cubemapper

annotate src/meshgen.cc @ 1:d7a29cb7ac8d

resize to the final cubemap face size
author John Tsiombikas <nuclear@member.fsf.org>
date Fri, 28 Jul 2017 07:44:35 +0300
parents
children 2bfafdced01a
rev   line source
nuclear@0 1 #include <stdio.h>
nuclear@0 2 #include "meshgen.h"
nuclear@0 3 #include "mesh.h"
nuclear@0 4
nuclear@0 5 // -------- sphere --------
nuclear@0 6
nuclear@0 7 #define SURAD(u) ((u) * 2.0 * M_PI)
nuclear@0 8 #define SVRAD(v) ((v) * M_PI)
nuclear@0 9
nuclear@0 10 static Vec3 sphvec(float theta, float phi)
nuclear@0 11 {
nuclear@0 12 return Vec3(sin(theta) * sin(phi),
nuclear@0 13 cos(phi),
nuclear@0 14 cos(theta) * sin(phi));
nuclear@0 15 }
nuclear@0 16
nuclear@0 17 void gen_sphere(Mesh *mesh, float rad, int usub, int vsub, float urange, float vrange)
nuclear@0 18 {
nuclear@0 19 if(usub < 4) usub = 4;
nuclear@0 20 if(vsub < 2) vsub = 2;
nuclear@0 21
nuclear@0 22 int uverts = usub + 1;
nuclear@0 23 int vverts = vsub + 1;
nuclear@0 24
nuclear@0 25 int num_verts = uverts * vverts;
nuclear@0 26 int num_quads = usub * vsub;
nuclear@0 27 int num_tri = num_quads * 2;
nuclear@0 28
nuclear@0 29 mesh->clear();
nuclear@0 30 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 31 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 32 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 33 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 34 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 35
nuclear@0 36 float du = urange / (float)(uverts - 1);
nuclear@0 37 float dv = vrange / (float)(vverts - 1);
nuclear@0 38
nuclear@0 39 float u = 0.0;
nuclear@0 40 for(int i=0; i<uverts; i++) {
nuclear@0 41 float theta = u * 2.0 * M_PI;
nuclear@0 42
nuclear@0 43 float v = 0.0;
nuclear@0 44 for(int j=0; j<vverts; j++) {
nuclear@0 45 float phi = v * M_PI;
nuclear@0 46
nuclear@0 47 Vec3 pos = sphvec(theta, phi);
nuclear@0 48
nuclear@0 49 *varr++ = pos * rad;
nuclear@0 50 *narr++ = pos;
nuclear@0 51 *tarr++ = normalize(sphvec(theta + 0.1f, (float)M_PI / 2.0f) - sphvec(theta - 0.1f, (float)M_PI / 2.0f));
nuclear@0 52 *uvarr++ = Vec2(u * urange, v * vrange);
nuclear@0 53
nuclear@0 54 if(i < usub && j < vsub) {
nuclear@0 55 int idx = i * vverts + j;
nuclear@0 56 *idxarr++ = idx;
nuclear@0 57 *idxarr++ = idx + 1;
nuclear@0 58 *idxarr++ = idx + vverts + 1;
nuclear@0 59
nuclear@0 60 *idxarr++ = idx;
nuclear@0 61 *idxarr++ = idx + vverts + 1;
nuclear@0 62 *idxarr++ = idx + vverts;
nuclear@0 63 }
nuclear@0 64
nuclear@0 65 v += dv;
nuclear@0 66 }
nuclear@0 67 u += du;
nuclear@0 68 }
nuclear@0 69 }
nuclear@0 70
nuclear@0 71 // ------ geosphere ------
nuclear@0 72 #define PHI 1.618034
nuclear@0 73
nuclear@0 74 static Vec3 icosa_pt[] = {
nuclear@0 75 Vec3(PHI, 1, 0),
nuclear@0 76 Vec3(-PHI, 1, 0),
nuclear@0 77 Vec3(PHI, -1, 0),
nuclear@0 78 Vec3(-PHI, -1, 0),
nuclear@0 79 Vec3(1, 0, PHI),
nuclear@0 80 Vec3(1, 0, -PHI),
nuclear@0 81 Vec3(-1, 0, PHI),
nuclear@0 82 Vec3(-1, 0, -PHI),
nuclear@0 83 Vec3(0, PHI, 1),
nuclear@0 84 Vec3(0, -PHI, 1),
nuclear@0 85 Vec3(0, PHI, -1),
nuclear@0 86 Vec3(0, -PHI, -1)
nuclear@0 87 };
nuclear@0 88 enum { P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, P34 };
nuclear@0 89 static int icosa_idx[] = {
nuclear@0 90 P11, P31, P21,
nuclear@0 91 P11, P22, P33,
nuclear@0 92 P13, P21, P32,
nuclear@0 93 P13, P34, P22,
nuclear@0 94 P12, P23, P31,
nuclear@0 95 P12, P33, P24,
nuclear@0 96 P14, P32, P23,
nuclear@0 97 P14, P24, P34,
nuclear@0 98
nuclear@0 99 P11, P33, P31,
nuclear@0 100 P12, P31, P33,
nuclear@0 101 P13, P32, P34,
nuclear@0 102 P14, P34, P32,
nuclear@0 103
nuclear@0 104 P21, P13, P11,
nuclear@0 105 P22, P11, P13,
nuclear@0 106 P23, P12, P14,
nuclear@0 107 P24, P14, P12,
nuclear@0 108
nuclear@0 109 P31, P23, P21,
nuclear@0 110 P32, P21, P23,
nuclear@0 111 P33, P22, P24,
nuclear@0 112 P34, P24, P22
nuclear@0 113 };
nuclear@0 114
nuclear@0 115 static void geosphere(std::vector<Vec3> *verts, const Vec3 &v1, const Vec3 &v2, const Vec3 &v3, int iter)
nuclear@0 116 {
nuclear@0 117 if(!iter) {
nuclear@0 118 verts->push_back(v1);
nuclear@0 119 verts->push_back(v2);
nuclear@0 120 verts->push_back(v3);
nuclear@0 121 return;
nuclear@0 122 }
nuclear@0 123
nuclear@0 124 Vec3 v12 = normalize(v1 + v2);
nuclear@0 125 Vec3 v23 = normalize(v2 + v3);
nuclear@0 126 Vec3 v31 = normalize(v3 + v1);
nuclear@0 127
nuclear@0 128 geosphere(verts, v1, v12, v31, iter - 1);
nuclear@0 129 geosphere(verts, v2, v23, v12, iter - 1);
nuclear@0 130 geosphere(verts, v3, v31, v23, iter - 1);
nuclear@0 131 geosphere(verts, v12, v23, v31, iter - 1);
nuclear@0 132 }
nuclear@0 133
nuclear@0 134 void gen_geosphere(Mesh *mesh, float rad, int subdiv, bool hemi)
nuclear@0 135 {
nuclear@0 136 int num_tri = (sizeof icosa_idx / sizeof *icosa_idx) / 3;
nuclear@0 137
nuclear@0 138 std::vector<Vec3> verts;
nuclear@0 139 for(int i=0; i<num_tri; i++) {
nuclear@0 140 Vec3 v[3];
nuclear@0 141
nuclear@0 142 for(int j=0; j<3; j++) {
nuclear@0 143 int vidx = icosa_idx[i * 3 + j];
nuclear@0 144 v[j] = normalize(icosa_pt[vidx]);
nuclear@0 145 }
nuclear@0 146
nuclear@0 147 if(hemi && (v[0].y < 0.0 || v[1].y < 0.0 || v[2].y < 0.0)) {
nuclear@0 148 continue;
nuclear@0 149 }
nuclear@0 150
nuclear@0 151 geosphere(&verts, v[0], v[1], v[2], subdiv);
nuclear@0 152 }
nuclear@0 153
nuclear@0 154 int num_verts = (int)verts.size();
nuclear@0 155
nuclear@0 156 mesh->clear();
nuclear@0 157 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 158 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 159 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 160 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 161
nuclear@0 162 for(int i=0; i<num_verts; i++) {
nuclear@0 163 *varr++ = verts[i] * rad;
nuclear@0 164 *narr++ = verts[i];
nuclear@0 165
nuclear@0 166 float theta = atan2(verts[i].z, verts[i].x);
nuclear@0 167 float phi = acos(verts[i].y);
nuclear@0 168
nuclear@0 169 *tarr++ = normalize(sphvec(theta + 0.1f, (float)M_PI / 2.0f) - sphvec(theta - 0.1f, (float)M_PI / 2.0f));
nuclear@0 170
nuclear@0 171 float u = 0.5 * theta / M_PI + 0.5;
nuclear@0 172 float v = phi / M_PI;
nuclear@0 173 *uvarr++ = Vec2(u, v);
nuclear@0 174 }
nuclear@0 175 }
nuclear@0 176
nuclear@0 177 // -------- torus -----------
nuclear@0 178 static Vec3 torusvec(float theta, float phi, float mr, float rr)
nuclear@0 179 {
nuclear@0 180 theta = -theta;
nuclear@0 181
nuclear@0 182 float rx = -cos(phi) * rr + mr;
nuclear@0 183 float ry = sin(phi) * rr;
nuclear@0 184 float rz = 0.0;
nuclear@0 185
nuclear@0 186 float x = rx * sin(theta) + rz * cos(theta);
nuclear@0 187 float y = ry;
nuclear@0 188 float z = -rx * cos(theta) + rz * sin(theta);
nuclear@0 189
nuclear@0 190 return Vec3(x, y, z);
nuclear@0 191 }
nuclear@0 192
nuclear@0 193 void gen_torus(Mesh *mesh, float mainrad, float ringrad, int usub, int vsub, float urange, float vrange)
nuclear@0 194 {
nuclear@0 195 if(usub < 4) usub = 4;
nuclear@0 196 if(vsub < 2) vsub = 2;
nuclear@0 197
nuclear@0 198 int uverts = usub + 1;
nuclear@0 199 int vverts = vsub + 1;
nuclear@0 200
nuclear@0 201 int num_verts = uverts * vverts;
nuclear@0 202 int num_quads = usub * vsub;
nuclear@0 203 int num_tri = num_quads * 2;
nuclear@0 204
nuclear@0 205 mesh->clear();
nuclear@0 206 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 207 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 208 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 209 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 210 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 211
nuclear@0 212 float du = urange / (float)(uverts - 1);
nuclear@0 213 float dv = vrange / (float)(vverts - 1);
nuclear@0 214
nuclear@0 215 float u = 0.0;
nuclear@0 216 for(int i=0; i<uverts; i++) {
nuclear@0 217 float theta = u * 2.0 * M_PI;
nuclear@0 218
nuclear@0 219 float v = 0.0;
nuclear@0 220 for(int j=0; j<vverts; j++) {
nuclear@0 221 float phi = v * 2.0 * M_PI;
nuclear@0 222
nuclear@0 223 Vec3 pos = torusvec(theta, phi, mainrad, ringrad);
nuclear@0 224 Vec3 cent = torusvec(theta, phi, mainrad, 0.0);
nuclear@0 225
nuclear@0 226 *varr++ = pos;
nuclear@0 227 *narr++ = (pos - cent) / ringrad;
nuclear@0 228
nuclear@0 229 Vec3 pprev = torusvec(theta - 0.1f, phi, mainrad, ringrad);
nuclear@0 230 Vec3 pnext = torusvec(theta + 0.1f, phi, mainrad, ringrad);
nuclear@0 231
nuclear@0 232 *tarr++ = normalize(pnext - pprev);
nuclear@0 233 *uvarr++ = Vec2(u * urange, v * vrange);
nuclear@0 234
nuclear@0 235 if(i < usub && j < vsub) {
nuclear@0 236 int idx = i * vverts + j;
nuclear@0 237 *idxarr++ = idx;
nuclear@0 238 *idxarr++ = idx + 1;
nuclear@0 239 *idxarr++ = idx + vverts + 1;
nuclear@0 240
nuclear@0 241 *idxarr++ = idx;
nuclear@0 242 *idxarr++ = idx + vverts + 1;
nuclear@0 243 *idxarr++ = idx + vverts;
nuclear@0 244 }
nuclear@0 245
nuclear@0 246 v += dv;
nuclear@0 247 }
nuclear@0 248 u += du;
nuclear@0 249 }
nuclear@0 250 }
nuclear@0 251
nuclear@0 252
nuclear@0 253 // -------- cylinder --------
nuclear@0 254
nuclear@0 255 static Vec3 cylvec(float theta, float height)
nuclear@0 256 {
nuclear@0 257 return Vec3(sin(theta), height, cos(theta));
nuclear@0 258 }
nuclear@0 259
nuclear@0 260 void gen_cylinder(Mesh *mesh, float rad, float height, int usub, int vsub, int capsub, float urange, float vrange)
nuclear@0 261 {
nuclear@0 262 if(usub < 4) usub = 4;
nuclear@0 263 if(vsub < 1) vsub = 1;
nuclear@0 264
nuclear@0 265 int uverts = usub + 1;
nuclear@0 266 int vverts = vsub + 1;
nuclear@0 267
nuclear@0 268 int num_body_verts = uverts * vverts;
nuclear@0 269 int num_body_quads = usub * vsub;
nuclear@0 270 int num_body_tri = num_body_quads * 2;
nuclear@0 271
nuclear@0 272 int capvverts = capsub ? capsub + 1 : 0;
nuclear@0 273 int num_cap_verts = uverts * capvverts;
nuclear@0 274 int num_cap_quads = usub * capsub;
nuclear@0 275 int num_cap_tri = num_cap_quads * 2;
nuclear@0 276
nuclear@0 277 int num_verts = num_body_verts + num_cap_verts * 2;
nuclear@0 278 int num_tri = num_body_tri + num_cap_tri * 2;
nuclear@0 279
nuclear@0 280 mesh->clear();
nuclear@0 281 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 282 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 283 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 284 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 285 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 286
nuclear@0 287 float du = urange / (float)(uverts - 1);
nuclear@0 288 float dv = vrange / (float)(vverts - 1);
nuclear@0 289
nuclear@0 290 float u = 0.0;
nuclear@0 291 for(int i=0; i<uverts; i++) {
nuclear@0 292 float theta = SURAD(u);
nuclear@0 293
nuclear@0 294 float v = 0.0;
nuclear@0 295 for(int j=0; j<vverts; j++) {
nuclear@0 296 float y = (v - 0.5) * height;
nuclear@0 297 Vec3 pos = cylvec(theta, y);
nuclear@0 298
nuclear@0 299 *varr++ = Vec3(pos.x * rad, pos.y, pos.z * rad);
nuclear@0 300 *narr++ = Vec3(pos.x, 0.0, pos.z);
nuclear@0 301 *tarr++ = normalize(cylvec(theta + 0.1, 0.0) - cylvec(theta - 0.1, 0.0));
nuclear@0 302 *uvarr++ = Vec2(u * urange, v * vrange);
nuclear@0 303
nuclear@0 304 if(i < usub && j < vsub) {
nuclear@0 305 int idx = i * vverts + j;
nuclear@0 306
nuclear@0 307 *idxarr++ = idx;
nuclear@0 308 *idxarr++ = idx + vverts + 1;
nuclear@0 309 *idxarr++ = idx + 1;
nuclear@0 310
nuclear@0 311 *idxarr++ = idx;
nuclear@0 312 *idxarr++ = idx + vverts;
nuclear@0 313 *idxarr++ = idx + vverts + 1;
nuclear@0 314 }
nuclear@0 315
nuclear@0 316 v += dv;
nuclear@0 317 }
nuclear@0 318 u += du;
nuclear@0 319 }
nuclear@0 320
nuclear@0 321
nuclear@0 322 // now the cap!
nuclear@0 323 if(!capsub) {
nuclear@0 324 return;
nuclear@0 325 }
nuclear@0 326
nuclear@0 327 dv = 1.0 / (float)(capvverts - 1);
nuclear@0 328
nuclear@0 329 u = 0.0;
nuclear@0 330 for(int i=0; i<uverts; i++) {
nuclear@0 331 float theta = SURAD(u);
nuclear@0 332
nuclear@0 333 float v = 0.0;
nuclear@0 334 for(int j=0; j<capvverts; j++) {
nuclear@0 335 float r = v * rad;
nuclear@0 336
nuclear@0 337 Vec3 pos = cylvec(theta, height / 2.0) * r;
nuclear@0 338 pos.y = height / 2.0;
nuclear@0 339 Vec3 tang = normalize(cylvec(theta + 0.1, 0.0) - cylvec(theta - 0.1, 0.0));
nuclear@0 340
nuclear@0 341 *varr++ = pos;
nuclear@0 342 *narr++ = Vec3(0, 1, 0);
nuclear@0 343 *tarr++ = tang;
nuclear@0 344 *uvarr++ = Vec2(u * urange, v);
nuclear@0 345
nuclear@0 346 pos.y = -height / 2.0;
nuclear@0 347 *varr++ = pos;
nuclear@0 348 *narr++ = Vec3(0, -1, 0);
nuclear@0 349 *tarr++ = -tang;
nuclear@0 350 *uvarr++ = Vec2(u * urange, v);
nuclear@0 351
nuclear@0 352 if(i < usub && j < capsub) {
nuclear@0 353 unsigned int idx = num_body_verts + (i * capvverts + j) * 2;
nuclear@0 354
nuclear@0 355 unsigned int vidx[4] = {
nuclear@0 356 idx,
nuclear@0 357 idx + capvverts * 2,
nuclear@0 358 idx + (capvverts + 1) * 2,
nuclear@0 359 idx + 2
nuclear@0 360 };
nuclear@0 361
nuclear@0 362 *idxarr++ = vidx[0];
nuclear@0 363 *idxarr++ = vidx[2];
nuclear@0 364 *idxarr++ = vidx[1];
nuclear@0 365 *idxarr++ = vidx[0];
nuclear@0 366 *idxarr++ = vidx[3];
nuclear@0 367 *idxarr++ = vidx[2];
nuclear@0 368
nuclear@0 369 *idxarr++ = vidx[0] + 1;
nuclear@0 370 *idxarr++ = vidx[1] + 1;
nuclear@0 371 *idxarr++ = vidx[2] + 1;
nuclear@0 372 *idxarr++ = vidx[0] + 1;
nuclear@0 373 *idxarr++ = vidx[2] + 1;
nuclear@0 374 *idxarr++ = vidx[3] + 1;
nuclear@0 375 }
nuclear@0 376
nuclear@0 377 v += dv;
nuclear@0 378 }
nuclear@0 379 u += du;
nuclear@0 380 }
nuclear@0 381 }
nuclear@0 382
nuclear@0 383 // -------- cone --------
nuclear@0 384
nuclear@0 385 static Vec3 conevec(float theta, float y, float height)
nuclear@0 386 {
nuclear@0 387 float scale = 1.0 - y / height;
nuclear@0 388 return Vec3(sin(theta) * scale, y, cos(theta) * scale);
nuclear@0 389 }
nuclear@0 390
nuclear@0 391 void gen_cone(Mesh *mesh, float rad, float height, int usub, int vsub, int capsub, float urange, float vrange)
nuclear@0 392 {
nuclear@0 393 if(usub < 4) usub = 4;
nuclear@0 394 if(vsub < 1) vsub = 1;
nuclear@0 395
nuclear@0 396 int uverts = usub + 1;
nuclear@0 397 int vverts = vsub + 1;
nuclear@0 398
nuclear@0 399 int num_body_verts = uverts * vverts;
nuclear@0 400 int num_body_quads = usub * vsub;
nuclear@0 401 int num_body_tri = num_body_quads * 2;
nuclear@0 402
nuclear@0 403 int capvverts = capsub ? capsub + 1 : 0;
nuclear@0 404 int num_cap_verts = uverts * capvverts;
nuclear@0 405 int num_cap_quads = usub * capsub;
nuclear@0 406 int num_cap_tri = num_cap_quads * 2;
nuclear@0 407
nuclear@0 408 int num_verts = num_body_verts + num_cap_verts;
nuclear@0 409 int num_tri = num_body_tri + num_cap_tri;
nuclear@0 410
nuclear@0 411 mesh->clear();
nuclear@0 412 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 413 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 414 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 415 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 416 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 417
nuclear@0 418 float du = urange / (float)(uverts - 1);
nuclear@0 419 float dv = vrange / (float)(vverts - 1);
nuclear@0 420
nuclear@0 421 float u = 0.0;
nuclear@0 422 for(int i=0; i<uverts; i++) {
nuclear@0 423 float theta = SURAD(u);
nuclear@0 424
nuclear@0 425 float v = 0.0;
nuclear@0 426 for(int j=0; j<vverts; j++) {
nuclear@0 427 float y = v * height;
nuclear@0 428 Vec3 pos = conevec(theta, y, height);
nuclear@0 429
nuclear@0 430 Vec3 tang = normalize(conevec(theta + 0.1, 0.0, height) - conevec(theta - 0.1, 0.0, height));
nuclear@0 431 Vec3 bitang = normalize(conevec(theta, y + 0.1, height) - pos);
nuclear@0 432
nuclear@0 433 *varr++ = Vec3(pos.x * rad, pos.y, pos.z * rad);
nuclear@0 434 *narr++ = cross(tang, bitang);
nuclear@0 435 *tarr++ = tang;
nuclear@0 436 *uvarr++ = Vec2(u * urange, v * vrange);
nuclear@0 437
nuclear@0 438 if(i < usub && j < vsub) {
nuclear@0 439 int idx = i * vverts + j;
nuclear@0 440
nuclear@0 441 *idxarr++ = idx;
nuclear@0 442 *idxarr++ = idx + vverts + 1;
nuclear@0 443 *idxarr++ = idx + 1;
nuclear@0 444
nuclear@0 445 *idxarr++ = idx;
nuclear@0 446 *idxarr++ = idx + vverts;
nuclear@0 447 *idxarr++ = idx + vverts + 1;
nuclear@0 448 }
nuclear@0 449
nuclear@0 450 v += dv;
nuclear@0 451 }
nuclear@0 452 u += du;
nuclear@0 453 }
nuclear@0 454
nuclear@0 455
nuclear@0 456 // now the bottom cap!
nuclear@0 457 if(!capsub) {
nuclear@0 458 return;
nuclear@0 459 }
nuclear@0 460
nuclear@0 461 dv = 1.0 / (float)(capvverts - 1);
nuclear@0 462
nuclear@0 463 u = 0.0;
nuclear@0 464 for(int i=0; i<uverts; i++) {
nuclear@0 465 float theta = SURAD(u);
nuclear@0 466
nuclear@0 467 float v = 0.0;
nuclear@0 468 for(int j=0; j<capvverts; j++) {
nuclear@0 469 float r = v * rad;
nuclear@0 470
nuclear@0 471 Vec3 pos = conevec(theta, 0.0, height) * r;
nuclear@0 472 Vec3 tang = normalize(cylvec(theta + 0.1, 0.0) - cylvec(theta - 0.1, 0.0));
nuclear@0 473
nuclear@0 474 *varr++ = pos;
nuclear@0 475 *narr++ = Vec3(0, -1, 0);
nuclear@0 476 *tarr++ = tang;
nuclear@0 477 *uvarr++ = Vec2(u * urange, v);
nuclear@0 478
nuclear@0 479 if(i < usub && j < capsub) {
nuclear@0 480 unsigned int idx = num_body_verts + i * capvverts + j;
nuclear@0 481
nuclear@0 482 unsigned int vidx[4] = {
nuclear@0 483 idx,
nuclear@0 484 idx + capvverts,
nuclear@0 485 idx + (capvverts + 1),
nuclear@0 486 idx + 1
nuclear@0 487 };
nuclear@0 488
nuclear@0 489 *idxarr++ = vidx[0];
nuclear@0 490 *idxarr++ = vidx[1];
nuclear@0 491 *idxarr++ = vidx[2];
nuclear@0 492 *idxarr++ = vidx[0];
nuclear@0 493 *idxarr++ = vidx[2];
nuclear@0 494 *idxarr++ = vidx[3];
nuclear@0 495 }
nuclear@0 496
nuclear@0 497 v += dv;
nuclear@0 498 }
nuclear@0 499 u += du;
nuclear@0 500 }
nuclear@0 501 }
nuclear@0 502
nuclear@0 503
nuclear@0 504 // -------- plane --------
nuclear@0 505
nuclear@0 506 void gen_plane(Mesh *mesh, float width, float height, int usub, int vsub)
nuclear@0 507 {
nuclear@0 508 gen_heightmap(mesh, width, height, usub, vsub, 0);
nuclear@0 509 }
nuclear@0 510
nuclear@0 511
nuclear@0 512 // ----- heightmap ------
nuclear@0 513
nuclear@0 514 void gen_heightmap(Mesh *mesh, float width, float height, int usub, int vsub, float (*hf)(float, float, void*), void *hfdata)
nuclear@0 515 {
nuclear@0 516 if(usub < 1) usub = 1;
nuclear@0 517 if(vsub < 1) vsub = 1;
nuclear@0 518
nuclear@0 519 mesh->clear();
nuclear@0 520
nuclear@0 521 int uverts = usub + 1;
nuclear@0 522 int vverts = vsub + 1;
nuclear@0 523 int num_verts = uverts * vverts;
nuclear@0 524
nuclear@0 525 int num_quads = usub * vsub;
nuclear@0 526 int num_tri = num_quads * 2;
nuclear@0 527
nuclear@0 528 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 529 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 530 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 531 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 532 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 533
nuclear@0 534 float du = 1.0 / (float)usub;
nuclear@0 535 float dv = 1.0 / (float)vsub;
nuclear@0 536
nuclear@0 537 float u = 0.0;
nuclear@0 538 for(int i=0; i<uverts; i++) {
nuclear@0 539 float v = 0.0;
nuclear@0 540 for(int j=0; j<vverts; j++) {
nuclear@0 541 float x = (u - 0.5) * width;
nuclear@0 542 float y = (v - 0.5) * height;
nuclear@0 543 float z = hf ? hf(u, v, hfdata) : 0.0;
nuclear@0 544
nuclear@0 545 Vec3 normal = Vec3(0, 0, 1);
nuclear@0 546 if(hf) {
nuclear@0 547 float u1z = hf(u + du, v, hfdata);
nuclear@0 548 float v1z = hf(u, v + dv, hfdata);
nuclear@0 549
nuclear@0 550 Vec3 tang = Vec3(du * width, 0, u1z - z);
nuclear@0 551 Vec3 bitan = Vec3(0, dv * height, v1z - z);
nuclear@0 552 normal = normalize(cross(tang, bitan));
nuclear@0 553 }
nuclear@0 554
nuclear@0 555 *varr++ = Vec3(x, y, z);
nuclear@0 556 *narr++ = normal;
nuclear@0 557 *tarr++ = Vec3(1, 0, 0);
nuclear@0 558 *uvarr++ = Vec2(u, v);
nuclear@0 559
nuclear@0 560 if(i < usub && j < vsub) {
nuclear@0 561 int idx = i * vverts + j;
nuclear@0 562
nuclear@0 563 *idxarr++ = idx;
nuclear@0 564 *idxarr++ = idx + vverts + 1;
nuclear@0 565 *idxarr++ = idx + 1;
nuclear@0 566
nuclear@0 567 *idxarr++ = idx;
nuclear@0 568 *idxarr++ = idx + vverts;
nuclear@0 569 *idxarr++ = idx + vverts + 1;
nuclear@0 570 }
nuclear@0 571
nuclear@0 572 v += dv;
nuclear@0 573 }
nuclear@0 574 u += du;
nuclear@0 575 }
nuclear@0 576 }
nuclear@0 577
nuclear@0 578 // ----- box ------
nuclear@0 579 void gen_box(Mesh *mesh, float xsz, float ysz, float zsz, int usub, int vsub)
nuclear@0 580 {
nuclear@0 581 static const float face_angles[][2] = {
nuclear@0 582 {0, 0},
nuclear@0 583 {M_PI / 2.0, 0},
nuclear@0 584 {M_PI, 0},
nuclear@0 585 {3.0 * M_PI / 2.0, 0},
nuclear@0 586 {0, M_PI / 2.0},
nuclear@0 587 {0, -M_PI / 2.0}
nuclear@0 588 };
nuclear@0 589
nuclear@0 590 if(usub < 1) usub = 1;
nuclear@0 591 if(vsub < 1) vsub = 1;
nuclear@0 592
nuclear@0 593 mesh->clear();
nuclear@0 594
nuclear@0 595 for(int i=0; i<6; i++) {
nuclear@0 596 Mat4 xform, dir_xform;
nuclear@0 597 Mesh m;
nuclear@0 598
nuclear@0 599 gen_plane(&m, 1, 1, usub, vsub);
nuclear@0 600 xform.rotate(Vec3(face_angles[i][1], face_angles[i][0], 0));
nuclear@0 601 dir_xform = xform;
nuclear@0 602 xform.translate(Vec3(0, 0, 0.5));
nuclear@0 603 m.apply_xform(xform, dir_xform);
nuclear@0 604
nuclear@0 605 mesh->append(m);
nuclear@0 606 }
nuclear@0 607
nuclear@0 608 Mat4 scale;
nuclear@0 609 scale.scaling(xsz, ysz, zsz);
nuclear@0 610 mesh->apply_xform(scale, Mat4::identity);
nuclear@0 611 }
nuclear@0 612
nuclear@0 613 /*
nuclear@0 614 void gen_box(Mesh *mesh, float xsz, float ysz, float zsz)
nuclear@0 615 {
nuclear@0 616 mesh->clear();
nuclear@0 617
nuclear@0 618 const int num_faces = 6;
nuclear@0 619 int num_verts = num_faces * 4;
nuclear@0 620 int num_tri = num_faces * 2;
nuclear@0 621
nuclear@0 622 float x = xsz / 2.0;
nuclear@0 623 float y = ysz / 2.0;
nuclear@0 624 float z = zsz / 2.0;
nuclear@0 625
nuclear@0 626 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 627 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 628 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 629 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 630 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 631
nuclear@0 632 static const Vec2 uv[] = { Vec2(0, 0), Vec2(1, 0), Vec2(1, 1), Vec2(0, 1) };
nuclear@0 633
nuclear@0 634 // front
nuclear@0 635 for(int i=0; i<4; i++) {
nuclear@0 636 *narr++ = Vec3(0, 0, 1);
nuclear@0 637 *tarr++ = Vec3(1, 0, 0);
nuclear@0 638 *uvarr++ = uv[i];
nuclear@0 639 }
nuclear@0 640 *varr++ = Vec3(-x, -y, z);
nuclear@0 641 *varr++ = Vec3(x, -y, z);
nuclear@0 642 *varr++ = Vec3(x, y, z);
nuclear@0 643 *varr++ = Vec3(-x, y, z);
nuclear@0 644 // right
nuclear@0 645 for(int i=0; i<4; i++) {
nuclear@0 646 *narr++ = Vec3(1, 0, 0);
nuclear@0 647 *tarr++ = Vec3(0, 0, -1);
nuclear@0 648 *uvarr++ = uv[i];
nuclear@0 649 }
nuclear@0 650 *varr++ = Vec3(x, -y, z);
nuclear@0 651 *varr++ = Vec3(x, -y, -z);
nuclear@0 652 *varr++ = Vec3(x, y, -z);
nuclear@0 653 *varr++ = Vec3(x, y, z);
nuclear@0 654 // back
nuclear@0 655 for(int i=0; i<4; i++) {
nuclear@0 656 *narr++ = Vec3(0, 0, -1);
nuclear@0 657 *tarr++ = Vec3(-1, 0, 0);
nuclear@0 658 *uvarr++ = uv[i];
nuclear@0 659 }
nuclear@0 660 *varr++ = Vec3(x, -y, -z);
nuclear@0 661 *varr++ = Vec3(-x, -y, -z);
nuclear@0 662 *varr++ = Vec3(-x, y, -z);
nuclear@0 663 *varr++ = Vec3(x, y, -z);
nuclear@0 664 // left
nuclear@0 665 for(int i=0; i<4; i++) {
nuclear@0 666 *narr++ = Vec3(-1, 0, 0);
nuclear@0 667 *tarr++ = Vec3(0, 0, 1);
nuclear@0 668 *uvarr++ = uv[i];
nuclear@0 669 }
nuclear@0 670 *varr++ = Vec3(-x, -y, -z);
nuclear@0 671 *varr++ = Vec3(-x, -y, z);
nuclear@0 672 *varr++ = Vec3(-x, y, z);
nuclear@0 673 *varr++ = Vec3(-x, y, -z);
nuclear@0 674 // top
nuclear@0 675 for(int i=0; i<4; i++) {
nuclear@0 676 *narr++ = Vec3(0, 1, 0);
nuclear@0 677 *tarr++ = Vec3(1, 0, 0);
nuclear@0 678 *uvarr++ = uv[i];
nuclear@0 679 }
nuclear@0 680 *varr++ = Vec3(-x, y, z);
nuclear@0 681 *varr++ = Vec3(x, y, z);
nuclear@0 682 *varr++ = Vec3(x, y, -z);
nuclear@0 683 *varr++ = Vec3(-x, y, -z);
nuclear@0 684 // bottom
nuclear@0 685 for(int i=0; i<4; i++) {
nuclear@0 686 *narr++ = Vec3(0, -1, 0);
nuclear@0 687 *tarr++ = Vec3(1, 0, 0);
nuclear@0 688 *uvarr++ = uv[i];
nuclear@0 689 }
nuclear@0 690 *varr++ = Vec3(-x, -y, -z);
nuclear@0 691 *varr++ = Vec3(x, -y, -z);
nuclear@0 692 *varr++ = Vec3(x, -y, z);
nuclear@0 693 *varr++ = Vec3(-x, -y, z);
nuclear@0 694
nuclear@0 695 // index array
nuclear@0 696 static const int faceidx[] = {0, 1, 2, 0, 2, 3};
nuclear@0 697 for(int i=0; i<num_faces; i++) {
nuclear@0 698 for(int j=0; j<6; j++) {
nuclear@0 699 *idxarr++ = faceidx[j] + i * 4;
nuclear@0 700 }
nuclear@0 701 }
nuclear@0 702 }
nuclear@0 703 */
nuclear@0 704
nuclear@0 705 static inline Vec3 rev_vert(float u, float v, Vec2 (*rf)(float, float, void*), void *cls)
nuclear@0 706 {
nuclear@0 707 Vec2 pos = rf(u, v, cls);
nuclear@0 708
nuclear@0 709 float angle = u * 2.0 * M_PI;
nuclear@0 710 float x = pos.x * cos(angle);
nuclear@0 711 float y = pos.y;
nuclear@0 712 float z = pos.x * sin(angle);
nuclear@0 713
nuclear@0 714 return Vec3(x, y, z);
nuclear@0 715 }
nuclear@0 716
nuclear@0 717 // ------ surface of revolution -------
nuclear@0 718 void gen_revol(Mesh *mesh, int usub, int vsub, Vec2 (*rfunc)(float, float, void*), void *cls)
nuclear@0 719 {
nuclear@0 720 gen_revol(mesh, usub, vsub, rfunc, 0, cls);
nuclear@0 721 }
nuclear@0 722
nuclear@0 723 void gen_revol(Mesh *mesh, int usub, int vsub, Vec2 (*rfunc)(float, float, void*),
nuclear@0 724 Vec2 (*nfunc)(float, float, void*), void *cls)
nuclear@0 725 {
nuclear@0 726 if(!rfunc) return;
nuclear@0 727 if(usub < 3) usub = 3;
nuclear@0 728 if(vsub < 1) vsub = 1;
nuclear@0 729
nuclear@0 730 mesh->clear();
nuclear@0 731
nuclear@0 732 int uverts = usub + 1;
nuclear@0 733 int vverts = vsub + 1;
nuclear@0 734 int num_verts = uverts * vverts;
nuclear@0 735
nuclear@0 736 int num_quads = usub * vsub;
nuclear@0 737 int num_tri = num_quads * 2;
nuclear@0 738
nuclear@0 739 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 740 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 741 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 742 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 743 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 744
nuclear@0 745 float du = 1.0 / (float)(uverts - 1);
nuclear@0 746 float dv = 1.0 / (float)(vverts - 1);
nuclear@0 747
nuclear@0 748 float u = 0.0;
nuclear@0 749 for(int i=0; i<uverts; i++) {
nuclear@0 750 float v = 0.0;
nuclear@0 751 for(int j=0; j<vverts; j++) {
nuclear@0 752 Vec3 pos = rev_vert(u, v, rfunc, cls);
nuclear@0 753
nuclear@0 754 Vec3 nextu = rev_vert(fmod(u + du, 1.0), v, rfunc, cls);
nuclear@0 755 Vec3 tang = nextu - pos;
nuclear@0 756 if(length_sq(tang) < 1e-6) {
nuclear@0 757 float new_v = v > 0.5 ? v - dv * 0.25 : v + dv * 0.25;
nuclear@0 758 nextu = rev_vert(fmod(u + du, 1.0), new_v, rfunc, cls);
nuclear@0 759 tang = nextu - pos;
nuclear@0 760 }
nuclear@0 761
nuclear@0 762 Vec3 normal;
nuclear@0 763 if(nfunc) {
nuclear@0 764 normal = rev_vert(u, v, nfunc, cls);
nuclear@0 765 } else {
nuclear@0 766 Vec3 nextv = rev_vert(u, v + dv, rfunc, cls);
nuclear@0 767 Vec3 bitan = nextv - pos;
nuclear@0 768 if(length_sq(bitan) < 1e-6) {
nuclear@0 769 nextv = rev_vert(u, v - dv, rfunc, cls);
nuclear@0 770 bitan = pos - nextv;
nuclear@0 771 }
nuclear@0 772
nuclear@0 773 normal = cross(tang, bitan);
nuclear@0 774 }
nuclear@0 775
nuclear@0 776 *varr++ = pos;
nuclear@0 777 *narr++ = normalize(normal);
nuclear@0 778 *tarr++ = normalize(tang);
nuclear@0 779 *uvarr++ = Vec2(u, v);
nuclear@0 780
nuclear@0 781 if(i < usub && j < vsub) {
nuclear@0 782 int idx = i * vverts + j;
nuclear@0 783
nuclear@0 784 *idxarr++ = idx;
nuclear@0 785 *idxarr++ = idx + vverts + 1;
nuclear@0 786 *idxarr++ = idx + 1;
nuclear@0 787
nuclear@0 788 *idxarr++ = idx;
nuclear@0 789 *idxarr++ = idx + vverts;
nuclear@0 790 *idxarr++ = idx + vverts + 1;
nuclear@0 791 }
nuclear@0 792
nuclear@0 793 v += dv;
nuclear@0 794 }
nuclear@0 795 u += du;
nuclear@0 796 }
nuclear@0 797 }
nuclear@0 798
nuclear@0 799
nuclear@0 800 static inline Vec3 sweep_vert(float u, float v, float height, Vec2 (*sf)(float, float, void*), void *cls)
nuclear@0 801 {
nuclear@0 802 Vec2 pos = sf(u, v, cls);
nuclear@0 803
nuclear@0 804 float x = pos.x;
nuclear@0 805 float y = v * height;
nuclear@0 806 float z = pos.y;
nuclear@0 807
nuclear@0 808 return Vec3(x, y, z);
nuclear@0 809 }
nuclear@0 810
nuclear@0 811 // ---- sweep shape along a path ----
nuclear@0 812 void gen_sweep(Mesh *mesh, float height, int usub, int vsub, Vec2 (*sfunc)(float, float, void*), void *cls)
nuclear@0 813 {
nuclear@0 814 if(!sfunc) return;
nuclear@0 815 if(usub < 3) usub = 3;
nuclear@0 816 if(vsub < 1) vsub = 1;
nuclear@0 817
nuclear@0 818 mesh->clear();
nuclear@0 819
nuclear@0 820 int uverts = usub + 1;
nuclear@0 821 int vverts = vsub + 1;
nuclear@0 822 int num_verts = uverts * vverts;
nuclear@0 823
nuclear@0 824 int num_quads = usub * vsub;
nuclear@0 825 int num_tri = num_quads * 2;
nuclear@0 826
nuclear@0 827 Vec3 *varr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_VERTEX, 3, num_verts, 0);
nuclear@0 828 Vec3 *narr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_NORMAL, 3, num_verts, 0);
nuclear@0 829 Vec3 *tarr = (Vec3*)mesh->set_attrib_data(MESH_ATTR_TANGENT, 3, num_verts, 0);
nuclear@0 830 Vec2 *uvarr = (Vec2*)mesh->set_attrib_data(MESH_ATTR_TEXCOORD, 2, num_verts, 0);
nuclear@0 831 unsigned int *idxarr = mesh->set_index_data(num_tri * 3, 0);
nuclear@0 832
nuclear@0 833 float du = 1.0 / (float)(uverts - 1);
nuclear@0 834 float dv = 1.0 / (float)(vverts - 1);
nuclear@0 835
nuclear@0 836 float u = 0.0;
nuclear@0 837 for(int i=0; i<uverts; i++) {
nuclear@0 838 float v = 0.0;
nuclear@0 839 for(int j=0; j<vverts; j++) {
nuclear@0 840 Vec3 pos = sweep_vert(u, v, height, sfunc, cls);
nuclear@0 841
nuclear@0 842 Vec3 nextu = sweep_vert(fmod(u + du, 1.0), v, height, sfunc, cls);
nuclear@0 843 Vec3 tang = nextu - pos;
nuclear@0 844 if(length_sq(tang) < 1e-6) {
nuclear@0 845 float new_v = v > 0.5 ? v - dv * 0.25 : v + dv * 0.25;
nuclear@0 846 nextu = sweep_vert(fmod(u + du, 1.0), new_v, height, sfunc, cls);
nuclear@0 847 tang = nextu - pos;
nuclear@0 848 }
nuclear@0 849
nuclear@0 850 Vec3 normal;
nuclear@0 851 Vec3 nextv = sweep_vert(u, v + dv, height, sfunc, cls);
nuclear@0 852 Vec3 bitan = nextv - pos;
nuclear@0 853 if(length_sq(bitan) < 1e-6) {
nuclear@0 854 nextv = sweep_vert(u, v - dv, height, sfunc, cls);
nuclear@0 855 bitan = pos - nextv;
nuclear@0 856 }
nuclear@0 857
nuclear@0 858 normal = cross(tang, bitan);
nuclear@0 859
nuclear@0 860 *varr++ = pos;
nuclear@0 861 *narr++ = normalize(normal);
nuclear@0 862 *tarr++ = normalize(tang);
nuclear@0 863 *uvarr++ = Vec2(u, v);
nuclear@0 864
nuclear@0 865 if(i < usub && j < vsub) {
nuclear@0 866 int idx = i * vverts + j;
nuclear@0 867
nuclear@0 868 *idxarr++ = idx;
nuclear@0 869 *idxarr++ = idx + vverts + 1;
nuclear@0 870 *idxarr++ = idx + 1;
nuclear@0 871
nuclear@0 872 *idxarr++ = idx;
nuclear@0 873 *idxarr++ = idx + vverts;
nuclear@0 874 *idxarr++ = idx + vverts + 1;
nuclear@0 875 }
nuclear@0 876
nuclear@0 877 v += dv;
nuclear@0 878 }
nuclear@0 879 u += du;
nuclear@0 880 }
nuclear@0 881 }