rev |
line source |
nuclear@1
|
1 /*
|
nuclear@1
|
2 * jccoefct.c
|
nuclear@1
|
3 *
|
nuclear@1
|
4 * Copyright (C) 1994-1997, Thomas G. Lane.
|
nuclear@1
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@1
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@1
|
7 *
|
nuclear@1
|
8 * This file contains the coefficient buffer controller for compression.
|
nuclear@1
|
9 * This controller is the top level of the JPEG compressor proper.
|
nuclear@1
|
10 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
nuclear@1
|
11 */
|
nuclear@1
|
12
|
nuclear@1
|
13 #define JPEG_INTERNALS
|
nuclear@1
|
14 #include "jinclude.h"
|
nuclear@1
|
15 #include "jpeglib.h"
|
nuclear@1
|
16
|
nuclear@1
|
17
|
nuclear@1
|
18 /* We use a full-image coefficient buffer when doing Huffman optimization,
|
nuclear@1
|
19 * and also for writing multiple-scan JPEG files. In all cases, the DCT
|
nuclear@1
|
20 * step is run during the first pass, and subsequent passes need only read
|
nuclear@1
|
21 * the buffered coefficients.
|
nuclear@1
|
22 */
|
nuclear@1
|
23 #ifdef ENTROPY_OPT_SUPPORTED
|
nuclear@1
|
24 #define FULL_COEF_BUFFER_SUPPORTED
|
nuclear@1
|
25 #else
|
nuclear@1
|
26 #ifdef C_MULTISCAN_FILES_SUPPORTED
|
nuclear@1
|
27 #define FULL_COEF_BUFFER_SUPPORTED
|
nuclear@1
|
28 #endif
|
nuclear@1
|
29 #endif
|
nuclear@1
|
30
|
nuclear@1
|
31
|
nuclear@1
|
32 /* Private buffer controller object */
|
nuclear@1
|
33
|
nuclear@1
|
34 typedef struct {
|
nuclear@1
|
35 struct jpeg_c_coef_controller pub; /* public fields */
|
nuclear@1
|
36
|
nuclear@1
|
37 JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
nuclear@1
|
38 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
nuclear@1
|
39 int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
nuclear@1
|
40 int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
nuclear@1
|
41
|
nuclear@1
|
42 /* For single-pass compression, it's sufficient to buffer just one MCU
|
nuclear@1
|
43 * (although this may prove a bit slow in practice). We allocate a
|
nuclear@1
|
44 * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
nuclear@1
|
45 * MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
nuclear@1
|
46 * it's not really very big; this is to keep the module interfaces unchanged
|
nuclear@1
|
47 * when a large coefficient buffer is necessary.)
|
nuclear@1
|
48 * In multi-pass modes, this array points to the current MCU's blocks
|
nuclear@1
|
49 * within the virtual arrays.
|
nuclear@1
|
50 */
|
nuclear@1
|
51 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
nuclear@1
|
52
|
nuclear@1
|
53 /* In multi-pass modes, we need a virtual block array for each component. */
|
nuclear@1
|
54 jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
nuclear@1
|
55 } my_coef_controller;
|
nuclear@1
|
56
|
nuclear@1
|
57 typedef my_coef_controller * my_coef_ptr;
|
nuclear@1
|
58
|
nuclear@1
|
59
|
nuclear@1
|
60 /* Forward declarations */
|
nuclear@1
|
61 METHODDEF(boolean) compress_data
|
nuclear@1
|
62 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
nuclear@1
|
63 #ifdef FULL_COEF_BUFFER_SUPPORTED
|
nuclear@1
|
64 METHODDEF(boolean) compress_first_pass
|
nuclear@1
|
65 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
nuclear@1
|
66 METHODDEF(boolean) compress_output
|
nuclear@1
|
67 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
nuclear@1
|
68 #endif
|
nuclear@1
|
69
|
nuclear@1
|
70
|
nuclear@1
|
71 LOCAL(void)
|
nuclear@1
|
72 start_iMCU_row (j_compress_ptr cinfo)
|
nuclear@1
|
73 /* Reset within-iMCU-row counters for a new row */
|
nuclear@1
|
74 {
|
nuclear@1
|
75 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@1
|
76
|
nuclear@1
|
77 /* In an interleaved scan, an MCU row is the same as an iMCU row.
|
nuclear@1
|
78 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
nuclear@1
|
79 * But at the bottom of the image, process only what's left.
|
nuclear@1
|
80 */
|
nuclear@1
|
81 if (cinfo->comps_in_scan > 1) {
|
nuclear@1
|
82 coef->MCU_rows_per_iMCU_row = 1;
|
nuclear@1
|
83 } else {
|
nuclear@1
|
84 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
nuclear@1
|
85 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
nuclear@1
|
86 else
|
nuclear@1
|
87 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
nuclear@1
|
88 }
|
nuclear@1
|
89
|
nuclear@1
|
90 coef->mcu_ctr = 0;
|
nuclear@1
|
91 coef->MCU_vert_offset = 0;
|
nuclear@1
|
92 }
|
nuclear@1
|
93
|
nuclear@1
|
94
|
nuclear@1
|
95 /*
|
nuclear@1
|
96 * Initialize for a processing pass.
|
nuclear@1
|
97 */
|
nuclear@1
|
98
|
nuclear@1
|
99 METHODDEF(void)
|
nuclear@1
|
100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
nuclear@1
|
101 {
|
nuclear@1
|
102 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@1
|
103
|
nuclear@1
|
104 coef->iMCU_row_num = 0;
|
nuclear@1
|
105 start_iMCU_row(cinfo);
|
nuclear@1
|
106
|
nuclear@1
|
107 switch (pass_mode) {
|
nuclear@1
|
108 case JBUF_PASS_THRU:
|
nuclear@1
|
109 if (coef->whole_image[0] != NULL)
|
nuclear@1
|
110 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
nuclear@1
|
111 coef->pub.compress_data = compress_data;
|
nuclear@1
|
112 break;
|
nuclear@1
|
113 #ifdef FULL_COEF_BUFFER_SUPPORTED
|
nuclear@1
|
114 case JBUF_SAVE_AND_PASS:
|
nuclear@1
|
115 if (coef->whole_image[0] == NULL)
|
nuclear@1
|
116 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
nuclear@1
|
117 coef->pub.compress_data = compress_first_pass;
|
nuclear@1
|
118 break;
|
nuclear@1
|
119 case JBUF_CRANK_DEST:
|
nuclear@1
|
120 if (coef->whole_image[0] == NULL)
|
nuclear@1
|
121 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
nuclear@1
|
122 coef->pub.compress_data = compress_output;
|
nuclear@1
|
123 break;
|
nuclear@1
|
124 #endif
|
nuclear@1
|
125 default:
|
nuclear@1
|
126 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
nuclear@1
|
127 break;
|
nuclear@1
|
128 }
|
nuclear@1
|
129 }
|
nuclear@1
|
130
|
nuclear@1
|
131
|
nuclear@1
|
132 /*
|
nuclear@1
|
133 * Process some data in the single-pass case.
|
nuclear@1
|
134 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
nuclear@1
|
135 * per call, ie, v_samp_factor block rows for each component in the image.
|
nuclear@1
|
136 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
nuclear@1
|
137 *
|
nuclear@1
|
138 * NB: input_buf contains a plane for each component in image,
|
nuclear@1
|
139 * which we index according to the component's SOF position.
|
nuclear@1
|
140 */
|
nuclear@1
|
141
|
nuclear@1
|
142 METHODDEF(boolean)
|
nuclear@1
|
143 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
nuclear@1
|
144 {
|
nuclear@1
|
145 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@1
|
146 JDIMENSION MCU_col_num; /* index of current MCU within row */
|
nuclear@1
|
147 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
nuclear@1
|
148 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
nuclear@1
|
149 int blkn, bi, ci, yindex, yoffset, blockcnt;
|
nuclear@1
|
150 JDIMENSION ypos, xpos;
|
nuclear@1
|
151 jpeg_component_info *compptr;
|
nuclear@1
|
152
|
nuclear@1
|
153 /* Loop to write as much as one whole iMCU row */
|
nuclear@1
|
154 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
nuclear@1
|
155 yoffset++) {
|
nuclear@1
|
156 for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
nuclear@1
|
157 MCU_col_num++) {
|
nuclear@1
|
158 /* Determine where data comes from in input_buf and do the DCT thing.
|
nuclear@1
|
159 * Each call on forward_DCT processes a horizontal row of DCT blocks
|
nuclear@1
|
160 * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
nuclear@1
|
161 * sequentially. Dummy blocks at the right or bottom edge are filled in
|
nuclear@1
|
162 * specially. The data in them does not matter for image reconstruction,
|
nuclear@1
|
163 * so we fill them with values that will encode to the smallest amount of
|
nuclear@1
|
164 * data, viz: all zeroes in the AC entries, DC entries equal to previous
|
nuclear@1
|
165 * block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
nuclear@1
|
166 */
|
nuclear@1
|
167 blkn = 0;
|
nuclear@1
|
168 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@1
|
169 compptr = cinfo->cur_comp_info[ci];
|
nuclear@1
|
170 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
nuclear@1
|
171 : compptr->last_col_width;
|
nuclear@1
|
172 xpos = MCU_col_num * compptr->MCU_sample_width;
|
nuclear@1
|
173 ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
|
nuclear@1
|
174 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
nuclear@1
|
175 if (coef->iMCU_row_num < last_iMCU_row ||
|
nuclear@1
|
176 yoffset+yindex < compptr->last_row_height) {
|
nuclear@1
|
177 (*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
nuclear@1
|
178 input_buf[compptr->component_index],
|
nuclear@1
|
179 coef->MCU_buffer[blkn],
|
nuclear@1
|
180 ypos, xpos, (JDIMENSION) blockcnt);
|
nuclear@1
|
181 if (blockcnt < compptr->MCU_width) {
|
nuclear@1
|
182 /* Create some dummy blocks at the right edge of the image. */
|
nuclear@1
|
183 jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
nuclear@1
|
184 (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
nuclear@1
|
185 for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
nuclear@1
|
186 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
nuclear@1
|
187 }
|
nuclear@1
|
188 }
|
nuclear@1
|
189 } else {
|
nuclear@1
|
190 /* Create a row of dummy blocks at the bottom of the image. */
|
nuclear@1
|
191 jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
nuclear@1
|
192 compptr->MCU_width * SIZEOF(JBLOCK));
|
nuclear@1
|
193 for (bi = 0; bi < compptr->MCU_width; bi++) {
|
nuclear@1
|
194 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
nuclear@1
|
195 }
|
nuclear@1
|
196 }
|
nuclear@1
|
197 blkn += compptr->MCU_width;
|
nuclear@1
|
198 ypos += DCTSIZE;
|
nuclear@1
|
199 }
|
nuclear@1
|
200 }
|
nuclear@1
|
201 /* Try to write the MCU. In event of a suspension failure, we will
|
nuclear@1
|
202 * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
nuclear@1
|
203 */
|
nuclear@1
|
204 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
nuclear@1
|
205 /* Suspension forced; update state counters and exit */
|
nuclear@1
|
206 coef->MCU_vert_offset = yoffset;
|
nuclear@1
|
207 coef->mcu_ctr = MCU_col_num;
|
nuclear@1
|
208 return FALSE;
|
nuclear@1
|
209 }
|
nuclear@1
|
210 }
|
nuclear@1
|
211 /* Completed an MCU row, but perhaps not an iMCU row */
|
nuclear@1
|
212 coef->mcu_ctr = 0;
|
nuclear@1
|
213 }
|
nuclear@1
|
214 /* Completed the iMCU row, advance counters for next one */
|
nuclear@1
|
215 coef->iMCU_row_num++;
|
nuclear@1
|
216 start_iMCU_row(cinfo);
|
nuclear@1
|
217 return TRUE;
|
nuclear@1
|
218 }
|
nuclear@1
|
219
|
nuclear@1
|
220
|
nuclear@1
|
221 #ifdef FULL_COEF_BUFFER_SUPPORTED
|
nuclear@1
|
222
|
nuclear@1
|
223 /*
|
nuclear@1
|
224 * Process some data in the first pass of a multi-pass case.
|
nuclear@1
|
225 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
nuclear@1
|
226 * per call, ie, v_samp_factor block rows for each component in the image.
|
nuclear@1
|
227 * This amount of data is read from the source buffer, DCT'd and quantized,
|
nuclear@1
|
228 * and saved into the virtual arrays. We also generate suitable dummy blocks
|
nuclear@1
|
229 * as needed at the right and lower edges. (The dummy blocks are constructed
|
nuclear@1
|
230 * in the virtual arrays, which have been padded appropriately.) This makes
|
nuclear@1
|
231 * it possible for subsequent passes not to worry about real vs. dummy blocks.
|
nuclear@1
|
232 *
|
nuclear@1
|
233 * We must also emit the data to the entropy encoder. This is conveniently
|
nuclear@1
|
234 * done by calling compress_output() after we've loaded the current strip
|
nuclear@1
|
235 * of the virtual arrays.
|
nuclear@1
|
236 *
|
nuclear@1
|
237 * NB: input_buf contains a plane for each component in image. All
|
nuclear@1
|
238 * components are DCT'd and loaded into the virtual arrays in this pass.
|
nuclear@1
|
239 * However, it may be that only a subset of the components are emitted to
|
nuclear@1
|
240 * the entropy encoder during this first pass; be careful about looking
|
nuclear@1
|
241 * at the scan-dependent variables (MCU dimensions, etc).
|
nuclear@1
|
242 */
|
nuclear@1
|
243
|
nuclear@1
|
244 METHODDEF(boolean)
|
nuclear@1
|
245 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
nuclear@1
|
246 {
|
nuclear@1
|
247 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@1
|
248 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
nuclear@1
|
249 JDIMENSION blocks_across, MCUs_across, MCUindex;
|
nuclear@1
|
250 int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
nuclear@1
|
251 JCOEF lastDC;
|
nuclear@1
|
252 jpeg_component_info *compptr;
|
nuclear@1
|
253 JBLOCKARRAY buffer;
|
nuclear@1
|
254 JBLOCKROW thisblockrow, lastblockrow;
|
nuclear@1
|
255
|
nuclear@1
|
256 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
nuclear@1
|
257 ci++, compptr++) {
|
nuclear@1
|
258 /* Align the virtual buffer for this component. */
|
nuclear@1
|
259 buffer = (*cinfo->mem->access_virt_barray)
|
nuclear@1
|
260 ((j_common_ptr) cinfo, coef->whole_image[ci],
|
nuclear@1
|
261 coef->iMCU_row_num * compptr->v_samp_factor,
|
nuclear@1
|
262 (JDIMENSION) compptr->v_samp_factor, TRUE);
|
nuclear@1
|
263 /* Count non-dummy DCT block rows in this iMCU row. */
|
nuclear@1
|
264 if (coef->iMCU_row_num < last_iMCU_row)
|
nuclear@1
|
265 block_rows = compptr->v_samp_factor;
|
nuclear@1
|
266 else {
|
nuclear@1
|
267 /* NB: can't use last_row_height here, since may not be set! */
|
nuclear@1
|
268 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
nuclear@1
|
269 if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
nuclear@1
|
270 }
|
nuclear@1
|
271 blocks_across = compptr->width_in_blocks;
|
nuclear@1
|
272 h_samp_factor = compptr->h_samp_factor;
|
nuclear@1
|
273 /* Count number of dummy blocks to be added at the right margin. */
|
nuclear@1
|
274 ndummy = (int) (blocks_across % h_samp_factor);
|
nuclear@1
|
275 if (ndummy > 0)
|
nuclear@1
|
276 ndummy = h_samp_factor - ndummy;
|
nuclear@1
|
277 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
nuclear@1
|
278 * on forward_DCT processes a complete horizontal row of DCT blocks.
|
nuclear@1
|
279 */
|
nuclear@1
|
280 for (block_row = 0; block_row < block_rows; block_row++) {
|
nuclear@1
|
281 thisblockrow = buffer[block_row];
|
nuclear@1
|
282 (*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
nuclear@1
|
283 input_buf[ci], thisblockrow,
|
nuclear@1
|
284 (JDIMENSION) (block_row * DCTSIZE),
|
nuclear@1
|
285 (JDIMENSION) 0, blocks_across);
|
nuclear@1
|
286 if (ndummy > 0) {
|
nuclear@1
|
287 /* Create dummy blocks at the right edge of the image. */
|
nuclear@1
|
288 thisblockrow += blocks_across; /* => first dummy block */
|
nuclear@1
|
289 jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
nuclear@1
|
290 lastDC = thisblockrow[-1][0];
|
nuclear@1
|
291 for (bi = 0; bi < ndummy; bi++) {
|
nuclear@1
|
292 thisblockrow[bi][0] = lastDC;
|
nuclear@1
|
293 }
|
nuclear@1
|
294 }
|
nuclear@1
|
295 }
|
nuclear@1
|
296 /* If at end of image, create dummy block rows as needed.
|
nuclear@1
|
297 * The tricky part here is that within each MCU, we want the DC values
|
nuclear@1
|
298 * of the dummy blocks to match the last real block's DC value.
|
nuclear@1
|
299 * This squeezes a few more bytes out of the resulting file...
|
nuclear@1
|
300 */
|
nuclear@1
|
301 if (coef->iMCU_row_num == last_iMCU_row) {
|
nuclear@1
|
302 blocks_across += ndummy; /* include lower right corner */
|
nuclear@1
|
303 MCUs_across = blocks_across / h_samp_factor;
|
nuclear@1
|
304 for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
nuclear@1
|
305 block_row++) {
|
nuclear@1
|
306 thisblockrow = buffer[block_row];
|
nuclear@1
|
307 lastblockrow = buffer[block_row-1];
|
nuclear@1
|
308 jzero_far((void FAR *) thisblockrow,
|
nuclear@1
|
309 (size_t) (blocks_across * SIZEOF(JBLOCK)));
|
nuclear@1
|
310 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
nuclear@1
|
311 lastDC = lastblockrow[h_samp_factor-1][0];
|
nuclear@1
|
312 for (bi = 0; bi < h_samp_factor; bi++) {
|
nuclear@1
|
313 thisblockrow[bi][0] = lastDC;
|
nuclear@1
|
314 }
|
nuclear@1
|
315 thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
nuclear@1
|
316 lastblockrow += h_samp_factor;
|
nuclear@1
|
317 }
|
nuclear@1
|
318 }
|
nuclear@1
|
319 }
|
nuclear@1
|
320 }
|
nuclear@1
|
321 /* NB: compress_output will increment iMCU_row_num if successful.
|
nuclear@1
|
322 * A suspension return will result in redoing all the work above next time.
|
nuclear@1
|
323 */
|
nuclear@1
|
324
|
nuclear@1
|
325 /* Emit data to the entropy encoder, sharing code with subsequent passes */
|
nuclear@1
|
326 return compress_output(cinfo, input_buf);
|
nuclear@1
|
327 }
|
nuclear@1
|
328
|
nuclear@1
|
329
|
nuclear@1
|
330 /*
|
nuclear@1
|
331 * Process some data in subsequent passes of a multi-pass case.
|
nuclear@1
|
332 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
nuclear@1
|
333 * per call, ie, v_samp_factor block rows for each component in the scan.
|
nuclear@1
|
334 * The data is obtained from the virtual arrays and fed to the entropy coder.
|
nuclear@1
|
335 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
nuclear@1
|
336 *
|
nuclear@1
|
337 * NB: input_buf is ignored; it is likely to be a NULL pointer.
|
nuclear@1
|
338 */
|
nuclear@1
|
339
|
nuclear@1
|
340 METHODDEF(boolean)
|
nuclear@1
|
341 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
nuclear@1
|
342 {
|
nuclear@1
|
343 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@1
|
344 JDIMENSION MCU_col_num; /* index of current MCU within row */
|
nuclear@1
|
345 int blkn, ci, xindex, yindex, yoffset;
|
nuclear@1
|
346 JDIMENSION start_col;
|
nuclear@1
|
347 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
nuclear@1
|
348 JBLOCKROW buffer_ptr;
|
nuclear@1
|
349 jpeg_component_info *compptr;
|
nuclear@1
|
350
|
nuclear@1
|
351 /* Align the virtual buffers for the components used in this scan.
|
nuclear@1
|
352 * NB: during first pass, this is safe only because the buffers will
|
nuclear@1
|
353 * already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
nuclear@1
|
354 */
|
nuclear@1
|
355 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@1
|
356 compptr = cinfo->cur_comp_info[ci];
|
nuclear@1
|
357 buffer[ci] = (*cinfo->mem->access_virt_barray)
|
nuclear@1
|
358 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
nuclear@1
|
359 coef->iMCU_row_num * compptr->v_samp_factor,
|
nuclear@1
|
360 (JDIMENSION) compptr->v_samp_factor, FALSE);
|
nuclear@1
|
361 }
|
nuclear@1
|
362
|
nuclear@1
|
363 /* Loop to process one whole iMCU row */
|
nuclear@1
|
364 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
nuclear@1
|
365 yoffset++) {
|
nuclear@1
|
366 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
nuclear@1
|
367 MCU_col_num++) {
|
nuclear@1
|
368 /* Construct list of pointers to DCT blocks belonging to this MCU */
|
nuclear@1
|
369 blkn = 0; /* index of current DCT block within MCU */
|
nuclear@1
|
370 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@1
|
371 compptr = cinfo->cur_comp_info[ci];
|
nuclear@1
|
372 start_col = MCU_col_num * compptr->MCU_width;
|
nuclear@1
|
373 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
nuclear@1
|
374 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
nuclear@1
|
375 for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
nuclear@1
|
376 coef->MCU_buffer[blkn++] = buffer_ptr++;
|
nuclear@1
|
377 }
|
nuclear@1
|
378 }
|
nuclear@1
|
379 }
|
nuclear@1
|
380 /* Try to write the MCU. */
|
nuclear@1
|
381 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
nuclear@1
|
382 /* Suspension forced; update state counters and exit */
|
nuclear@1
|
383 coef->MCU_vert_offset = yoffset;
|
nuclear@1
|
384 coef->mcu_ctr = MCU_col_num;
|
nuclear@1
|
385 return FALSE;
|
nuclear@1
|
386 }
|
nuclear@1
|
387 }
|
nuclear@1
|
388 /* Completed an MCU row, but perhaps not an iMCU row */
|
nuclear@1
|
389 coef->mcu_ctr = 0;
|
nuclear@1
|
390 }
|
nuclear@1
|
391 /* Completed the iMCU row, advance counters for next one */
|
nuclear@1
|
392 coef->iMCU_row_num++;
|
nuclear@1
|
393 start_iMCU_row(cinfo);
|
nuclear@1
|
394 return TRUE;
|
nuclear@1
|
395 }
|
nuclear@1
|
396
|
nuclear@1
|
397 #endif /* FULL_COEF_BUFFER_SUPPORTED */
|
nuclear@1
|
398
|
nuclear@1
|
399
|
nuclear@1
|
400 /*
|
nuclear@1
|
401 * Initialize coefficient buffer controller.
|
nuclear@1
|
402 */
|
nuclear@1
|
403
|
nuclear@1
|
404 GLOBAL(void)
|
nuclear@1
|
405 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
nuclear@1
|
406 {
|
nuclear@1
|
407 my_coef_ptr coef;
|
nuclear@1
|
408
|
nuclear@1
|
409 coef = (my_coef_ptr)
|
nuclear@1
|
410 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
411 SIZEOF(my_coef_controller));
|
nuclear@1
|
412 cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
nuclear@1
|
413 coef->pub.start_pass = start_pass_coef;
|
nuclear@1
|
414
|
nuclear@1
|
415 /* Create the coefficient buffer. */
|
nuclear@1
|
416 if (need_full_buffer) {
|
nuclear@1
|
417 #ifdef FULL_COEF_BUFFER_SUPPORTED
|
nuclear@1
|
418 /* Allocate a full-image virtual array for each component, */
|
nuclear@1
|
419 /* padded to a multiple of samp_factor DCT blocks in each direction. */
|
nuclear@1
|
420 int ci;
|
nuclear@1
|
421 jpeg_component_info *compptr;
|
nuclear@1
|
422
|
nuclear@1
|
423 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
nuclear@1
|
424 ci++, compptr++) {
|
nuclear@1
|
425 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
nuclear@1
|
426 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
nuclear@1
|
427 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
nuclear@1
|
428 (long) compptr->h_samp_factor),
|
nuclear@1
|
429 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
nuclear@1
|
430 (long) compptr->v_samp_factor),
|
nuclear@1
|
431 (JDIMENSION) compptr->v_samp_factor);
|
nuclear@1
|
432 }
|
nuclear@1
|
433 #else
|
nuclear@1
|
434 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
nuclear@1
|
435 #endif
|
nuclear@1
|
436 } else {
|
nuclear@1
|
437 /* We only need a single-MCU buffer. */
|
nuclear@1
|
438 JBLOCKROW buffer;
|
nuclear@1
|
439 int i;
|
nuclear@1
|
440
|
nuclear@1
|
441 buffer = (JBLOCKROW)
|
nuclear@1
|
442 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@1
|
443 C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
nuclear@1
|
444 for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
nuclear@1
|
445 coef->MCU_buffer[i] = buffer + i;
|
nuclear@1
|
446 }
|
nuclear@1
|
447 coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
nuclear@1
|
448 }
|
nuclear@1
|
449 }
|