataptr[3] + dataptr[4];
|
nuclear@1
|
78 tmp4 = dataptr[3] - dataptr[4];
|
nuclear@1
|
79
|
nuclear@1
|
80 /* Even part */
|
nuclear@1
|
81
|
nuclear@1
|
82 tmp10 = tmp0 + tmp3; /* phase 2 */
|
nuclear@1
|
83 tmp13 = tmp0 - tmp3;
|
nuclear@1
|
84 tmp11 = tmp1 + tmp2;
|
nuclear@1
|
85 tmp12 = tmp1 - tmp2;
|
nuclear@1
|
86
|
nuclear@1
|
87 dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
nuclear@1
|
88 dataptr[4] = tmp10 - tmp11;
|
nuclear@1
|
89
|
nuclear@1
|
90 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
nuclear@1
|
91 dataptr[2] = tmp13 + z1; /* phase 5 */
|
nuclear@1
|
92 dataptr[6] = tmp13 - z1;
|
nuclear@1
|
93
|
nuclear@1
|
94 /* Odd part */
|
nuclear@1
|
95
|
nuclear@1
|
96 tmp10 = tmp4 + tmp5; /* phase 2 */
|
nuclear@1
|
97 tmp11 = tmp5 + tmp6;
|
nuclear@1
|
98 tmp12 = tmp6 + tmp7;
|
nuclear@1
|
99
|
nuclear@1
|
100 /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
nuclear@1
|
101 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
nuclear@1
|
102 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
nuclear@1
|
103 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
nuclear@1
|
104 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
nuclear@1
|
105
|
nuclear@1
|
106 z11 = tmp7 + z3; /* phase 5 */
|
nuclear@1
|
107 z13 = tmp7 - z3;
|
nuclear@1
|
108
|
nuclear@1
|
109 dataptr[5] = z13 + z2; /* phase 6 */
|
nuclear@1
|
110 dataptr[3] = z13 - z2;
|
nuclear@1
|
111 dataptr[1] = z11 + z4;
|
nuclear@1
|
112 dataptr[7] = z11 - z4;
|
nuclear@1
|
113
|
nuclear@1
|
114 dataptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@1
|
115 }
|
nuclear@1
|
116
|
nuclear@1
|
117 /* Pass 2: process columns. */
|
nuclear@1
|
118
|
nuclear@1
|
119 dataptr = data;
|
nuclear@1
|
120 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
nuclear@1
|
121 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
nuclear@1
|
122 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
nuclear@1
|
123 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
nuclear@1
|
124 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
nuclear@1
|
125 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
nuclear@1
|
126 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
nuclear@1
|
127 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
nuclear@1
|
128 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
nuclear@1
|
129
|
nuclear@1
|
130 /* Even part */
|
nuclear@1
|
131
|
nuclear@1
|
132 tmp10 = tmp0 + tmp3; /* phase 2 */
|
nuclear@1
|
133 tmp13 = tmp0 - tmp3;
|
nuclear@1
|
134 tmp11 = tmp1 + tmp2;
|
nuclear@1
|
135 tmp12 = tmp1 - tmp2;
|
nuclear@1
|
136
|
nuclear@1
|
137 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
nuclear@1
|
138 dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
nuclear@1
|
139
|
nuclear@1
|
140 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
nuclear@1
|
141 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
nuclear@1
|
142 dataptr[DCTSIZE*6] = tmp13 - z1;
|
nuclear@1
|
143
|
nuclear@1
|
144 /* Odd part */
|
nuclear@1
|
145
|
nuclear@1
|
146 tmp10 = tmp4 + tmp5; /* phase 2 */
|
nuclear@1
|
147 tmp11 = tmp5 + tmp6;
|
nuclear@1
|
148 tmp12 = tmp6 + tmp7;
|
nuclear@1
|
149
|
nuclear@1
|
150 /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
nuclear@1
|
151 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
nuclear@1
|
152 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
nuclear@1
|
153 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
nuclear@1
|
154 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
nuclear@1
|
155
|
nuclear@1
|
156 z11 = tmp7 + z3; /* phase 5 */
|
nuclear@1
|
157 z13 = tmp7 - z3;
|
nuclear@1
|
158
|
nuclear@1
|
159 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
nuclear@1
|
160 dataptr[DCTSIZE*3] = z13 - z2;
|
nuclear@1
|
161 dataptr[DCTSIZE*1] = z11 + z4;
|
nuclear@1
|
162 dataptr[DCTSIZE*7] = z11 - z4;
|
nuclear@1
|
163
|
nuclear@1
|
164 dataptr++; /* advance pointer to next column */
|
nuclear@1
|
165 }
|
nuclear@1
|
166 }
|
nuclear@1
|
167
|
nuclear@1
|
168 #endif /* DCT_FLOAT_SUPPORTED */
|