rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jddctmgr.c
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1994-1996, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This file contains the inverse-DCT management logic.
|
nuclear@1
|
9 * This code selects a particular IDCT implementation to be used,
|
nuclear@1
|
10 * and it performs related housekeeping chores. No code in this file
|
nuclear@1
|
11 * is executed per IDCT step, only during output pass setup.
|
nuclear@1
|
12 *
|
nuclear@1
|
13 * Note that the IDCT routines are responsible for performing coefficient
|
nuclear@1
|
14 * dequantization as well as the IDCT proper. This module sets up the
|
nuclear@1
|
15 * dequantization multiplier table needed by the IDCT routine.
|
nuclear@1
|
16 */
|
nuclear@1
|
17
|
nuclear@1
|
18 #define JPEG_INTERNALS
|
nuclear@1
|
19 #include "jinclude.h"
|
nuclear@1
|
20 #include "jpeglib.h"
|
nuclear@1
|
21 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@1
|
22
|
nuclear@1
|
23
|
nuclear@1
|
24 /*
|
nuclear@1
|
25 * The decompressor input side (jdinput.c) saves away the appropriate
|
nuclear@1
|
26 * quantization table for each component at the start of the first scan
|
nuclear@1
|
27 * involving that component. (This is necessary in order to correctly
|
nuclear@1
|
28 * decode files that reuse Q-table slots.)
|
nuclear@1
|
29 * When we are ready to make an output pass, the saved Q-table is converted
|
nuclear@1
|
30 * to a multiplier table that will actually be used by the IDCT routine.
|
nuclear@1
|
31 * The multiplier table contents are IDCT-method-dependent. To support
|
nuclear@1
|
32 * application changes in IDCT method between scans, we can remake the
|
nuclear@1
|
33 * multiplier tables if necessary.
|
nuclear@1
|
34 * In buffered-image mode, the first output pass may occur before any data
|
nuclear@1
|
35 * has been seen for some components, and thus before their Q-tables have
|
nuclear@1
|
36 * been saved away. To handle this case, multiplier tables are preset
|
nuclear@1
|
37 * to zeroes; the result of the IDCT will be a neutral gray level.
|
nuclear@1
|
38 */
|
nuclear@1
|
39
|
nuclear@1
|
40
|
nuclear@1
|
41 /* Private subobject for this module */
|
nuclear@1
|
42
|
nuclear@1
|
43 typedef struct {
|
nuclear@1
|
44 struct jpeg_inverse_dct pub; /* public fields */
|
nuclear@1
|
45
|
nuclear@1
|
46 /* This array contains the IDCT method code that each multiplier table
|
nuclear@1
|
47 * is currently set up for, or -1 if it's not yet set up.
|
nuclear@1
|
48 * The actual multiplier tables are pointed to by dct_table in the
|
nuclear@1
|
49 * per-component comp_info structures.
|
nuclear@1
|
50 */
|
nuclear@1
|
51 int cur_method[MAX_COMPONENTS];
|
nuclear@1
|
52 } my_idct_controller;
|
nuclear@1
|
53
|
nuclear@1
|
54 typedef my_idct_controller * my_idct_ptr;
|
nuclear@1
|
55
|
nuclear@1
|
56
|
nuclear@1
|
57 /* Allocated multiplier tables: big enough for any supported variant */
|
nuclear@1
|
58
|
nuclear@1
|
59 typedef union {
|
nuclear@1
|
60 ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
nuclear@1
|
61 #ifdef DCT_IFAST_SUPPORTED
|
nuclear@1
|
62 IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
nuclear@1
|
63 #endif
|
nuclear@1
|
64 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
65 FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
nuclear@1
|
66 #endif
|
nuclear@1
|
67 } multiplier_table;
|
nuclear@1
|
68
|
nuclear@1
|
69
|
nuclear@1
|
70 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
nuclear@1
|
71 * so be sure to compile that code if either ISLOW or SCALING is requested.
|
nuclear@1
|
72 */
|
nuclear@1
|
73 #ifdef DCT_ISLOW_SUPPORTED
|
nuclear@1
|
74 #define PROVIDE_ISLOW_TABLES
|
nuclear@1
|
75 #else
|
nuclear@1
|
76 #ifdef IDCT_SCALING_SUPPORTED
|
nuclear@1
|
77 #define PROVIDE_ISLOW_TABLES
|
nuclear@1
|
78 #endif
|
nuclear@1
|
79 #endif
|
nuclear@1
|
80
|
nuclear@1
|
81
|
nuclear@1
|
82 /*
|
nuclear@1
|
83 * Prepare for an output pass.
|
nuclear@1
|
84 * Here we select the proper IDCT routine for each component and build
|
nuclear@1
|
85 * a matching multiplier table.
|
nuclear@1
|
86 */
|
nuclear@1
|
87
|
nuclear@1
|
88 METHODDEF(void)
|
nuclear@1
|
89 start_pass (j_decompress_ptr cinfo)
|
nuclear@1
|
90 {
|
nuclear@1
|
91 my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
nuclear@1
|
92 int ci, i;
|
nuclear@1
|
93 jpeg_component_info *compptr;
|
nuclear@1
|
94 int method = 0;
|
nuclear@1
|
95 inverse_DCT_method_ptr method_ptr = NULL;
|
nuclear@1
|
96 JQUANT_TBL * qtbl;
|
nuclear@1
|
97
|
nuclear@1
|
98 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
nuclear@1
|
99 ci++, compptr++) {
|
nuclear@1
|
100 /* Select the proper IDCT routine for this component's scaling */
|
nuclear@1
|
101 switch (compptr->DCT_scaled_size) {
|
nuclear@1
|
102 #ifdef IDCT_SCALING_SUPPORTED
|
nuclear@1
|
103 case 1:
|
nuclear@1
|
104 method_ptr = jpeg_idct_1x1;
|
nuclear@1
|
105 method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
nuclear@1
|
106 break;
|
nuclear@1
|
107 case 2:
|
nuclear@1
|
108 method_ptr = jpeg_idct_2x2;
|
nuclear@1
|
109 method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
nuclear@1
|
110 break;
|
nuclear@1
|
111 case 4:
|
nuclear@1
|
112 method_ptr = jpeg_idct_4x4;
|
nuclear@1
|
113 method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
nuclear@1
|
114 break;
|
nuclear@1
|
115 #endif
|
nuclear@1
|
116 case DCTSIZE:
|
nuclear@1
|
117 switch (cinfo->dct_method) {
|
nuclear@1
|
118 #ifdef DCT_ISLOW_SUPPORTED
|
nuclear@1
|
119 case JDCT_ISLOW:
|
nuclear@1
|
120 method_ptr = jpeg_idct_islow;
|
nuclear@1
|
121 method = JDCT_ISLOW;
|
nuclear@1
|
122 break;
|
nuclear@1
|
123 #endif
|
nuclear@1
|
124 #ifdef DCT_IFAST_SUPPORTED
|
nuclear@1
|
125 case JDCT_IFAST:
|
nuclear@1
|
126 method_ptr = jpeg_idct_ifast;
|
nuclear@1
|
127 method = JDCT_IFAST;
|
nuclear@1
|
128 break;
|
nuclear@1
|
129 #endif
|
nuclear@1
|
130 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
131 case JDCT_FLOAT:
|
nuclear@1
|
132 method_ptr = jpeg_idct_float;
|
nuclear@1
|
133 method = JDCT_FLOAT;
|
nuclear@1
|
134 break;
|
nuclear@1
|
135 #endif
|
nuclear@1
|
136 default:
|
nuclear@1
|
137 ERREXIT(cinfo, JERR_NOT_COMPILED);
|
nuclear@1
|
138 break;
|
nuclear@1
|
139 }
|
nuclear@1
|
140 break;
|
nuclear@1
|
141 default:
|
nuclear@1
|
142 ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
|
nuclear@1
|
143 break;
|
nuclear@1
|
144 }
|
nuclear@1
|
145 idct->pub.inverse_DCT[ci] = method_ptr;
|
nuclear@1
|
146 /* Create multiplier table from quant table.
|
nuclear@1
|
147 * However, we can skip this if the component is uninteresting
|
nuclear@1
|
148 * or if we already built the table. Also, if no quant table
|
nuclear@1
|
149 * has yet been saved for the component, we leave the
|
nuclear@1
|
150 * multiplier table all-zero; we'll be reading zeroes from the
|
nuclear@1
|
151 * coefficient controller's buffer anyway.
|
nuclear@1
|
152 */
|
nuclear@1
|
153 if (! compptr->component_needed || idct->cur_method[ci] == method)
|
nuclear@1
|
154 continue;
|
nuclear@1
|
155 qtbl = compptr->quant_table;
|
nuclear@1
|
156 if (qtbl == NULL) /* happens if no data yet for component */
|
nuclear@1
|
157 continue;
|
nuclear@1
|
158 idct->cur_method[ci] = method;
|
nuclear@1
|
159 switch (method) {
|
nuclear@1
|
160 #ifdef PROVIDE_ISLOW_TABLES
|
nuclear@1
|
161 case JDCT_ISLOW:
|
nuclear@1
|
162 {
|
nuclear@1
|
163 /* For LL&M IDCT method, multipliers are equal to raw quantization
|
nuclear@1
|
164 * coefficients, but are stored as ints to ensure access efficiency.
|
nuclear@1
|
165 */
|
nuclear@1
|
166 ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
nuclear@1
|
167 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@1
|
168 ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
nuclear@1
|
169 }
|
nuclear@1
|
170 }
|
nuclear@1
|
171 break;
|
nuclear@1
|
172 #endif
|
nuclear@1
|
173 #ifdef DCT_IFAST_SUPPORTED
|
nuclear@1
|
174 case JDCT_IFAST:
|
nuclear@1
|
175 {
|
nuclear@1
|
176 /* For AA&N IDCT method, multipliers are equal to quantization
|
nuclear@1
|
177 * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
nuclear@1
|
178 * scalefactor[0] = 1
|
nuclear@1
|
179 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
nuclear@1
|
180 * For integer operation, the multiplier table is to be scaled by
|
nuclear@1
|
181 * IFAST_SCALE_BITS.
|
nuclear@1
|
182 */
|
nuclear@1
|
183 IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
nuclear@1
|
184 #define CONST_BITS 14
|
nuclear@1
|
185 static const INT16 aanscales[DCTSIZE2] = {
|
nuclear@1
|
186 /* precomputed values scaled up by 14 bits */
|
nuclear@1
|
187 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
nuclear@1
|
188 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
nuclear@1
|
189 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
nuclear@1
|
190 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
nuclear@1
|
191 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
nuclear@1
|
192 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
nuclear@1
|
193 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
nuclear@1
|
194 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
nuclear@1
|
195 };
|
nuclear@1
|
196 SHIFT_TEMPS
|
nuclear@1
|
197
|
nuclear@1
|
198 for (i = 0; i < DCTSIZE2; i++) {
|
nuclear@1
|
199 ifmtbl[i] = (IFAST_MULT_TYPE)
|
nuclear@1
|
200 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
nuclear@1
|
201 (INT32) aanscales[i]),
|
nuclear@1
|
202 CONST_BITS-IFAST_SCALE_BITS);
|
nuclear@1
|
203 }
|
nuclear@1
|
204 }
|
nuclear@1
|
205 break;
|
nuclear@1
|
206 #endif
|
nuclear@1
|
207 #ifdef DCT_FLOAT_SUPPORTED
|
nuclear@1
|
208 case JDCT_FLOAT:
|
nuclear@1
|
209 {
|
nuclear@1
|
210 /* For float AA&N IDCT method, multipliers are equal to quantization
|
nuclear@1
|
211 * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
nuclear@1
|
212 * scalefactor[0] = 1
|
nuclear@1
|
213 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
nuclear@1
|
214 */
|
nuclear@1
|
215 FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
nuclear@1
|
216 int row, col;
|
nuclear@1
|
217 static const double aanscalefactor[DCTSIZE] = {
|
nuclear@1
|
218 1.0, 1.387039845, 1.306562965, 1.175875602,
|
nuclear@1
|
219 1.0, 0.785694958, 0.541196100, 0.275899379
|
nuclear@1
|
220 };
|
nuclear@1
|
221
|
nuclear@1
|
222 i = 0;
|
nuclear@1
|
223 for (row = 0; row < DCTSIZE; row++) {
|
nuclear@1
|
224 for (col = 0; col < DCTSIZE; col++) {
|
nuclear@1
|
225 fmtbl[i] = (FLOAT_MULT_TYPE)
|
nuclear@1
|
226 ((double) qtbl->quantval[i] *
|
nuclear@1
|
227 aanscalefactor[row] * aanscalefactor[col]);
|
nuclear@1
|
228 i++;
|
nuclear@1
|
229 }
|
nuclear@1
|
230 }
|
nuclear@1
|
231 }
|
nuclear@1
|
232 break;
|
nuclear@1
|
233 #endif
|
nuclear@1
|
234 default:
|
nuclear@1
|
235 ERREXIT(cinfo, JERR_NOT_COMPILED);
|
nuclear@1
|
236 break;
|
nuclear@1
|
237 }
|
nuclear@1
|
238 }
|
nuclear@1
|
239 }
|
nuclear@1
|
240
|
nuclear@1
|
241
|
nuclear@1
|
242 /*
|
nuclear@1
|
243 * Initialize IDCT manager.
|
nuclear@1
|
244 */
|
nuclear@1
|
245
|
nuclear@1
|
246 GLOBAL(void)
|
nuclear@1
|
247 jinit_inverse_dct (j_decompress_ptr cinfo)
|
nuclear@1
|
248 {
|
nuclear@1
|
249 my_idct_ptr idct;
|
nuclear@1
|
250 int ci;
|
nuclear@1
|
251 jpeg_component_info *compptr;
|
nuclear@1
|
252
|
nuclear@1
|
253 idct = (my_idct_ptr)
|
nuclear@1
|
254 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
255 SIZEOF(my_idct_controller));
|
nuclear@1
|
256 cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
nuclear@1
|
257 idct->pub.start_pass = start_pass;
|
nuclear@1
|
258
|
nuclear@1
|
259 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
nuclear@1
|
260 ci++, compptr++) {
|
nuclear@1
|
261 /* Allocate and pre-zero a multiplier table for each component */
|
nuclear@1
|
262 compptr->dct_table =
|
nuclear@1
|
263 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
264 SIZEOF(multiplier_table));
|
nuclear@1
|
265 MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
nuclear@1
|
266 /* Mark multiplier table not yet set up for any method */
|
nuclear@1
|
267 idct->cur_method[ci] = -1;
|
nuclear@1
|
268 }
|
nuclear@1
|
269 }
|